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Optimal Control of Systems with Delayed Observation Sharing
Patterns

Petros G. Voulgaris 
Coordinated Science Laboratory 

University of Illinois at Urbana-Champaign

March 18, 1996

Abstract
In this paper we present an input-output point of view of certain optimal control problems 

with constraints on the processing of the measurement data. In particular, considering linear 
controllers and plant dynamics, we present solutions to the £l , H00 and "Hr optimal control 
problems under the so-called one-step delay observation sharing pattern. Extensions to other 
decentralized structures are also possible under certain conditions on the plant. The main 
message from this unified input-output approach is that, linear structural constraints on the 
controller appear as linear constraints of the same type on the Youla parameter that parametrizes 
all controllers, as long as the part of the plant that relates controls to measurements possesses 
the same off-diagonal structure required in the controller. Under this condition. £l , H00 and 77 2 
optimization transform to nonstandard, yet convex problems. Their solution can be obtained 
by suitably utilizing the Duality. Nehari and Projection theorems respectively.

1 In tro d u ctio n

Optimal control under decentralized information structures is a topic that, although it has been 
studied extensively over the last forty years or so, still remains a challenge to the control community. 
The early encounters with the problem date back in the fifties and early sixties under the framework 
of team theory (e.g.. [16.18]. ) Soon it was realized that, in general, optimal decision making is very 
difficult to obtain when decision makers have access to private information, but do not exchange 
their information [35]. Nonetheless, under particular decentralized information schemes such as 
the partially nested information structures [12] certain optimal control problems admit trackable 
solutions. Several results exist by now when exchange of information is allowed with a one-step time 
delay (which is a special case of the partially nested information structure.) To mention only a few 
we refer to [2,4,21] where LQG criteria are of interest, [3,24,25,26,27,28,29] where linear exponential- 
quadratic Gaussian (LEQG) problems are considered and certain connections to minimax quadratic 
problems are furnished. The interested reader may further refer to [1] which provides a very good 
reference guide on the topic.

In this paper, in contrast to the state-space view-point of the works previously referenced, we 
undertake an input-output approach to optimal control under the quasiclassical information scheme 
known as the one-step delay observation sharing pattern (e.g., [2]). Under this pattern measurement 
information can be exchanged bet ween the decision makers with a delay of one time step. In the 
paper we define and present solutions to three optimal control problems: G, 7700 and H2 (or LQG)
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optimal disturbance rejection. The key ingredient in this approach is the transformation of the 
(linear) decentralization constraints on the controller to linear constraints on the Youla parameter 
used to characterize all controllers. Hence, the resulting problems in the input-output setting are, 
although nonstandard, convex. These problems resemble the ones appearing in optimal control of 
periodic systems when lifting techniques are employed [8,32], and can be solved by suitably utilizing 
the Duality, Nehari and Projection theorems respectively. Other structured control problems can 
also be dealt similarly provided that the part of the plant that relates controls to measurements 
possesses the same off-diagonal structure required in the controller. This condition is crucial in 
transforming linearly structural constraints. If it is satisfied, problems with rc-step delay observation 
sharing patterns where n > 1, or with fully decentralized operation can be solved in a similar fashion.

The paper is organized as follows: section 2 provides background on input-output characteri
zations and on certain key theorems; section 3 defines precisely the problems of interest; section 4 
provides their solution; section 5 is devoted to several concluding comments and discussions.

2 M a th em a tica l P re lim in aries

This section presents the notation and definitions to be used throughout the paper. Also, some 
important to our development mathematical results are provided. References are given to cover all 
of the needed mathematical background.

2.1 G en er ic  N o ta t io n

In this subsection we give some generic notation that is used throughout the thesis. 

p( A) The spectral radius of the matrix ,4.

<t[,4] The maximum singular value of the matrix A.

|.r|p The p-norm of the finite dimensional vector x — (x ( x\> . . .  cn )7 given as

n

M p = (52  lx*l)1/P’ p < oc
i * = l

|;c|p = max|xqj, p = oo.i

|.4|i The 1-norm of the m x n matrix .4 = (AtJ) given as

n
\A\i = . max ^ | A tJ|.2 =  1....,771.7=0

H {\)  The A-transform of a m X n real sequence H = { .  defined as:

oo

)= Y.
k — — oo

A “ The dual space of the normed linear space A’.
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BX  The closed unit ball of X .

±S The left annihilator of S C X*.

S 1 The right annihilator of S C X .

II5 The projection operator onto the subset S of the Hilbert space X .

(.x, x*) The value of the bounded linear functional x* at point x E X .

T* The adjoint of the operator T.

The /¿^-truncation operator acting on a rax 1 vector valued sequence {«(/¿)}£i0
as

n j,:{ u (0 ),u (l) ,...}  — > {«(0).......  0 ,...} .

Am The right shift operator acting on a m X 1 vector valued sequence {u(k)}fL0
d.s

Am : {tt(0),ti(l),...} —  {0.tt(0),M(l

2.2  S om e B a sic  Sp aces

In this subsection we define certain important normed linear spaces that we very frequently refer 
to in the course of our development. These spaces are the following (for details look at [20,15,14,34]):

4 x n  : The Banach space of all ra X n matrices H each of whose entries is a right sided, ab
solutely summable real sequence HtJ — {#;j(/0}jtL0- The norm is defined as:

n 00
ll^ll,, : = m a x £ £ | f f ii(*)|.

' m x  n 1 L— '  'j=i k=0

tm : The Banach space of real ra X 1 vectors u each of whose components is a magnitude bounded 
real sequence {ui[k)}'l10. The norm is defined as:

IMIfoo := max(sup |ut(/;)|).t k

: The extended space: it is the space of all real right sided m X 1 vector valued sequences.

i2m : The Hilbert space of real in x L vectors a each of whose components is an energy bounded 
real sequence {wt(A:)}£l0. The norm is defined as:

m 00

H“ ilc  := ( E  E  M * ) lJ),/2-
i =  l  k=0
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Amxn ' The real Banach space of all m x n matrices H(X)  such that H{A) is the A-transform 
of an i]nxn sequence H . The norm is defined as

H[A) := ||tf |U

This space is isometrically isomorphic to £^Xn i.e., i lmXn — A r

A ^xn  '• The Banach space of all m X n matrices H each of whose entries is a right sided, magnitude 
bounded real sequence = { //}-j(Ar)}£L0. The norm is defined as:

m

\\tt IU* := X ^m^x(suP\Hij(k )\)-rrixn c '  7 11 = 1 J *

cmxn : The subspace ot A~ixn consisting of all elements which converge to zero.

^mxn : The Banach space of all m x n matrix valued functions F defined on the unit circle 
of the complex plain with

||T ||£cc. := ess sup a[F(ej6)] < 00.
ê[0,27r]

rhC^Xn : The Banach space of all m x n matrix valued functions F analytic in the open unit 
disk of the complex plain with

:= sup max a[F(rejd)] < 00.
rG[0,l) 0€[O,27r]

This space can be considered as a closed subspace of £ ^ xn.

£^x„ : The Hilbert space of matrix valued functions F defined on the unit circle of the com
plex plain with

||T ||£2 := [(2tt)-1 /  trace(FT (e~j9)F(ej9))cWj1/2 < 00.
Jo

Mmxn '■ The Hilbert space of all m x n matrix valued functions F analytic in the open unit 
disk of the complex plane with

||F ||K2 := sup [('2tt)~1 /  trace{FT(re~j9)F(rej9))d0]1̂ 2 < 00. 
r6[0.1) Jo

This space can be considered as a closed subspace of £^nxn. Moreover, (2n ~ 'H2inx {.
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2 .3  In p u t-O u tp u t C h a ra cter iza tio n  o f L inear S y s te m s

In this subsection we consider the input-output characterization of systems by viewing them as 
linear operators.

2.3.1 C ausality

We start with the notion of a causal operator

D efinition 2.1 Let T : he an operator. T is called causal if

n * T «  = n * r n S « ,  v *  = 0 , 1 , 2 , . . . ,

T is called strictly causal if

n kmTu =  n ^ r n * - 1«, v *  = 0 , 1 , 2 ...

The class of all causal operators T  on £°°,e will be denoted by £ mx,!. Such operators can be 
represented by infinite block triangular matrices of the form

/T o(0) 0 . . . \
Ti(l)  Ti(0) . . .

\  : : ’•• /

where T/d i ) are m x n matrices for all i,k . This representation is another way to state that these 
operators are convolution operators: i.e., if y = Tu  then

k
y(k) = ^2  Tk(k -  i)u(i). 

i=0

2.3.2 S tability

Next, we consider the notion of -stability where a = oo,2.

D efinition 2.2 Let T he a causal operator in £ mXn. Then T is t* -stable if its induced norm over 
i a is bounded; i.e., if

imi = sup
u6̂ n >

\\Tu\\e
_______ m

IMU
< 00.

The class of all ^-stable systems equipped with the induced norm, will be denoted by B j y n(fa). 
This class is a Banach space and in particular it is a Banach algebra with multiplication defined as 
composition. In the case where o = 00 we refer to the space n(£°°) as the space of Bounded- 
Input-Bounded-Output (BIBO) stable, or simply, stable systems. Moreover, the following fact can 
be easily checked.

Fact 2.1 The space can be represented as the space of all infinite m x n block lower
triangular matrices of the form

( T 0(Q) 0 . . . \
T i(l) 7^(0) . . .

V : •••/
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where Tk(i) are m x n matrices for all i,k  such that

sup \{Tk(k) Tk(k -  1) . . .  7*(0))|i < oo.
k

In the case when a system T  is given in terms of a finite dimensional state-space description of 
the form

x(t + 1) = A(t)x(t) + B (t)u(t) 

y(t) = C(t)x(t) + D(t)u(t),

t = 0 ,1 .2 ,. . .  with (/!(•), B(-), C( •), D{ •)) being time varying matrices then

D efinition 2.3 The system T is exponentially stable if there are constants C\,C2 > 0 such that for 
all to and x(to) the following holds

N«)|2 < ci|.t(i0)|'2eC2(‘' lo) t = 1.......

We also define the notion of stabilizability and detectability as follows

D efinition 2.4 The pair ( .4( •), B( •)) is called stahilizable if there exists a bounded matrix function 
I i{ •) such that the system x(t + i ) = (A(t) — B(t)K{t))x{t) is exponentially stable. Similarly, the 
pair {A(-),C{‘)) is detectable if there is a bounded matrix function L(-) such that the system 
.?;(/ + I ) = (.!(/) -  ly{t)('(t))x(t) is exponentially stable.

A finite dimensional system with (.-i(-), B(-)) stabilizable and (A(-),C'(-)) detectable is called sta- 
bilizable.

2.3.3 T im e (Shift) Invariance

An important subclass of the general time varying systems of the class £ mxn is the class of time 
(shift) invariant systems. If T : f',x e ----f.™'e then

D efinition 2.5 T is time invariant if it. commutes with the shift operator: i.e..

A mT = TAn.

The space of time invariant operators that are also fa-stable is denoted by B ^ f n{ta ) where 
a = oo, 2.

2.4  N o ta t io n a l C on ven tion

To avoid proliferation of notation we will often drop the m and n in the notation given in the 
previous subsections when the dimension is not important or when it is clear from the context. 
Also, subscripts on the norms are dropped when there is no ambiguity.

6



2.5 F u n d a m en ta l C o n n ec tio n s

In this subsection we provide the connections between the spaces of section 2.2 and B ji^ f01) where 
a = oo,2. We start with BIBO time invariant operators. The following fact can be easily checked:

Fact 2.2 Every element of £*xXn (Amxn) defines an operator in B j ^ n(i°°) via convolution (mul
tiplication in the X-domain) and vice versa. Moreover, the spaces £jnXn. «4mxn. B™fn{t°°) are 
isometrically isomorphic; i.e.,

f 1 ~  A ~  K> m xn(poo\
l m x n  ~  ^mxn — & T I  ' C /*

The above fact means that a (^-stable operator T  is associated with a sequence {T(i)}^.0 G f 1 
which is the impulse response. This can be easily seen from the Toeplitz representation of T :

T  =
/T (0 ) 0

T (l) T( 0)

V i !

The induced operator norm over t x is exactly the f^-norm of {7 ( / )}/l0. 1 lle sequence {'r(i.)}fl0 
convolves with the input sequence {w(fc)}£L0 G to produce the output sequence of T. In the 
space A  this translates to multiplication of the corresponding A-transforms. Finally, the isomorphy 
establishes that composition (of operators) in Bt iH00) translates to convolution in f 1 and, of course, 
multiplication in A.

Next we encounter the ^-stable operators. First, we have the following [11] concerning the 
linear bounded operators on C2: .

Fact 2.3 An element R G defines an operator from C2xl to E2nxl via multiplication. More
over, any operator from C2X[ to C2nxX can be represented with some R G £ ^ xn: the induced 
operator norm is exactly ||/?.|L>,mx•>
The bounded operators on the subspace H2 of C2 are characterized by the next fact [11]:

Fact 2.4 An element X  G ' ^ x„ defines an operator from 'h2xl to 'H2lXl via. multiplication and 
vice versa. Moreover, any operator from H2lXl to 77^xl can represented with some X  G 'H^Xn; 
the induced operator norm is exactly ||A"||Woo .

Having in mind that i 2m ~  H2nXl it is not hard to establish that

Fact 2.5 An element in H ^ xn defines an operator in B j f n[(f2) via multiplication in the X-domain 
and vice versa. Moreover, any operator in B j f n(i2) can be represented with an element in H^ixn 
and also the spaces H ^ Xn, B j f n{(2) are isometrically isomorphic: i.e.,

■l/'X /M l  X I I  I 111 \
H -m X n  —  ° T l  ) ‘

Again, the previous fact means that any function T(X) G 7700 defines an operator T  in B j i i f 2) by 
multiplication and vice versa. The induced operator norm over i2 is exactly T(A) . The input

sequence {u(^)}kLo G i 2 transforms to a function u(X) G 77 2 that multiplies T(A) to produce the 
transform 77i(A) G H2 of the output sequence; then, by inverse transform we obtain the output 
Tu  G i 2.
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2.6  Im p o r ta n t T h eo rem s

Here, we present without proofs some theorems from mathematical analysis [20,15,14] which play 
a central role in our development .

2.6.1 D uality

We start with the two Duality theorems which we use in section 4.
Let A" be some normed linear space and let A* denote its dual. That is, X * is the space of all 
bounded linear functionals r on X.  X* is a normed linear space equipped with the induced norm; 
i.e., if r £ A* then

IMI = sup \(x, r)| 
xzBX

where (x,r)  means the value of the functional r at x. The right annihilator (or orthogonal comple
ment) space of a subspace S of A is defined as

,s,j- = {r £ x m : (x, r) = 0 Vx £ 5}.

Suppose that Q is a subspace in the dual space X* of X . Then the left annihilator of Q is defined 
as

l O -  {x £ A" : (x,q) = 0, Vr/ £ Q}.

Finally. w<> say that /• £ Y \ r £ Y are aligned if (x, r) = ||x|| ||r|| . We now state the two main 
theorems:

Theorem 2.1 Let x be an element in a real normed linear space X  and let p denote its distance 
from the subspace S . Then

p = inf llx — k\\ = max (x ,r) 
k e s "  '•€5J-,|M|<1

where the maximum is achieved for some r0 in Moreover, if the infimum on the left is achieved 
for some k0 £ .9, then r0 is aligned with x — kQ.

Theorem 2.2 Let S be a subspace of a real normed linear space A. Let x m £ A* be a distance p 
from S 1 . Then

p = min lla?- — r*\\ = sup (x,x*) 
r *€ SX X£BS

where the minimum on the left is achieved for some r* £ S L . Moreover, if the supremum on the 
right is achieved for some x0 £ BS then x* -  r ' ,  x0 are aligned.

In our development we use the second theorem although the first can be used equally well.
We also present a basic fact that shows the relations between the spaces A*lXn. f^nXn and ĉ nXn.

Fact 2.6 Every linear functional on fjnXn is representable uniquely in the form
m n x.

/ («)  = E E E
i=1 j =1 k=0

where Y = (YtJ) £ A^nXn and H = (HlJ) £ i xmXn. Moreover the converse holds; hence, (i xmXn)* = 
A ^ Xn. It can be also shown that (c^xn)* = f]nxn where the linear functionals are defined as above.

With this fact in mind and the Duality theorems we can turn distance problems in i 1 to distance 
problems in 4̂* or in c°.



2.6.2 P ro jec tio n  Theorem

As a corollary to the Duality theorems we present the Projection theorem when the space X  
happens to be a Hilbert space. In particular, we have:

T heorem  2.3 Let X  be a Hilbert space and M a closed subspace of X . Corresponding to any 
x £ X  there is a unique m Q £ M such that ||x — m 0\\ < ||x — m|| for all m £ M . Furthermore a 
necessary and sufficient condition that m 0 be the unique minimizer is that x -  m0 E M 2- .

This theorem is used in section 4 to solve a minimization problem in C?.

2.6.3 N eh ari’s Theorem

Nehari’s theorem solves an important distance problem in the space £°°. This theorem will be 
used in section 4 to solve a 'H°° problem. First, we define the Hankel operator associated with a 
function R E (e.g.. [11]) .

D efinition 2.6 Lei R £ C ' and n E H2. Then the Hankel operator with symbol R is the map
rR : H 2 -  ('H2)1 with

r Ru = 11^2 'jxRu

where Ru is the function R{X)n(\) £ C2.

The induced norm \\TR\\ of this operator measures the distance from an element R in £°° and the 
space ‘H°°.

T heorem  2.4 Let R E C™T hen

km J R - x \\c„ = \\t r \\-

Moreover, there exists a X 0 £ that achieves the infimum.

3 P ro b lem  D efin itio n

The standard block diagram for the disturbance rejection problem is depicted in Figure 1. In this 
figure, P denotes some fixed linear causal plant, C denotes the compensator, and the signals w, z , 
y. and u are defined as follows: tr. exogenous disturbance: z. signals to be regulated: y. measured 
plant output; and u, control inputs to the plant. P can be thought as a four block matrix each 
block being a linear causal system. In what follows we will assume that both P and C are LTI 
systems; we comment on this restriction on C later in section 5. Furthermore, we assume that 
there is a predefined information structure that the controller C has to respect when operating on 
the measurement signal y. The particular information structure is precisely defined in the sequel.

3.1 T h e  o n e -s te p  d elay  o b serv a tio n  sh arin g  p a ttern

To simplify our analysis we will consider the case where the control input u and plant output y are 
partitioned into two (possibly vector) components U\ , U2 and y\ , y2 respectively, i.e.. u — (u\ U2)T 
and y = (2/1 y2)T• Let := {t/i(0), 2/2(0),..., y\(k), t/2(^)} represent the measurement set at time

9



k. The controllers that vve are considering (henceforth, admissible controllers) are such that u\(k) 
is a function of the data y\(k)} and u2(k) is a function of the data 2/2(^ )}• We refer
to this particular information processing structure imposed on the controller as the one-step delay 
observation sharing pattern. Alternatively, partitioning the controller C accordingly as

r _ ( C u  Cl2 \
\ C l2 C22) '

we require that both ('12 and ( '2\ be strictly causal operators. Let now

5 := {C stabilizing and LTI : C12, C2i strictly causal}

and let Tzw represent the resulting map from w to z for a given compensator C E S. The problems 
of interest are as follows.

The first two problems are deterministic: w is assumed to be any i a disturbance with a = 00, 2 
and we are interested in minimizing the worst case i a norm of z. Namely, our objective can be 
stated as
(OB.Ja ): Find C such that the resulting closed loop system is stable and also the induced norm 
||TZU,|| over for a — 00, 2 is minimized.

The third problem we want to solve is stochastic: we assume that w is a stationary zero mean 
Gaussian white noise with E[ww'J] = /  and we seek to minimize the average noise power in 2. This 
is nothing else but a LQG problem. So our objective is stated as 
(OBJlqg): Find C such that the resulting closed loop system is stable and also

M- 1
lim (1/2M ) trace(E[z(k)zT\ f —*OG . ,

is minimized.
To solve the above problems the following assumptions are introduced. Let P — 

then.

A ssum ption  3.1 P is finite dimensional and stabilizable.

Assumption 3.1 means that P has a state space description

P ~ ( A, (P 1 B2), Ci
C2

/  P n  D\2 A 
\ D \2 D22 )

with the pairs (A ,P 2) and (A.C2) being stabilizable and detectable respectively. In addition we 
assume that

A ssum ption  3.2 The subsystem P22 is strictly causal, be., D22 — 0.

This assumption has the implication that the system of Figure 1 is well-posed [11,9]. More impor
tant than this, however, is the fact that it allows for a convenient characterization of the structural 
constraints on the controller as we shall see in the following section.

10



y

Figure 1: Block Diagram for Disturbance Rejection.

4 P ro b lem  S o lu tion

The problems defined in the previous section can be related to problems in periodic systems where 
additional constraints that ensure causality appear in the so-called lifted system [8,32]. These 
constraints are of similar nature as with the problems at hand. The methods of solutions we 
develop herein are along the same lines with [8,32]. A common step in the solution of all of the 
problems defined earlier is the convenient characterization of all controllers that are in S. This is 
done in the sequel.

4.1 P a ra m e tr iza tio n  o f all s ta b iliz in g  con tro llers  and fea sib le  m aps

Since we have assumed that P is finite dimensional with a stabilizable and detectable state space 
description we can obtain a doubly coprime factorization (dcf) of P22 using standard formulas 
(e.g., [11,34]) i.e., having P22 associated with the state space description P22 ~  (-4, B2 ,L'2 , -Ü22) the 
coprime factorization such as in [11,34] is P22 = NiDt 1 = Dr 1Nr with

( X r -Yr 
V - N r Dr

Di
Ni

where
•V/ ~ ( 1/c, B2. C’k , D22), Di ~ ( Ak , B2, K, I) 

Ay ~ (. l.v/. Bm ,C 2, D22). Dr ~  ( Aa/, M, 6 2 ,1 ) 

A/ ~ ( -4/x. -  M. C'/c, /) . Yt ~  {Ak , B 2. - M . k \  0 ) 

X r ~  ( Am , - Bm , K , /) , Yr ~  ( Am , -M , A\ 0)

11



with K , M  selected such that A /v = A + B2K, Am = A + MC2 are stable (eigenvalues in the open 
unit disk) and Bm  = B2 + M D 22, Cl< = C2 + D22K- Note that the above formulas indicate that 
the coprime factors of P22 have as feedforward terms the matrices D22 or I  or 0 which are all block 
diagonal. The following is a well-known result (e.g.,[ll,34j):

Fact 4.1 All ta-stabilizing LTI controllers C (possibly not in S ) of P are given by

c = ( Yi -  DiQ)( X, -  NiQ)~l = (Xr -  QNr) - \ Y r -  QDr). 

where Q G Bt i {(q )•

The above fact characterizes the set of all stabilizing controllers in terms of the so-called Youla 
parameter Q. The set S  of interest is clearly a subset of the set implied by Fact 4.1 and is 
characterized by the constraint that the feedforward term of C should be block diagonal i.e.,

r.'(0) Cu ( 0) 0 \
0 C22(0)J '

However, a simple characterization is possible as the following lemma indicates 

Lem m a 4.1 All -stabilizing controllers C in S  of P are given by

C = (}', -  D,Q)(X, -  N ,Q )-‘ = (X r -  QNr)~l(Yr -  QDr ).

where Q G and Q{0) is block diagonal.

Proof It follows from the particular structure of the doubly coprime factors of P22 since C(0) = 
-Q{0){! -  D22Q[0))~1 with D22 block diagonal (in fact equal to zero) and hence C(0) is block 
diagonal if and only if Q(0) is block diagonal. I
Using the above lemma it is easy to show that all the feasible closed-loop maps are given as 
L'zw — H — UQV where t i . i \  U G and Q G with Q(0) block diagonal. Moreover,
H, U, V are determined by P. Hence, we obtain in a straightforward manner the following lemma 
which shows how the objectives defined earlier transform to distance problems.

Lem m a 4.2 The objective (0B Jo ) with a = 00 or 2 is equivalent to the problem (OPTa):

inf
Q€BTf(fa

\\H -  U Q V W e ^

subject toQ{ 0) is block diagonal. The ob jective (OBJ^q q ) is equivalent to the problem (OPTpQQ):

inf
Qen00

Il H -  UQV\\W

subject to Q(0) is block diagonal. Moreover, if Q0 is an optimal solution to any of the above 
problems then the corresponding optimal compensator is given as

Co = [Y,-  D,Q..nX, -  NtQo)-' = (X r -  -  Q0Dr ).

12



It should be noted that all of the problems in Lemma 4.2 are, although infinite dimensional, 
minimizations of convex functionals over convex domains. In fact, all of these are distance problems 
in appropriate spaces and the main tools for their solution have been given in section 2 as we shall 
see in the sequel.

It is also important to note that Assumption 3.2 plays a central role in transforming the (linear) 
structural constraints on C to linear constraints on Q as indicated in Lemma 1.1. In fact, as it 
can be seen from the proof of Lemma 4.1, the constraint on Q remains unchanged even if we relax 
Assumption 3.2 to requiring a block diagonal D22 instead of D22 — 0 (which is of course block 
diagonal.) More generally, as long as P22 has the same off-diagonal structure as the one required 
on C, then the Youla parameter Q will have to have the same structure. Hence, linear structural 
constraints on C transform to the same linear structural constraints on Q via the parametrization 
of Fact 4.1 provided P22 satisfies the same constraints. If on the other hand Assumption 3.2 is 
completely relaxed allowing for fully populated D22, then, the constraints on Q will no longer be 
linear or convex and hence the resulting optimization problem is hard to solve.

4 .2  E q u iv a len t p rob lem  fo rm u la tion

We start solving the problems stated in Lemma 4.2 by first trying to transform the constraints on 
Q(0) to constraints on the closed loop. As a first step, we perform an inner outer factorization [11] 
for U , V to obtain

U = UiUo, V = V0Vi

where the subscript i stands-for "inner” and ofor “outer” ; i.e., )Ui(X) = 1 and Vi(X~l )V^(X) =
I. We will also make the simplifying technical assumption that V{\).  V{ A) do not lose rank on the 
unit circle and hence U0, Va have stable right and left inverses respectively. Note that the various 
factors in the inner outer factorization do not possess necessarily the block diagonal structure at 
A = 0. Then we proceed by reflecting the constraints of Q(0) on U0QV0. Towards this end let 
Z — UaQV0\ the following proposition shows how Z is affected due to the constraints on Q.

P roposition  4.1 Let Z £ Bj[( f °)  then

3Q £ with Q(0) block diagonal and Z = U0QV0

if and only if
Z{0) £ 5.4 = {Uo(0)AVo(0) : A block diagonal matrix}.

Proof The "if” direction goes as follows: Let Uor,V0i denote any right and left stable inverses 
of U'oA'o respectively. Then Uor. V0i £ B j i i f 0 )- Let A be a block diagonal matrix such that 
Z{0) = l\,(0).tK,(0): define Q,x - {.4.0.0....} and let Z = Z -  U0QAV[, then Z £ BTi{?a) and 
Z(0) = 0. Define now Q as Q -  VorZV0i -f Q 4. It then follows that Q £ Bt i{£0 )< Q(0) is block 
diagonal and Z = l

The “only if'* direction is immediate. 1

13



Proposition 4.1 shows that only Z(0) is constrained to lie in a certain finite dimensional subspace 
(i.e., Sa ) otherwise Z can be arbitrary in Note that the characterization of this subspace
is independent of the choice of right and left inverses for U0, V0 respectively; hence it is exact. One 
can easily find a basis for this subspace by considering SU1 and finding a basis for this subspace. 
This is done as follows: For each element j  of Q(0) with indices ( )  that has to equal 0 (i.e., 
the elements that are not in the block diagonal portion of Q(0)) we associate a matrix Rj with the 
same dimension as Q(0) that has all its entries but one equal to 0. The nonzero entry is taken to 
equal 1 and its indices are precisely the ones that correspond to j  i.e., (l j , m j ). If r is the number 
of the elements in Q(0) that are necessarily equal to 0 then we have the following proposition.

Proposition 4.2 Let

SB ■= {B :U j(0)BVoT(0) € s p a n « ^ } ^ ,) } .

Then,
•S'.i = SB.

Proof Let A be a block diagonal matrix and B E S a L: then since

<l/„(0).4VU0),B) = (A ,U j(0)B V oT(0)) V4

it follows that B E Sb • Conversely, it also follows that if B  E SB then (Uo(0)AVo(0), B) 
Hence,

= SB

= 0.

or equivalently

which proves the proposition.

Sb l - S'a

A basis • •. , BJb} for this subspace can be found in a routine way and is given in the
Appendix. When U0,V0 are square the computation of the basis is immediate. Namely,

B, = U~T(0)RjV~T{0)

In view of the previous developments we have

Z(0) E S a if und only if (Z[0),Bj) = 0 Vj = 1 , . . . j B. 

Summarizing, the optimization problems become

and

(OPTa ): inf \\H -  UiZVi\\B ,ea), a = oo,2
zeBT[(n ,z(o)esA ’

( o r n Qc ) :  UiZV^

where Sa is characterized in terms of the basis {B i, B? . . . ,  B lo} of S a x = SB of Proposition 4.2
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4 .3  O p tim a l P  con tro l

In this subsection we present the solution to the problem of optimal rejection of bounded per
sistent disturbances. In the previous section we defined precisely this problem i.e., (OBJqo) and 
demonstrated that this problem transforms to (OPT,*,). Having in mind the characterizations of 
the various spaces introduced in section 2, we can equivalently state (OPToo) as

(OPT*,): inf \\H -  UiZVi\\el
z a 1, z(o)esA

The unconstrained problem i.e., when Q(0) and hence Z(0) is not constrained is solved in [6,7]. In 
[6,7] the problem is transformed to a tractable linear programming problem, via duality theory. In 
this subsection, we show that t he same approach can be extended to yield the optimal solution for 
the constrained problem. In particular, we show that the constraints on Q(0) can be transformed 
as linear constraints on the closed loop map of interest i.e., Tzw. Once this is done, duality theory 
can be used to provide the solution.

First, we consider the 1-block case by assuming that U{A). V{\)  have full row and column rank, 
respectively, for almost all A; we will come back to the general case later on. Also assume that 
U(A),V(A) have no zeros on the unit circle. Let now {Pn}^ l1 be as in [6,7] the basis for the 
functionals in c^lXn that annihilate the space

S . = . { k : K  = U Q V , Q s t 1mxn}

i.e.,
( U Q V . P;) =  0 V» =  1,2,...,JV„ 4 xn.

These functionals are attributed to the unstable zeros of U and V. Suppose now that we are able 
to find functionals { A i n  c°lXM having the following property (PROP): 
if K  G Ss then

( K, Xj )  = 0 Vj = l , 2 , . . . , J

if and only if

3Q G ( lmXn with A’ = UQV and Q(0) block diagonal.

Next, define S as

S = {K : A = UQV ,Q G C1mxn ,Q(0) block diagonal}.

The following lemma, given without proof, stems from standard results in functional analysis (for 
example [15]):

Lem m a 4.3 Let {Pn)n=i £ cmxn as above and let {Xj } j=l in c°mxn satisfy (PROP) as above. 
Then the annihilator subspace 1 S of S can be characterized as

1 S = span({Pn}‘̂ l l U {Xj }JJ=l)
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All that the above lemma says is that the functionals {Xj} j=\ add the extra constraints of causal
ity of Q(0) required to solve (OPToo) by enlarging the subspace LSs to LS. Since we now have 
a complete characterization of ^ S  we can proceed exactly as in [6,7] to solve (OPToo). Namely, 
using duality we can transform (OPTco) to a maximization problem inside B ^ S ) :
By Fact 2.6 (c^xn )* = t lm XT} : moreover if M  is the subspace in c ^ x„ defined as M — .span( {Pn)n=\U 
{Xj} j=i) then from the definitions of {Xj} j=l and {Pn}n=\ it is easy to verify as in [6,7] that 
M 1 = S which implies that S is weak * closed. Hence

mf \ \ H -  K\\ = min \\H — K\\ = sup (G, H)
AeS a'€(xs) GeBi^s)

but since is finite dimensional

sup (G , H) = 
GgBC-1-.?)

max (G,H)  
GeBp-sy

therefore
inf IIH -  A'|| = max (G.H).
I<6$ GeBp-S)

The right-hand side of the above equality can be turned into a finite dimensional linear programming 
problem [6,7] and hence we obtain the optimal G = Go. The optimal K 0 is found by using the 
alignment conditions [6,7]

( G o , H - K o )  = \ \ H - K 0\\.

In the sequel we show how to obtain these {Xj} j=1. Towards this end define the following func
tionals in c°:

7?,, = {Br  0 .0 ....}  V j=  1,2....... j B.

where {B l }Jlrl , be a basis fur l Ik1 (mite-dimensional Euclidean space

= SB = {B : Uj(0)BVj (0)  e ^ ( { ^ ( 0 ) } ; . , ) } .

Let Z G f1 then clearly 

if and onlv if

Z(0) G SA

{ Z, RSj) = 0 Vj = l ,2 , . . . , i f l .

In view of the above. (OPT,Xl) can be stated as

inf \ \H-U,ZV, \ \

with
z e e l , { z , R h ) =  o Vj = i ..... j B -

We now show how to obtain the functionals {XjW=1 that have the property (PROP) mentioned 
in the beginning of this subsection.

Theorem 4.1 The functionals

satisfy (PROP).

V, =  UiRZjVt j  = 1 ,2 ... .jb
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Proof Consider the bounded operators Tut, l  V', on C defined as

(Tu%X)(t)  = Y , V i ( T ) X { t - T )
T— 0

(TV ¿Jf(r)Vi(i-r)
T— 0

where X G f 1. Their (weak*) adjoints Tf)t,Tyt on c° which are given by

oo
i r ^ x o  = £  + <)

T=0

(r£K)(t) = £ y ( r  + i)V?(r)
T — 0

where Y  G c°
Notice, that since i f , Vt inner then )Ui(\) = I  and Vt{A-1 )Vl1 (A) = /. Note also that
, Tf/( represent multiplication from the right whereas Ty ,7V, represent multiplication from the 

left. Hence, it. follows that I f- 1\ , — I and T f Tyi — I  
Interpreting

UiZVt = T Vi(Tv,(Z))

and
UiR zVt = TUi(TVl[Rz))

with
R z G span({Rgj}^t1)

we can verify that
(ViZVi,UiRgVi) = {Z , Rz)

Hence, if X  — UiRzVt then

(UQV, X)  = 0 if and only if { Z , Rz) = 0

which completes the proof. I

Hence, the additional (finitely many) functionals due to the structural constraints are completely 
characterized in Theorem 4.1 and the solution to the 1-block problem follows the duality approach 
described earlier. Note that, since the additional functionals X 3 of Theorem 4.1 are in c° (in fact, 
in C ). the optimal solution lias a finite impulse response (FIR) as in the unconstrained case.

So far in this subsection we assumed that U{\),  F(A) have full row and column rank respectively. 
However, there is no loss of generality since in the “bad” rank case, or the 4-block problem, (i.e., 
when the above assumption does not hold [6,7,17]) it is shown in [17] that in order to solve the 
unconstrained problem it is necessary to satisfy the feasibility conditions of a square subproblem. 
In particular, we can partition V. V as

r  = ( £ ) , > •  = ( f  m
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where U,V  are square and invertible. Let K  = UQV then

A'i2\  
A  22 /

A necessary condition for the existence of a solution is that K  interpolates U , V which is the afore
mentioned subproblem. For the constrained problem, in addition to the interpolation conditions 
on K  (e.g., [5]) we can embed the constraints on Q(0) in K . This embedding relates to the 1-block 
subproblem and can be done as before and thus the additional constraints on the closed loop can 
be completely characterized. Thus the standard 4-block procedures [5] can be applied to solve the 
problem.

4 .4  O p tim a l IS00 con tro l

In this subsection we present the solution to the problem of optimal rejection of energy bounded 
disturbances i.e..

(OPT2): inf \\H -  UiZVi\\H„ .
zen°°,z(o)esA

This is a constrained 'H°° problem. We solve this "H°° problem, by suitably modifying the standard 
Nehari’s approach [11] in order to account for the additional constraint on the parameter Q (and 
hence on Z.) This modification yields to a finite dimensional convex optimization problem over 
a convex set that needs to be solved before applying the standard solution to the Nehari prob
lem. The solution to the above convex finite dimensional problem can be obtained using standard 
programming techniques. Once this is done, we obtain the optimal LT1 controller by solving a 
standard Nehari’s problem.

First we assume that T,, l , are square. We will come back to the general 4-block problem later. 
The solution to the 1-block case is as follows: Let R  = U*HV* where {]*{ A) = U j{A“ 1), V*(\) = 
V]T(À-1 ) and define for each J  E Sa the system R j  as:

R J(A) = A-'(R(A)-.7).
For each J  E Sa , let. Vrj represent the Hankel operator [11] with symbol /?./. Before we present 
the solution we will need to compute | | T | |  using state space formulae. In particular we are going 
to compute the controllability and observability grammians [11] associated with Vr ,. Towards this 
end let R correspond via the Fourier transform to the double-sided (since R is not necessarily causal) 
sequence (A( ¿))£i_.Xl then Rj  will correspond to {R j{i))it_ 00 with Rj( i) = R(i + 1) Vi ^  -1  
and Rj{ — 1) = R(0) — J. Let now G represent the stable (causal) system associated with the pulse
response {0. R { - 1 ), R( - 2 )__ } and let (.4, jB ,C ,0) be a minimal state space description of it. Let
also G represent the stable system associated with the pulse response {0, Rj{ — I), Rj {—2),...}  i.e., 
G is the anticausal part of Rj  but viewed as a causal (one-sided) system. Then it easy to check 
that G has the state space description (.4 ,B ,C ,0) with

A = B = C = (C J )

where J — R(0) — J. Finally, let \'VC, W0 be the controllability and observability grammians for G 
i.e.,

oo

wc = Y , AkBBT(AT)k
k=0
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Wc = Ÿ J{AT)kCTCAk.
k = 0

Then Wc and W0 are the solutions to the Lyapunov equations :

Wc -  AWcAt  = B B t , W0 -  At WqA = CTC.

Similarly, let W C1 W 0 be the controllability and observability grammians for G.
Following [11] we have that ||r/?J | = pl,2{W}l2W0W }12). Using the state space description we 
compute

W  r 0
Wr = 0 I

- - i  5 ?
where

K  = Y j (AT)kC TC A k = (
k = \  '

i T \k/~iT/-t f  VFo -  C j C  ^  W_oB_
B W 0A B W 0B

Note that A does not depend on J . Also, since A > 0 then K — A 1/2a' 1/ 2 with A 1/2 > 0. Now, 
proceeding with the computations and rearranging certain terms we obtain:

i r y n n w 'y 2 = ^  J r )  m t m  ^  + l t l

where

Hence

rl/2
C W '  U ,  L = K '» W 'J \

\ 0 0 /

ii' h , ii = y ' w y ^ i y y 2) = ? [ ( A// )]

with H = i  ^ j  j . The following lemma shows that ||T/i; | is convex in ./

Lemma 4.4 fi = infjgs^ ||r || is a finite dimensional optimization of a convex and continuous
functional on a convex closed set.

Proof From the preceding discussion we have

S

where
S = { ( g  j J  : J =  R(JeSA}.

Clearly, since Sa is a subspace then S is a convex set. Moreover if H \ , H 2 E S , and t E [0,1] we 
have _

+  ( 1  -

or
« r ... r

MH 2
L
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which shows that ( M H
V L

convex in H and consequently in J. Also, continuity of

with respect to J is apparent and therefore our claim is proved.

We are now ready to show how to obtain the optimal solution to

u-ucc = inf IIH — UiZViW-Hoo -
z e n ° ° ,z ( o ) e s A n

T heorem  4.2 The following hold:

1. gn™ -  ^Z£H°°,Z(0)€SA II-# ~ Z\\h°° ~ fit

2. A minimizer JQ of the preceding convex programming problem of Lemma 4.4 always exists. 
Moreover, i f  X 0 is the solution to the standard Nehari problem

inf ||Ä j - X | |x e n °°

then the optimal solution Z, is given by

ZJA)  = J0 + AXJA) .

P ro o f For the first part note t liat since Ul(A),Vl(A), AI are inner then

IIH -  UiZViII = IIu: h v ;  -  Z II = \\R -  Z||

Writing Z{ A) = Z{0) + AZ(A) with Z arbitrary in TL°° we have

p  -  Z\\ = ||ä (ä ) -  Z(0) -  At(A)|| = ||a_1(Ä(A) -  0)) -  t(A )

Now, if J  G Sa then from Nehari's theorem we have:

_inf
zeH*>

R j - Z R,

hence the first part of the proof follows.
The second part of the theorem is immediate given that a bounded minimizer J0 of the convex 

minimization in Lemma 4.4 can be found in Sa (note Sa is unbounded). In fact, this is always the 
case and the proof of it follows from the fact that the optimal solution Z has to be bounded: 
Clearly the selection Z — 0 is a legitimate one since Z(0) 6 S a - Hence < ||# ||;  if now
||Z|| > 2 ||i/1| then

\ \H - U tZ V , \ \> \ \Z \ \ - \ \H \ \> \ \ H \ \> ^ .

Therefore for Z to be a minimizer it is necessary that ||Z|| < 2 ||/ / || and hence o[Z{ 0)] < 2||Lf|| 
which implies that the search for the optimal J can be constrained in a closed and bounded subset 
S a of Sa - Namely,

S A = { J e S A : cf[J}<2\\H\\}.

But then the continuity of the cost implies that an optimal J0 can be found in S a which is bounded.
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The previous theorem indicates what is the additional convex minimization problem that has 
to be solved in order to account, for the constraint on Q(0). The following corollary is a direct 
consequence from the proof of the previous analysis.

Corollary 4.1 The convex minimiza tion problem of Lemma, 4.4 is

with
Wc

and J  = i?(0) + J .

W c
0

PH00 -  P —

w 0 = |

min pll2{W }l2W0W ]12)
J£Sa

' 0 a. (  W °
, j t c  j t j )  + \ b t w 0a  b t w 0b )

The above convex programming problem can be solved with descent algorithms. In [23] the authors 
treating a problem of 'H00 optimization with time domain constraints arrive at a similar finite 
dimensional convex programming problem. As they indicate the cost might not be differentiable at 
all points and therefore methods of non-differentiable optimization are called for. Although these 
generalized descent methods might be slow they have guaranteed convergence properties. In [23] 
and the references therein alternatives are given to improve the convergence rate. Several methods 
to solve the standard Nehari problem implied in Theorem 4.2 exist. One may refer to [11,19] to 
mention only a few.

The full 4-block problem i.e.. when Ui and/or V{ are not square is treated analogously as in 
the standard Nehari approach [11] with the so-called 7-iterations. In particular, using exactly the 
same arguments as in [11] the same iterative procedure can be established where at each iteration 
step a 1-block (square) problem with the additional causality constraints on the free parameter Q 
needs to be solved. Hence, the aforementioned procedure of solving the 7TX constrained problem 
is complete.

4.5  O p tim a l H 2 con tro l

The problem of interest is

(OPTLQG): inf \\H -  UiZViWw-
^ zen°°,z(o)esA n

The solution to this nonstandard H2 problem is obtained by utilizing the Projection theorem as 
follows: Let again R = U*HV* and let Y  = {T(0), T (1), T (2 ),...} represent the projection of R 
onto H2 i.e.. Y = Un 2(R).  We note that Ul and Vi need not be square. Consider now the finite 
dimensional Euclidean space E of real matrices with dimensions equal to those of Y (0) and let n s A 
represent the projection operator onto the subspace S.4 of E. Then

Theorem 4.3 The optimal solution Z0 tor the problem

\\H ~ UiZVi:\\n2 
Z€H°°,Z(0)€Sa n

is given by
z., = { n5.4( y ( o ) ) , y ( i ) , y ( 2 ) , . . . } .
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Proof The proof follows from a direct application of the Projection theorem in the Hilbert space 
C2. Let Pis = {Z : Z G 7f2.Z(0) G S.4} then Pis is a closed subspace of C2. Also, let (• ,• )  denote 
the inner product in C2. Viewing Vt and V, as operators on C2 we have that ZQ is the optimal 
solution if and only if

(H -  U.ZoV,, UiZVi) = 0 VZ G Pis

or equivalently 

or equivalently

{U?HV* -  Zo,Z)  = 0 VZ G Pis 

Ylns(U*HV* -  Zo) = 0.

But
n Hs(V!h v ‘ ) = { n s„ ( y ( o ) ) , K ( i ) ,K ( 2 ) , . . . }  €

which completes the proof. 1
The above theorem states that only the first component of the classical solution Y  is affected. The 
computation of n5^(Y(0)) is routine; for example having an orthonormal basis {BJ}rj _ l for we 
have that r

n s„(K(0)) = K(0) -  £ < r ( 0
.7 =  1

5 C on clu d in g  R em ark s

In this paper we presented tlie '.olutions to the optimal P , 7Y00 and hi2 disturbance rejection 
problems in the case of a one-step delay observation sharing pattern. We took an input-output 
point of view that enabled us to convert linear structural constraints on the controller to linear 
constraints on the Youla parameter characterizing all possible controllers. In the optimal i 1 dis
turbance rejection problem, the key observation was that we can obtain a finite number of linear 
constraints (functionals) to account for the constraint on the Youla parameter. These functionals 
combined with the functionals of the unconstrained problem can be used exactly as in the standard 
t l problem to yield a tractable linear programming problem. The Pi°° problem was solved using 
the Nehari’.s theorem whereas in the Pi2 problem the solution was obtained using the Projection 
theorem. In particular, the Pi' problem was solved by modifying the standard Nehari’s approach 
in order to account for the additional constraint on the compensator. This modification yielded a 
finite dimensional convex optimization problem over a convex set that needs to be solved before 
applying the standard solution to the Nehari problem. The solution to the above convex finite 
dimensional problem can be obtained easily using standard programming techniques. In the Pi2 
case the solution was obtained from the optimal (standard) unconstrained problem by projecting 
only the feedforward term of the standard solution to the allowable subspace.

It should be realized that the key element in obtaining convex problems through the Youla 
parametrization approach was the assumption that, the part of plant that connects controls to 
measurements, i.e.. P22 f igure 1. has the same structure as the one that is required in the 
controller, i.e., a block diagonal feedthrough term. This is what makes the key Lemma 4.1 work. 
Note also that the other parts of the plant, i.e., P n , Pu  and P21 can have arbitrary structure. More
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generally, if the off-diagonal structure of P22 is the same as the structure required on the controller 
C then, the same methods presented herein are applicable. For example, if P22 Is of the form

P22
(  P& P tf A”>» \  

P22 )

where A is the unit right shift operator (i.e., the unit delay) and rriij are nonnegative integers, then 
any imposed controller structure of the form

/  Cu  C12Ani2\
\C2iAn21 C22 )

can be dealt similarly as long as «12 < iri\2 and 7221 < m21. This can be for a example the 
case of observation patterns with multiple delays. For this type of problems one can use lifting 
techniques (e.g., [13,8,32]) as a preliminary step to transform the problem to an equivalent one that 
imposes linear structural constraints only on the feedthrough term of the lifted controller. This 
latter problem is similar to the one-step delay observation sharing pattern dealt in this work. Also, 
the fully decentralized case where ntJ = rriij — 00 for some i , j  is a convex problem; yet, one needs 
to resort to approximating schemes since the number of structural constraints in now infinite. One 
such approach will be to solve the problem for n,j = N  < 00 to obtain a (super)optimal Youla 
parameter Q y. Then let N grow sufficiently to get arbitrarily close to the optimal performance. 
This generates an increasing sequence of lower bounds on the optimal performance. Moreover, 
one can get a sequence of upper bounds by using a truncated Q ,v, i.e., I I w h i c h  completely 
satisfies the structural constraints. Hence, one can get arbitrarily close to the-optimal with ariori 
accuracy. However, the convergence details of such an approach need to be further investigated.

In the development herein we assumed that the admissible controllers were LTI. This may 
or may not be restrictive depending on the particular measure of interest. For the ‘H2, or more 
precisely LQG, problem for example, it is well known (e.g., [12]) that it admits a linear optimal 
solution. A similar result has not established so far for the Pi00 case; yet there are related results 
(e.g., [10,29.28]) that can possibly lead to such a. conclusion. For the i l problem it can be shown 
that, in the unconstrained case, nonlinear controllers may [30] outperform linear ones. Thus, it 
seems likely that this will be the case for the constrained problem as well. Nonetheless, in both 
the H°° and problems one can show using the exact same arguments as in [22] that linear time 
varying controllers do not outperform LTI ones.

In addition to purely discrete time problems, sampled data (i.e., continuous plant-discrete con
troller) problems with the same information patterns can also be dealt in a similar fashion using 
generalized lifting methods [33]. Also, problems involving decentralized constraints on more than 
two control and output components can be considered in an analogous manner.

The input-output approach presented herein for optimal control design provides an interesting 
and unifying point of view of certain standard problems with quasiclassical information patterns. 
However, it is not clear whether it can lead to a trackable synthesis method in the case of nonclassical 
information structures. The work in [31] for the fully decentralized case using such an approach is 
promising and could be useful in computing (near) optimal performance levels. More work is still 
needed to investigate the benefits, if any, of input-output methods.
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7 A p p en d ix

C o m p u ta tio n  o f  { B j } ^

Herein, we indicate how to find all matrices B  (of appropriate dimensions) such that there are real 
numbers with

Uj(0)BV?(0) = ¿c,«,(0).
1 =  1

First, we consider I lie following problem (PA):
Let M be a given matrix and {/ ,}■_, be a given set of linearly independent matrices. Find all 
matrices W such that

M W  = Y j c'E '
i

for some real numbers ct.
The solution to (PA) goes as follows:

Let Ei be partitioned to column vectors as Ei = (e \,el2, . . . , eln) and W = (W1 .W2, .. - ,wn) Also, 
define Pc = —(elk,e l .......e[) for k — 1,2, . . . , n  and cT — (ci, C2,.. .c/). Then.

( M

w
( P ' \ (  Wl \

Define P  =
Pi and to =

w2

\ P n ) V ^ n /

. Let N  = (diag(M, M , . . . ,  M ) P ) then N ( “ ) = 0.

Therefore, we can compute a basis for W  by computing a basis for the null-space of the matrix iV 
which completes the solution to (PA).

In view of the above construction if C — BV'j (0) then we can compute a basis {CjYfL^ for the 
space

r

Sc = {C: C j(0  )C = ^ 2 c ,R ,m .
1 = 1

Then we can compute a basis for the space

Sd = {D : Vo(0)D € sp a n d C j}]^ )} .

Now. by defining = jo  and B, = D j j  = 1 ,.. . , j s  we obtain the required basis for Sb -
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