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P. 16 line 14

Xl(Xl’Xl(t)>
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P. 27, relation 75

Ri = V ’ Y- Y > 0, i = 1,... ,m1

P. 29 line 11
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Introduction

Hierarchical and large scale systems have received considerable 

attention during the last few years; firstly because of their importance in 

engineering, economics and other areas, and secondly because of the increased 

capability of computer facilities [13],[14]. An important characteristic of 

many large scale systems is the presence of many decision makers with different 

and usually conflicting goals. The existence of many decision makers who 

interact through the system and have different goals may be an inherent 

property of the system under consideration (e.x., a market situation), or 

may be simply the result of modeling the system as such (e.x., a large 

system decomposed to subsystems for calculation purposes). Differential 

games are useful in modeling and studying dynamic systems where more than 

one decision maker is involved. Most of the questions posed in the area of 

the classical control problem may be considered in a game situation, but 

their resolution is generally more difficult. In addition, many questions 

can be posed in a game framework, which are meaningless or trivial in a 

classical control problem framework. The superior conceptual wealth of game 

over control problems, which makes them potentially much more applicable, 

counterbalances the additional difficulties encountered in their solution.

A particular class of games are the so-called Stackelberg 

differential games [l]-[8]. Stackelberg games provide a natural formalism 

for describing systems which operate on many different levels with a corre­

sponding hierarchy of decisions. The mathematical definition of a general

two-level Stackelberg game is as follows. Let U, V be two sets and J J1’ 2
two real valued functions
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: U x V -* R, i = 1,2.

We consider the set valued mapping T

T
T : U - V, u m  T u C y

(1)

(2 )

defined by

Tu = { v| v - arg inf[J2(u,v); v€V]}. (3)

Clearly Tu = 0 if the inf in definition (3) is not achieved. We also consider 

the minimization problem

inf J,(u,v)1 (4)
subject to: u£ U, v£Tu,

where we use the usual convention J^(u,v) = +oo if v£ Tu = 0*

Definition: A pair (u ,v )6 Ux V is called a Stackelberg equilibrium pair if
it  it(u ,v ) solves (4).

The sets U and V are called the leader's and follower's strategy spaces 

respectively. The game situation described by the mathematical formulation 

above is as follows. The follower tries to minimize his cost function J^} 

for a given choice of u ^ U  by the leader. The leader knowing the follower's
ft itrationale, wishes to announce a u such that the follower's reaction v to 

this given u will result to the minimum possible (u ,v ). The general N- 

level Stackelberg game is defined analogously. Stackelberg differential 

games were first introduced and studied in the engineering literature in [2] 
and further studied in [3]-[8]. They are mathematically formalized as

follows
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x(t) = f (x(t),u(t),v(t),t), x(tQ) = x o

fcf  _  <5 >
JjL (u, v) = gi (x(tf),tf) + J Li (x(t),u(t),v(t) ,t)dt, i - 1,2

to

where f, g^, are appropriately defined functions. Also, u 6 U, v € V, where 
U, V are appropriately defined function spaces and ïï(t), v(t) are the values 

of u and v respectively at time t, i.e., u(t) = u|t, v(t) = V|t . The type 

of strategy spaces U and V which were considered and treated successfully in 

the previous literature where the spaces of piecewise continuous 

functions of time. In this case, the problem of deriving necessary condi­

tions for the Stackelberg differential game with fixed time interval and 

initial condition xq , falls within the area of classical control. Thus, 

variational techniques can be used in a straightforward manner. The case 

where the strategy spaces are spaces of functions whose values at instant t

depend on the current state x(t) and time t, i.e., u(t) = u, = u(x(t),t),
!t

v (t) = V|t = v(x(t),t), was not treated. This case results in a nonclassical 

control problem because ^-appears in the follower's necessary conditions. 

Since the follower's necessary conditions are seen as state differential 

equations by the leader, the presence of ~  in them makes the leader face a 

nonclass'cal control problem.

In the present paper, the nonclassical control problem arising 

from the consideration of the above strategy spaces is embedded in a more 

general class of nonclassical control problems, see (6), (7). The 

characteristics of this general class of problems are the following:

(i) each of the components u , of the control m-vector u, depends on the 

current time t and on a given function of the current state and time, i.e.
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u |t = u (h (x(t),t),t); (ii) the state equation and the cost functional 

depend on the first order partial derivative of u with respect to the state 

x. The vector valued functions h may represent outputs or measurements 

available to the i-th "subcontroller,M in a decentralized control setting.

The only restriction to be imposed on h1 is to be twice continuously 
differentiable with respect to x. This allows for a quite large class of 

h 's which can model output feedback or open loop control laws. It can also 

model mixed cases of open loop and output feedback control laws where during 

only certain intervals of time an output is available. The appearance of 

the partial derivative of u with respect to x prohibits the restriction of 

the admissible controls to those which are functions of time only. It will 

become clear that the extension of our results to the case where higher order 

partial derivatives of u with respect to x, up to order N, appear is straight­

forward. This case is of interest in hierarchical systems since it arises, 

fon example, in an N-level Stackelberg game where the players use control 

values dependent on the current state and time. Although the bulk of the 

analysis provided in this paper concerns continuous time problems, the 

corresponding discrete time results can be derived in a very similar manner.

The structure of the present paper is as follows: In Section 1, a

nonclassical control problem central to the whole development is defined and 

studied. In Section 2, a two-level Stackelberg differential game is treated 

for a fixed time interval [tQ,t^] and initial condition x(t^) = x . The 

leader's and follower's strategies are functions of the current state and 

time, and the results of Section 1 are used for deriving necessary conditions
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for this game. Certain interpretations of the results are also given. In 

Section 3, a Linear Quadratic Stackelberg game is solved as a specific 

application of the theory of Section 2. Finally, we have a conclusions 

section.

Notation and Abbreviations

R : n-dimensional real Euclidean space with the Euclidean metric

|| ||: - denotes the Euclidean metric for vectors and the sup norm for matrices

1: denotes transposition for vectors and matrices

For a function f : Rn -* Rm we say that f £ Ck if f has continuous 

mixed partial derivatives of order k. For f : Rn -* R, vf is considered as 

nx 1 column vector and f denotes the Hessian of f. For f : Rn - Rm , vf is 

considered as n x m matrix (Jacobian). For f : Rn x Rk - Rm , where x£ Rn, 

ySR*, f(x,y)€Rm , we denote by || or f^ or the Jacobian matrix of the partial 

derivatives of f with respect to x and is considered as nx m matrix, 

w.r. to: with respect to

w.l.o.g.: without loss of generality

n.b.d. : neighborhood.

1. A Nonclassical Problem

Consider the dynamic system described by

x(t) = f(x(t),u1(h1(x(t),t),t),u2(h2 (x(C),C),t),...)um (hm (x (tt))t)>t),

*(t0) - ‘’o ’ t € [t t

(6 )
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and the functional

J(u) = g(x(tf))+J’ L(x(t),u1(h1(x(t),t),t))...>um (hm (x (t),t),t), 
t
0 1 1ux (h (x(t),t),t),...,ux (hm (x(t),t),t),t)dt (7)

where the functions f : Rn+m-hnn+1 nR , L : Rn-hn+mn+l n i „ n+1 R > u R R
i = l,...,m, g :R -*R are continuous in all arguments and in with respect to 

i i n+1 ^ ithe x, u, u . The functions h :R -*R , are continuous, and in C w.r. to x 

The time interval [tQ,tf] is considered fixed w.l.o.g. (see [10]). We want to 

find a function u where

u =
m

i qiu :R X [t , t R ,  1 = 1,..., m

ux (x >t),t) exists and u (h (x,t),t), ux (h"(x,t),t) are continuous in x

and piecewise continuous in t, for x € r Q, t € [t t J , i = l,___ m so as to

minimize J(u). We denote by U the set of all such u's. Therefore the 
problem under investigation is

minimize J(u) 

subject to u 6 U and (6) (8 )

We will use the notation

bf ' bL
ÖU1 bu1

• , mXn matrix, L = •
• u •

bf bL
-V 111ou _3um _

, mXl vector
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ri
bf

S (u1)X

L.L
8L

8 (u L)x

nxn matrix, i = 1, .. . ,m

nXa vector, i = l,...,m

i bu1 (y1 , t) i _ , i i i N „qiu. s L. , y = (y , .. . ,y , . . . ,y ) € R
J 8yL 1 2 qi

2

hL * G u , ... ,h\ ... ,h^ )', i - 1,... ,ra, j =* 1, . .., q
i , i i NU i - (U )
y 4i

1 = dhL (x,t) . 3u L (yL ,t)
8x > idyx y1=hL (x,t)

, nXl vector 1 = 1,

(9)

,m

r 1 * * m*n •u = Lu * **• ♦ u i nxm matrix.

This problem is posed for a fixed time interval [tQ,tf] and initial condition 

x(t ) = x q . Therefore the solution u*, if it exists, will in general depend 

on tQ , t^, x q, but we do not show this dependence explicitly.

It should be pointed out that the arguments used in Classical 

Control Theory for showing that for the fixed initial point case, it is 

irrelevant for the optimal trajectory and cost whether the control value at 

time t is composed by using x(t) and t or only t, do not apply here. If 

U|t = u(t), t € [ t Q ,t^], then u^ = 0 and this changes the structure of problem 
(8). Consideration of variations of u^ is also needed and this was where the 

previous researchers stopped, see [4]. This provlem is successfully treated here, 

by proving an extension (Lemma 1.1) of the so-called "fundamental lemma" in 

the Calculus of Variations (see [12]).

The following theorem provides necessary conditions for a function 

u € U  to be a solution to the problem (8) in a local sense; (we assume that U 

is properly topologized). It is assumed in this theorem that the optimum u* 

has strong differentiability properties, an assumption which will be relaxed 

later, in Theorem 1.2 . The proof of this- theorem is based on the following lemma.
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Lemma 1.1: Let M : [tQ, tf] - Rm , IL : [to ,tfJ - R n, i = l,...,m, y : [tQ, tfJ - R n,

be continuous functions, such that 
t _ m fcfJ iu —

M'(t)tp(y(t),t)dt+ S J N.'(t)tp„(y(t),t)dt
t 1=1 t 7 = o

for every continuous function cp : Rn X [tQ, tf] - Rn, where cp « (91,.. . ,cpra) ', and
cp is in C1 w.r. to y. Then M, are identically zero on [tQ,t ].

Proof of Lemma 1.1: The choice cp± = (0,. . . ,0,cp\o, . .. ,0) ', cp1 :[t ,tf]-*R, cp1
continuous in t, i = l,...,m, yields M = 0 on [tQ,t ]. Since MsO, the

choice 9i = (0,...,y,t,0,...,0)', cp1 = y ’t, where t = (ttf 1 n'
 ̂ : ^t0,tf^“+R >  ̂ continuous in t, results in J NJ (t)t (t)dt = 0, for every

1 rsuch y, and thus N.sO on [to,tf] is proven in the same way as M = 0 was 
proven. □

The conclusion of the above lemma holds even if the restriction 
i . _ ^li ^ni ^i

9 (Xjt) - • • • yn #t is imposed, where ,... , k ^ a r e  nonnegative

integers, since the polynomials are dense in the space of measurable functions
on [tQ,tf].

Theorem 1.1: Let u*6 U be a solution of (8) which gives rise to a trajectory
^ [fa (t) ,t) j t € [tQ,t^j} , such that u . are in C w.r.to x in a n.b.d. of 

i y
{ (h (x*(t),t),t),.t 6 [tQ,tf]} . Then there exists a function p : [tQ,t^]-»Rn such

q *» m ,* -f-p(t) = L + f p + Z Z u.V h.(L.+f.p) x x i-1 j=l J xx j 1 1/'
L + f  p = 0 u u

Vxh (Li + f ip ) = 0 > i = 1,. .. ,m

P(tf) =
dg(x(tf))

bx

( 10)

(11)

( 12)

(13)

that
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hold for t € [ t o,t^], where all the partial derivatives are evaluated at 

X*(t), u1*(h1(x*(t)>t),t),

Proof of Theorem 1.1: Let g = 0  w.l.o.g. (see [10]). Consider a function
1 mcp£U, 9 = (cp ,. .. ,cp ) which has the same continuity and differentiability 

properties as u*. Such a cp will be called admissible. Using the known 

theorems on the dependence of solutions of differential equations on 

parameters, we conclude that for e € R, e sufficiently small, u* + ecp gives 

rise to a trajectory {(x(e,t),t)|t€ [tQ,tf]}, x(0,t) * x*(t), and that 
x(e,t) is in C1 w.r. to e. Direct calculation yields

X 'X K' U i = l ' XX *TXX/_i
m

+ f’cp + f!v h V -. ,u 1=1 I X  T i be t=t

be

= 0.

We set

(14)

be written as

z(t) = v ' be <n II o (15)
m qi i ^

A(t) = f +u f + 2 2 u.V h.f.p x x u  j=l J XX J lr (16)

V c> = f’ (17)

B^t) = i = 1,. .. ,m (18)

are evaluated at t, x*, u~, u* and, thus, for e = 0, (14) can

m
B2Cpli> Z < V  = 0 -L v u

z = Az +B,cp + 2 1 ' i=] (19)

For fixed cp we consider

J(e) = J(u + ecp) .



11

Since J(s) is in C w.r. to e and u'? is a local optimum, it must hold

de le=0 U *

Direct calculation yields 

t
* I C[L + (u +ecp )L + S (u1 +ecpL )L.]’ -- de *1 x x x u -i =i v xx xxy iJ bet x x x u i=i xx XX 1‘ 

o
m

+ L'cp + .S L.'V h19L,^tU l = l 1 X y1
Setting m 3 i .

r ( t )  = L +u L + £ H uy  h.L.x x u i= i  j = i  j xx j 1

A. (t )  = L1 ' u

A2(t) = Li7xhij i =

(2 0 )

(21)

(22 )

(23)

with r ,  A^, evaluated at x^, u*, u'*, we conclude from (20)-(23) that

.
=  0 .

L "
y

i m . .
[ [rz +  A_cp +  z A V \ ] d t
t 1 i-1 2 v1 (24)

Therefore (24) must hold for every admissible cp. Let $(t,T) be the transition
1„ 1matrix of A(t). Let also cp(t) denote the vector (cp (h (x*(t) , t) , t) ,. . .,

cpm (hin(x*(t) ,t) , t)) ' and cp1 ( t )  the vector ^  Xh (*^(t)?t)?t)  ̂ Then frQm 

(19) we obtain

Z (t )  =J $ ( t ,T ) [B 1 (T)cp(T) +  Z  B9 (T)cp (T)]dT +- i—1 t- (25)

t ^[tQjtf]

and substituting in (24) we obtain
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p f b _ m.
J {r(t)j S(t,T)[B, (t)<P(t ) + 2 B, (T)cp1 (T)]dT + A(t)9 (t) 

t . . t i = l  2 1
in

+ (t)cp1 (t)}dt = 0. (26)

Let Xj-a b̂j denote the indicator function of [a,b]c [tQ,tf]. We can inter­

change the order of integration in (26) since the integrated quantities are

bounded on [tQ,tf] X [tQ,tf] (Fubini's Theorem). Using the fact X(c) 

X(b) we have successively

m . .
J f [r(t)«(t>r)B1 (T)tp(T) +r(t)*(t,T) 2 Bi (T )cpi (T) ] . 
t t x i=l l

[c,tf]

t t O O
fcf fcf

* X (t )  dTdt = J [J r ( t ) $ ( t , T ) d t ] B 1(T)cp(T) dT +
Et > tf] 
m tf

t T o

+ 2 f [J* r ( t ) i  (t,T)dt ]BhT)<pi (T)dT.
i - l '  t T 2

o

By introducing

[to,b]

(27)

p' (t ) = J* r(t)$(t,T)dT
T ...

(26) can be written as 

t„ m Cf
l [p'(T)B1(T)+A1(T)]1i!(T) + iJl J [p ' ( T ^ C O  + ¿2 CT>]

(28)

cp1 (T) dT = 0. (29)

Applying Lemma 1.1 to (29), we obtain

p , (T )B. (T)  + A ( f )  = 0, on [t  , t  ] i 1 o f (30)
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P ' (T)B2 C'1") (T) = 0  on [tQ,tf]. (31)

Using (17), (18) and (22), (23) in (30), (31) we have equivalently (11) and 

(12). Differentiation of (28) and use of (16) and (21) give the equivalent 

to (28)
m ^i

-p = L + f p + Z Z \iy h^(L. +f.p) 
x x i = i  j = i  J xx j l 1

P(tf) = 0.

The assumption g=0, is removed in the known way, resulting in (13). □

We give now a different derivation of the results of Theorem 1.1, 

under weaker assumptions, which provides an interpretation for 

them and at the same time an extension of the region of their validity. Let

k -^k * ^ulu : LPq j Pf] ““ R t u piecewise continuous}. (32)

Consider the problem

tf 1minimize JCu.Up .. . ,u ) = g(x(t_)) +j L(x,u,V h1 (x,e)TX. , . . . ,7 hm (x,i)u ,t)dt
*. x i x m

subject to x - f(x,u,7 h1(x,t)u , ...,7 hm (x,t)u^,t), x(t ) = x  , t€[t ,tJx x m o o  o f

u S ̂  \  - ua , i = 1, .. . ,m.

Clearly, if J^, J* are the infima of (33) and (8) respectively, it will be 

^1 —  ̂ 2 ’ Also, if u 38 (u1,.. .,u ) ,u^, ... ,u^ solve (33) and give rise to x (t) ,

then an u * (u\ ... ,um) ' € U with
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u1(h1 (x(t), t) ,t) 

_um (hm (x(t) ,t) ,t)

■ (t), u. (h (x(t) ,t) , t) =7 h (x(t),t)u.(t)X - X •
i * 1,... ,m (34)

results in J (u) = J(u,u^, .. . ,um) and gives rise to tine same x(t) . However, 

such u c U  does exist. For example we set

u1(h1(x,t),t) - a^(t) h1(x,t) + b i (t) (35)

where

a^(t) 53 u^Ct) (36)

bt (e) » ^(t) - a^(t)h1(x(t),C) (37)

i » 1,...,m

This u satisfies (34). Thus, problems (33) and (8) are actually equivalent, 
in the sense that for each given (x , t ) they have the.same optimal 

trajectories and costs and their optimal controls are related by (34).
The conditions of Theorem 1.1 are now directly verified to be the 

necessary conditions for problem (33), where one should use u and u\ in 

place of u and uLirespectively. More importantly, the conditions of Theorem
y

1.1 hold if one considers simply u €u, without assuming that u  ̂ is in C
i yw.r. to x in a n.b.d. of { (h (x*(t),t),t),t€ [t ,tr]}. This weakens theo r

strong differentiability property of u* assumed In Theorem 1.1. The 

relative independence of u, u ^ , was exploited in proving Theorem 1.1,
y

when the special form of the perturbation <p(y,t), y'^(t:) (see proof of 

Lemma 1.1), sufficed to conclude (11) and (12). This independence of u and 

u*\ was taken a priori into consideration, when problem (33) was formulated.
y
Clearly, even if higher order partial derivatives u w.r. to
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x appear in f and L, or if u,u  ̂ are restricted to take values within
y

certain closed sets, the equivalence of the corresponding problems (8) 
and (33) holds again (with appropriate modifications of the definitions 

of U, U^, f and L ) . We formalize the discussion above in the following 

theorem.

Theorem 1.2: Let u € u be a solution to the problem

t f  ±
minimize J(u) = g(x(t_)) +J L (x ,u ,uL, . . . ,um ,t)dt (38)

£ t x xo
subject to: x - f (x j U jU1,...,um ,t), x(t ) = x , t€[t ,tJX x o' o o f

u€v, (u1(h1(x(t),t),t), . . . ,um (hm (x(t),t),u11(h1(x(t),t),t) ',.. .,
y

umm (hm (x(t),t),t)’)€v (39)
y

where V c  Rm + 11111 is closed. Then there exists o—

p: [tQ,t^] -* Rn such that
m «i

-p = L + f  p + .S, .E u^V h^ (L.+f. p) x xr i—1 j=l j xx j v l (40)

L ( x * ( t ) ,  u1* ( h 1( x * ( t ) , t ) , t ) , . . um*(hm( x * ( t ) , t ) , t ) ,  u^*(h1( x * ( t ) , t ) , t ) ,  

>•••,  um* (hm( x * ( t ) , t ) , t ) , t )  +

+  f ' ( x * ( t ) ,  u1th1( x * ( t ) , t ) , t ) , . . . ,  um*(hm( x * ( t ) , t ) , t ) ,  u1* ^ !1^ * ^ ) ^ ) ^ ) ,

(h™(x*(t)>t)»t): p(t) <

<L(x*(t), q*,...,q“ , Vxh1(x-(t),t)q1,...,Vxhm (x*(t),t)qm ,t) 

+ f(x*(t),q*,...,q®, Vxh1(x*(t),t)q1,...,7xhm (x*(t),t)qm ,t)

v (q0» • • • >q0>q{> • • • »Sn^vo*

(41)
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bg(x*(t ))
P(V = “ s ----  <42>

for t€[t ,tJ . ao f
It is remarkable that the established equivalence of the problems 

(8) and (33) refers to the optimal trajectories, costs and control values.

It does not refer to any other properties, such as sensitivity, for example. 

It is thus possible, that different realizations of u1 (h1 (x,t),t) other 
than (35) may enjoy sensitivity or other advantages. The following pro­

position provides information for tackling such problems.

Proposition 1.1.

(i) If u and v are elements of U, both satisfying (34), so does 

\u + (l-\ )u, R .

(ii) Let m=l, h^(x,t) - x̂, and x^,u,u^ be scalarvalue functions of 

t,t€[tQ,t^]. Then the function
X1 (x i”^i (*-))_u(x,t) * e ux(t) + [u(t)-x1(t)u1(t)]• [x1-x1(t)]

satisfies u(x(t),t) = u(t), u (x(t),t) = O’- (t)X JL

(iii) Let x, H, u1 be as in (ii). Assume that the scalar valued 

functions u(x,t), v(x,t) satisfy u(x(t),t) = v(x(t),t) *

"u(t) and u (x(t),t) = v (x"(t),t) = u.(t). Then so do theX X i.

functions 2uv
u+v , a/uv“^

2 2 u + v , assuming that u and v are properly

behaved. a

The proof of this proposition is a matter of straightforward verification. 

The assumption in parts (ii) and (iii) for scalar valued quantities 

actually induces no loss of conceptual generality, since it can be abandoned 

at the expense of increased complexity of the corresponding expressions
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of course.

The nonuniqueness of the solution u to problem (8) is obvious

in the light of (34) and Proposition 1.1. Nonetheless, this nonuniqueness

is a nonuniqueness in the representation of u1 as a function of h1 and t,

while u| , ul"iJt are t l̂e same -or a-^ these representations. The non- 
y

uniqueness of u l > if any, can be characterized in terms of the
y

possible nonuniqueness of the a^t), b^t) (see (35)), where one, w.l.o.g,
restricts u1 to affine in hL strategies.

One very basic difference between problems (8) and (33) is the

following. It is clear that the principle of optimality holds for both of

these problems, in the sense that the last piece of each optimal trajectory

is optimal. The existence of a closed loop control law (u(x,y), (x,t),...,

^mC^jt) which results in an optimal solution to problem (33) for every initial

point (xQ ,t^) in a subset of R is guaranteed under certain assumptions, see

[11]. A corresponding statement does not hold for problem (8), i.e. in general

there do not exist functions uL of hL (x,t) and t such that u = (u1,...,um )f is

an optimal solution to problem (8) for every initial point (x ,t ) in a subseto on+1of R . This can be easily seen to hold by the following argument. Let 

such u exist. Then,

( h h x , t ) , t ) , . . .  )um(hm(x,t)  , t) , (h1 ( x , t ) , e ) 1, . . . , un (h“ ( x , c ) , t ) ' ) '
y ym

is a closed loop control law for problem (33). This implies that there must 

exist a solution (u,Up ... »u^) with u = (u\ ..., u111) of the partial differential 

equation of Dynamic Programming associated with problem (33) which satisfies 

= U1(h1(x,t),t) and = 7xhi (x,t)-a1(x,t), 1 - 1, which



18

is not in general true. This difference between problems (8) and (33) emphasizes 

the fact that their equivalence holds in a restricted fashion, i.e. for each 

initial point considered independently and not in a global fashion, like a 

closed loop control law treats the initial points.

Two final remarks before entering the next section are 

pertinent here. First, that the established equivalence of the problems 

(8) and (33) reduces all questions of existence, uniqueness 

and of sufficiency conditions for problem (8) to the corresponding ones
for (33). Second, Theorem 1.2 still holds if instead of the initial condi-

& a 3 3 ql ' 3 1tion x(t ) = x , it is given: x (t ) =x and x (t.) - x r, where x = (x ,x )'.

In this case, (42) is modified to

a 3 g (x ^ ( t f ) )  a dh(x^(t  ) )
P ( O  * ------- and p' (t ) * -------------s--  • (43)

£ a ( 0  3(x0)

where the more general cost functional

3  t f
J * g(x*(tf))+ h(xP (tQ))+ r L(x,u,t)dt (44)

to
is considered (see [10]).

2. A Stackelberg Game

In this section we introduce a two-level Stackelberg game and 

show how it leads us to the consideration of a nonclassical control 

problem. This nonclassical control problem falls into the general class 

considered in Section 1. Using the results of Section 1, we analyze 

the Stackelberg game of the present section.
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Let

m m
U * [u|u: Rn X[t ,t ] “* R , u(x,t)€R for x€ R n and t€[t ,tj, o r  o f

u (x,t) exists and u(x,t), u (x,t) are continuous in x and 

piecewise continuous in t}
(45)

m.
V * Cv|v: [t^jt^] R v is piecewise continuous in t} . (46)

Consider the dynamic system

x(t) = f(x(t), u-(t), V(t),t), x(t ) =* x , t€[t ,t_] (47)O O  O f

and the functionals

Jx (u,v) * g(x(tf)) + J  L(x(t), u(t), v(t),t)dt (48)

J9(urv) = h(x(t )) + J  M(x(t), u(t), v(t),t) (49)

where u£ U , v€ V , x is the state of the system, assumed to be a continuous
m_ m„

function of t, x: [tQ,t ] -* R , and the functions f: Rn X R 1 X R 2 x 
[to ,tf] - Rn , g,h : Rn -  R, L,M : Rn X R 1 X R 2 X [tQ,tf] - R,

are in C w.r. to the x,u,v arguments and continuous in t. The u and v are
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called strategies and are chosen from U and V which are called the strategy- 

spaces, by the two players, the leader and the follower respectively. With 

the given definitions, for each choice of u and v, the behavior of the dynamic 

system is unambiguously determined, assuming of course, that for the selected 

pair (u,v) the solution of the differential equation (47) exists over [tQ,t^].

Let us assume that such a Stackelberg equilibrium pair (u ,v ) 

exists. For fixed uc U, Tu is determined by the minimization problem

minimize J^(u,v)

subject to: v £ V  (50)

x = f(x, u(x,t),v,t), x(tQ) * xQ, 1 6 [tQ,tf]

and thus, applying the Minimum Principle we conclude that for v 6 V to be in 
Tu, there must exist a function p : [tQ ,tf] - Rn such that

x * f (x, U,V, t) (51-a)

M^ + f^p = 0 (51-b)

-p = M + u M  + (f + u  f )p X X U  X x XL (51-c)
dh(x(t ) )

x(to) = xo ’ P(V  = sx (51-d)

We further assume that U is properly topologized. Conditions (51) define a 

set valued mapping T 1 : U V. By using the nature of the defined U and V 

and the fact that (51) are necessary but not sufficient conditions it is 

easily proven that 

(i) TuÇT'u
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(ii) J2(u,vt) £ J2(u,v) T : v 'GT' u , v ^ T u ,

(iii) T'u D Tu' 2  {V*} t 0.

Notice that J2(u,v) takes one value for given u and any v£Tu, while 
2̂ v * ̂ » v* € T'u does not necessarily do so. We assume now the following. 

Assumption (A) :

J-L (u,v' ) ¡s (u,v) for v' 6 T'u, v £ T u , u £U^ (52)

* * where IIT is a n.b.d. of u in U.N
For (A) to hold it suffices for example: T = T' on U*.1 We conclude

that if (A) holds, then u* is a local minimum of the problem

minimize J^(u,v)

subject to: u£U, v €T'u

or equivalently

minimize J^(u,v)

subject to: u£ U, v £ V (53)

•x = f (x, u, v , t) (53-a)

-p = M + u M  + (f  + u f ) p  x x u  s x x u (53-b)

011°s>

+s
> (53-c)

3h (x(t )
x(t ) = X , p(t ) -o o f  £X (53-d)

The problem (53) is a nonclassical control problem of the type considered in the 
previous section, since the partial derivative of the control u w.r. to x

appears in the constraints of (53) which play the role of the system differen-
tial equations and state control constraints, with new state (x1,p').
^See Appendix A.
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Notice that the leader uses only x(t) and t in evaluating u(x(t),t) and not 

the whole state (x^p')1; i.e., the value of u at time t is composed In a 

partial feedback form with respect to the state (x?,pr)’; (recall the output 

feedback in contrast to the state feedback control laws). In this case, the 

h L,s for the leader (u), are

xI ' 0 | i I 3 x. i=l,...,m_nxn * nxn ip 1h ((x,p),t) =

and the h L,s for the follower (v) are identically zero. Different h ^ ’s may 

be used to model different information structures in terms of x(t), and t 

available to the leader and follower at time t. If one were concerned with 

a Stackelberg game composed of N (i 2) hierarchical decision levels [7J, [8], 
then the leader would face a nonclassical control problem where the N-th 

partial of u with respect to x would appear.

We arrived at the conclusion that the leader is faced with the non 

classical control problem (53). We will assume that the state- control con­

straint (53-c) can be solved for v over the whole domain of interest to give

v * S(x,p,u,t) (54)

where S is continuous and in w.r. to x and p. This assumption holds in many 

cases, as for example in the linear Quadratic case to be considered in the next 

section. In any case, direct handling of the constraint (53-c) by appending 

it, or assumption of its solvability in v, does not seem to be the core of 

the matter from a game point of view. However the following remark is 

pertinent here. Assume that we allow v£V,

V = [vjv : R x [tQ, t£j R , v(x,t) piecewise continuous

n (55)m  t and Lipschitzian in x, where x c R  and t€ CtQ,tf]} 

instead of v£V. The assumption of solvability of (53-c) will again give
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v(x,t) S (xjP)U>t). (56)

Since v(x,t) will be substituted in the rest of (53) with S(x,p,u,t) from 

(56),the leader will be faced with exactly the same problem as after 

substituting v(t) with S from (54). Therefore, no additional difficulty 

arises if one allows V instead of V and assumes solvability of (53-c).

In any case, for either V or V, even if (53-c) is not solvable for v, the leader's 

problem can be treated by using Theorem 1.2, where the control (u,v) should be 

considered as unknown and (53-c) will play the role of a constraint, see (39).

Substituting v from (54) to (53) we obtain

minimize J(u) = g(x(tf)) + J L(x,p,u,t)dt
u € U  V

subject to:

X F1(x,p,u,t)
s

_ p _ F21(x,p,u,t) + UxF22(x,p,u,t)

x ( t0) -  V  P ( t  ) -
3h(x(tf))

O X

where L, F^, F F 22 stand for the resulting composite functions.
Problem (57) is a nonclassical control problem like the one treated in * 

Section 1 where (x',p')' is the state of the system. Thus, Theorem 

1.2 is applicable and can be used for writing down the leader's necessary 
conditions. From the results of the previous section, we conclude that the 

solution for the leaders u -if it exists -is not unique. It is interesting 

uO notice that (35) implies that the leader has nothing to lose if he commits 

himself to an affine in x, time varying strategy. With such a commitment, the 

leader does not deteriorate his cost, does not alter the optimal trajectory, 

and also the follower's optimal cost is not affected. More noteworthy is that 

the affine choice ror the leader can be made even if f, L, M are nonlinear and
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U ’ Ux are constrairled t0 take values in given closed sets. In addition, v

may be constrained to take values in a given closed set in which case (53-c)
should be substituted by an appropriate inequality. In accordance

with the discussion in the previous section, we have that in general there

does not exist a strategy u(x,t) which is optimal for every initial point

(x ,t ) in a subset of Rn+^ . o o
It has been shown in [4] through a counterexample that the principle

of optimality does not hold for Stackelberg games. To make this statement more

precise let us assume that the problem has been solved in [to ,t^] and x* is the

optimal trajectory. While the process at (x*0t),f), where t < t ‘<t-. we stopo f

and solve the same Stackelberg game on with initial condition x("t) =x*(tf).

Let x be the optimal trajectory for the second problem. Then x* does not

have to coincide with the restriction of x* on [*t,t̂ ] . The explanation is

the following. The leader is faced with the control problem (57) which has
dh(x(t ))

boundary conditions x(to) = x Q and p(tf) * ---^ ---- , given at both tQ and tf.

Let (x*,p*) be the optimal trajectory of this problem. If the leader is asked

to solve the same control problem on [Tf,tf] with boundary conditions xft) =x*(t) 
bh (x (tf ) )

and p(tf) = --------- , there is no necessity for p(t) = p^("t)! Even more, if

are the adjoint variables of the leader's control problem on (t ,t ] and 
L o * f

\2 are tde adjoint variables of the leader's control problem on [t\t ],
3g(x(t ))

corresponding to x and p respectively, it will be (tr) = ----- =—
_  _  *s(x(tf)) ^  _  1 f ox

^2^ 0  ̂ ^i(cf) = Jx ’ ^2^  * 0* ^  dynamic programming were holding
it should be (t) - \2(t) = which is not true. Actually, \ (tf) =0, 

7t€[tQ,t^] is a necessary condition for dynamic programming to hold. The
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condition (tf) = 0, can be used for example in the linear quadratic

game, see (67)-(74) for deriving more explicit conditions in terms of the data
2of the problem for dynamic programming to hold.

Let \ - (X^jXp' denote the adjoint variable for problem (57) with 

X-l* *̂2 corresPonding t0 x and p respectively. Then, condition (41) results 
in

CMu (x,u,S(x,p,u,t),t) + fu (x,u,S(x,p,u,t),t)p]\^ = 0 (58)

Y [to3tf]

which will generally make the leader's problem singular [9]. This is to be

expected, because the leader exerts his influence through the time functions

resulting from u and u , which are actually quite independent, and u is notx x
penalized or subjected to any constraint in the initial formulation (47) - 
(49). In other words, the leader is more powerful than what a first inspec­

tion of the original problem indicates. One way to restrict the leader's

strength or to avoid the singular problem could be the inclusion of u1 in L,x
i.e., L - L(x,u,u ,...,u ,t), which would model a self disciplined leader,

or to impose a priori bounds on u , for example, '¡uhl £ k, V t 6 [t ,t ]x 11 x11 o f
which could be interpreted as a constitutional restriction on a real life

leader.________________________________
^See Appendix B.
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3. A Linear Quadratic Stackelberg Game

In the present section we work out a Linear Quadratic Stackelberg 

game. The leader is penalized for u^ as well, by including it in L. We 

consider the dynamic system

x = Ax + B-jU + B2v , x(tQ) = x q, t£ [tQ,tf] (59)

and the cost functionals

= 2 *̂xfKlfxf + J (x1 Q^x+ u,R11u + v' R12v+ ^ ul Riul)dt] (60) 
tQ i-1 X

J2(u,v) - 7[x^K2fxf + .r (x‘Q2x+u'R21u + v'R22v)dt (61)
to

where the matrices A, B^, Q^, R_^, are continuous functions of time and 

Qt j \ y  \  are symmetric. R22 is nonsingular Y tÇ [tQ,tf3, which guarantees 
(54). The follower's necessary conditions are (recall (51)).

v = (62)

• -1 . (63)x - Ax + B^u - B ^ ^  p

P = -q2x - uxRn u - A'p - uxB|p (64)

x(to} = V  P (tf> = (65)

Therefore, the leader's problem is (recall (33), (57))^

We assume that Assumption (A) holds. See also Appendix A.
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l tf
minimize J(u) = -[x’K x + f (x ’ Q.x + u 'R u + Z t if f O 1 11

o
1 T ® • 1 •

+ p 'b2r^2r12^ p +  r u R V ) d t ]
1=1

(66)

subject to:

i = Ax - B2R^B:,P + Bxu (6 7)

P = " V  ' A'P * uxBiP ' " xR21U (68)

x(tQ) “ xo> p(t£) = K2fxf. (69)

The necessary conditions for the leader in accordance with Theorem 1.2 are 
(67), (68), (69) and

RU u + B ‘X1 - R ^ u y 2 = 0 (70)

cV x  :•••: RmUx] + V R2iu + B ip)' = 0 (71)
•

X1 = “Qlx ‘ A'X1 + ^2X2 (72)

S  * “B2R22R12R22B2P + B2®22B2X1 + ^ 2  + BluxX2 (73)

X l^f) ~ Klfxf’ = °*

For simplification we assume further that

(74)

Rj. = Y iI, Yi > 0, i = 1,. •. ,m 

R11 " I* R22 = 1

and (70) , (71) are easily solved for u and u to yield
X

(75)
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u =
R21Bi p] (76)

uX f  X2[p'B1 + u'R^1] (77)

which can be substituted into (67), (68), (72), (73) to yield a nonlinear 

system of differential equations, with unknown x, p, and boundary

conditions (69) and (74). If y -> +=o, then (76) and (77) yield u^ -» 0 and 

u , and thus the solution tends to the open loop solution, i.e.,

u = u (t) v = v(t), as the resulting form of (67), (68), (72), (73) indicates 

for Y - +»([2,], [3]).

Before ending this section, we make the following comment. It

could be suggested to the follower to penalize u1 in his criterion while u1x x
is not penalized in the leader's criterion. This would lead to the appear­

ance of u1 in (68) (assuming u1 exists). Thus in addition to (58) axx xx
similar condition due to u appears which reinforces the singular characterXX
of the problem. If the leader now restricts himself to affine strategies in 

x, then u1 = 0 and the resulting optimum is as before. Actually, the 

leader can restrict himself to a quadratic strategy in x (without affecting 

his global optimum cost and trajectory) having thus three influences on the 

system, namely u, u , u1 , from which only u is penalized in the leader'sX XX
criterion. Therefore, the leader will do better. For the follower it is

not obvious if he will do better or not.
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4. Conclusions

In the present paper, a nonclassical control problem was Introduced 

and analyzed. Problems of this type arise in the study of hierarchical systems, 

and take into account several information patterns that might be available to 

the controllers. Two different approaches were presented. The first uses 

variational techniques, while the second reduces the nonclassical problem to 

a classical one. The nonexistence of closed loop control laws for this problem 

was shown. The nonuniqueness of the solution of this problem was considered 

and explained. The results obtained for this nonclassical control problem 

were used to study a Stackelberg differential game where the players have 

current state information only (h(x(t),t)). Necessary conditions that the 

optimal strategies must satisfy were derived. The inapplicability of dynamic 

programming to Stackelberg dynamic games was explained. The singular character 

of the leader s problem was proven and the nonuniqueness of his strategies was 

proven and characterized. In particular, it was shown that commitment of the 

leader to an affine time varying strategy does not induce any change to the 

optimal costs and trajectory. A linear Quadratic Stackelberg game was also 

worked out as a specific application.

We end by outlining certain generalizations of the work presented 

hsre. We consider first the discrete time versions. Consider the dynamic 
system

^khl ~ 0* ,k),. . . ,u (h (x^,k)} k)

Ux (hl(xk ,k) ’k) ’ * * * ,k) , k)

x q given, k = 1,...,N-1

and the cost
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J(u) = g (2̂ ) + 2 L(xku1(h1(xk ,k) ,k) , u ^ h ^ x ^ k )  ,k) ,

u^(h1(xk >k)k> > • • • » u^(htn(xk>k) ,k) •

The proof of the corresponding Theorem 1.2 is straightforward. An immediate 

consequence is that the restriction

u1(h1(xk ,k),k) = Akh1(xk ,k) + BX, i =

where A X,Bk are matrices, does not induce any loss of generality as far as 

the optimal cost and trajectory are concerned, (compare to (35)). Clearly 

Proposition 1.1 carries over, too.

A discrete time version of the Stackelberg game of Section 2 can 

be defined (see ), and analyzed similarly to section 2. Several information 

patterns can be exploited by employing different hX,s (see (8) ). The 

restriction of the leader to affine strategies can also be imposed in the 

discrete case. The linear quadratic discrete analog of problems (59)-(61) 

can also be worked out in a similar way.

The case where higher order partial derivatives of u w.r. to x 

appear in (6) and (7) can be treated, and all the analysis of Section 1 

carries over. One should assume higher order differentiability of the 

functions involved. Lemma 1.1 can easily be extended to the case where 

higher order of partials of cp w.r. to y appear, making the proof of the 

corresponding Theorem 1.1 possible. We can also restrict uL to a polynomial 

form in terms of the h 's. The analog of Theorem 1.2 can be easily stated 

and proven and Proposition 1.1 also carries over.
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Finally, an N-level Stackelberg game where on each i-level

(i “ 1»•••jN) n^ followers operate (u^,...,u^ ), play Nash (or Pareto) among
x  i x  jL •them, and u | = u (h (x,t),t) j = l,...,n , i = 1,...,N, with given h1 andJ t  j  j  i  j

fixed xq, tQ, t can be easily treated by using the analysis for the 
nonclassical control problem supplied here.
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Appendix A

In this Appendix we give certain conditions under which Assumption 

(A) (Section 2) holds.

Lemma A.1 : Let U be a subset of U (see (45)), defined asX

= [u6 U|u(x,t) = C(t)x + D(t), where the m^ x n matrix C(fc)

and the m ^ l  vector D(t) are piecewise continuous (A-l)

functions of time over [tQ,t^]].

Then it holds:

inf JL(u,v) 2: inf J1(u,v) ;> inf J (u,v) = inf J (u,v)
(A-2)

u € U  , v 6 Tu. u€U, v £ Tu u£U, v£T'u u €U,, v^T'u.
** Xj

Proof: The inequalities follow from the facts U ^ u ,  T u ^ T u  yu€u. The
i ~ ~

last equality is obvious in the light of (35) and the proof of Theorem

An immediate conclusion of Lemma A.l is that if

inf J^(u,v) = inf J (u,v) 

u € Û , v 6 Tu u^U^, v € T'u
(A-3)

•k
holds, then Assumption (A) holds (with UN = U). For (A-3) to hold, it 

suffices that the first order necessary conditions for the follower's 

problem are also sufficient, for each fixed u £ U  . More specifically, for 

fixed C(t), D(t) as in definition (A-l) , we consider the problem
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minimize h(x(t )) + [ M(x,C(t)x+D(t),v, t)dt

subject to: v € V
(A-4)

x = f (x,C(t)x+D(t),v, t), x(tQ) = XQ, t 6 [ t Qjtf3

and seek conditions under which the first order necessary conditions for an 
*optimal v for problem (A-4) (see (51-b)-(51-d)) are also sufficient. Such 

conditions can be found in Chapter 5-2 of [15]. We formalize this discussion 

in the following Proposition.

Proposition A.l: If for each u£ U^, the first order necessary conditions

(51-b)-(51-d) for problem (A-4) are also sufficient, then Assumption (A) 

holds.

The discussion in the present Appendix generalizes clearly to the 

case where each uL depends on h1(x,t) instead of x and to the case where 
different U^’s are considered; see for example Proposition l.l(ii).

As an example where Proposition A.l can be applied, we consider 

the linear quadratic game of Section 3. Then, Theorem 5, p. 341 and 

Corollary p. 343 of [15] in conjunction with Proposition A.l yield that if 

Q2 ^ 0, ^ 0 then Assumption (A) holds.
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Appendix B

In this Appendix we investigate under what conditions the Principle 

of Optimality holds for the Stackelberg games of Sections 2 and 3.

We consider first the linear quadratic game of Section 3. As it 

was shown in Section 2, ^(t) = 0 V t£ [tQ,t^], is a necessary condition for 

the principle of optimality to hold. With \ s 0, (73) yields

~B2R22R12R22B2P + B2R22B2X1 = °  

from which, by assuming rank = we obtain equivalently

-B12H22B2P + B1X1 = °*

Also, (71) yields

u ~ 0 ,  i - 1,.•. ,m. (B-l)
X

We conclude that under the assumption rank B^ = m^, (67)-(74) simplify to 

give

x = Ax + B^u + B^v (B-2)

\  = “Q1x - A ' ^ (B-3)

V  + BiX l = ° ’ ®12v + B2X 1 = ° (B-4)

x(V = V W  = h t x£ (B-5)

•

p = -Q2x - A'p (B-6)

v - "®22B2^ (B-7)
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P(tf) “ K2fXf’ (B-8)

(B-2)-(B-5) show that the leader's problem can be considered as a team 

problem under the "constraint" (B-l), with optimal solution, say (u ,v ) and
"rC(B-6)-(B-8) show that the same v must be the follower's optimal reaction to

the leader's choice u . Actually, (B-l) is not at all a constraint, since

with X2 = 0, (68), (where u1 appears) is not really considered by the leader.
So, the leader operating under (67) and wanting to minimize (60) may as well

choose u1 = 0, since he is penalized for u , while u1 does not appear in x x x rr
(67).

The same analysis and conclusions carry over to the more general 

game of Section 2 (see (45)-(49) and (54)), since the condition \ = 0 on

CtQ,t^] comes from the demand that the transversality conditions hold 

V t 6 [to,tf] and is not affected by the fact that in (48) u^ is not penalized. 

Notice that if the leader's cost functional (48) is substituted by
m„f “1 .

(u,v) = g(x(t )) + J fL(x,u,v,t) + 2 u1 'R.u3"ldt 
1 f i=i X 1 x; (B-9)

> 0, i a 1,,,,,m^

then (B-l) holds again.

The idea behind the condition L  = 0 on [t ,t_] is that the leader2 o f
is not really constrained by the follower's adjoint equation and therefore 

the leader's problem, being independent of the follower's problem, becomes a 
team control problem.

In conclusion, a necessary condition for the Principle of Optimality 

to hold for the Stackelberg games of Sections 2 and 3, is that the leader's

problem is actually a team control problem. But for a control problem with
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fixed initial conditions, the Principle of Optimality does hold. We thus 

have the "if and only if" statement: The Principle of Optimality holds for

the problems of Sections 2 and 3 (see (45)-(49), (54) and (59)-(61) 

respectively) if and only if the leader's problem is a team control problem 

for both the leader and follower.
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