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Abstract

The paper describes a method for determining a minimum of a scalar 
function of a vector variable. The vector variable may have vector in
equality range constraints imposed. The technique ensures monotone 
descent and is known to be faster than the classical method of "steepest" 
descent in some cases. Moreover, it is not subject to the usual sensitivity 
problems which may arise using the steepest descent method.
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Introduction

An important problem in numerical analysis is to determine the min
imum of a scalar function of a vector variable. In many physical systems 
a minimum is required subject to the constraint that elements of the 
vector variable lie in a specified range. Thus, we may state the problem 
as follows:

Find . , .a = m m  f (x) where

X < x < x+

underlined quantities represent n-vectors. A numerical procedure for the 
solution to this problem is described below. Convergence of the method to 
a minimum of the function is monotonic and has been shown to be faster than 
the classical steepest descent method which has achieved wide spread usage. 
The technique is adaptive in that, at each step in the iteration, the most 
sensitive element of the variable is "worked on" for the longest time.

Details of The Technique

Provision is made for giving the following information to the sub
routine:

a) Current elements of vector variable (VAR)
b) Largest step size for each element (DVAR)
c) Dimension of vector variable (NVAR)
d) Ratio of new step size to old (GAMMA)
e) Sensitivity to be attained before moving to next element (PRECIS)
f) Major cycle sensitivity to be attained before giving special signal 

(THRESH)
g) Vector of minima for variables (VARMIN)
h) Vector of maxima for variables (VARMAX)
i) Current value of scalar function to be minimized (ERR)
j) Code number for program control (KEY)
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The minimization process may be considered to be a series of n minor 
cycles making up each major cycle where n = NVAR. Each minor cycle re
duces the sensitivity of the criterion function to one variable to a pre
scribed level. A major cycle is completed when one minor cycle for each 
variable is completed. A flag (KEY) signals to the calling program that 
one of three conditions exist. If KEY>0, the subroutine seeks the value 
of the criterion function (ERR); if KEY=0, a major cycle is about to begin; 
if KEY=-1, the decrease in criterion function has fallen below the parameter 
THRESH during the last major cycle. [It follows that KEY=0 is used for 
the initial entry to the subroutine.]

This routine is not fooled by functions whose gradient in the di
rection of one variable is very small. In this respect the method is better 
than the usual steepest descent calculation. In addition, the provision 
for variable constraints provides a feature not available in classical 
steepest descent procedures. Techniques for dealing with constrained min
imization problems such as the penalty function approach and the gradient 
projection method do not have the advantage of simplicity which this scheme 
does in its logical approach to minimization.^ However, the author is not 
in a position to evaluate the features of each method to provide a realistic 
comparison. A quantitive comparison which has been made shows that, for 
a problem requiring about one second for criterion function evaluation on 
a CDC 1604 computer the adaptive constrained descent technique (with con
straints set very wide, i„e„, ignored) took one third as long as the steepest 
descent approach to the same problem.

The reason for the increase in speed is due to the efficient use of 
the information carried in successive criterion function evaluations. Whereas 
the steepest descent method computes the total gradient of the function and 
calculates the step size to take in that direction, the present method is 
content to move in a direction along one variable at a time which produces 
a significant decrease in the criterion function (ERR), Not only does this 
increase efficiency of the method, but it also ensures that insensitive 
variables will not cause the routine to spend a large amount of time moving 
along this variable.

^‘Leitmann, G., ed., "Optimization Techniques", Academic Press, 1962, Ch. 6.
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Further observations

Experience with the method has shown it to be superior to both 
other methods tried namely the classical steepest descent technique 
and the "one-at-a-time" procedure. Of course neither of the classical 
approaches can handle the vector variable constraints without con
siderable modification. The problem of local minima of a function is 
a difficulty common to all minimization schemes. The method of adaptive
constrained descent is no exception. The minimum which is selected (in a

. Jmulti-minima function) is related to the starting value of the vector 
variable and the initial step size vector (DVAR) and the usual pre
cautions must be taken if one seeks either the "nearest" minimum value 
or the "lowest" minimum value.

A significant feature of this method is the way in which the vector 
variable constraints are incorporated into the iterative procedure. In 
complex physical systems currently being studied in universities and 
industrial laboratories the presence of such constraints is very fre
quently required for meaningful analysis and design.

It is not suggested that the logic of the minimization technique 
presented in this note is: new. However, in the area of system theory 
where such a procedure finds much use, it is observed that very little 
has been written which describes efficient minimization procedures for 
the most general and most complicated type of minimization, namely one 
in which the dimension of the vector variable is very large (above ten) 
and some of the variables have inequality range constraints imposed.
It is in the spirit of describing and documenting a practical numerical 
technique that this note, is written. The author would appreciate reports 
of experience with this scheme.

Flow Chart

A detailed flow chart of the adaptive constrained descent subroutine 
is shown in the accompanying figures and a FORTRAN listing is available 
upon request.



FLOW CHART FOR
ADAPTIVE CONSTRAINED DESCENT 

MINIMIZATION PROCEDURE
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No VAR ( i ) >  
VARMAX(i)?

Yes V A R (i )  
=VARMAX( i)

*■»

KEY = 1 -C  HEED



6

R etu rn



7



8


