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. INTRODUCTION

A VLSI circuit consists of an interconnection of primitive modules which we refer to as
subcircuits or logic gates. We consider here MOS circuits and define a primitive module
to be a channel-connected subcircuit. The problem of automatically generating tests to
detect logic faults in VLSI circuits can, in general, be divided into two levels: local and
global. At the local level a fault model is constructed which reflects the effects of physical
failures in a subcircuit or gate on its logical behavior. A test set is then generated to detect
the faults at the local level. The global level then involves the propagation of fault effects
forward and backward through the subcircuit interconnections to the accessible external
nodes of the circuit.

When only a gate-level description of the circuit is available, classical stuck-at fault
models are often used, and the internal structure and technology of the gate are not taken
Into consideration. In this case the problem of generating test vectors at the local level
becomes trivial in the sense that tests can be readily derived; while the problem of global
propagation of the tests through the interconnections to the external nodes is N? —hard [I].

Unfortunately, it is now well-established that many transistor-level failures cannot be
accurately modeled at the gate level; consequently, test generation techniques derived for
a gate-level description fail to detect these failures [e]. As a result, transistor-level test
generation has recently attracted the attention of many researchers [7]-[ll]. However,
many of these techniques are restricted to the detection of faults that require one test
vector. In [2] and [3] @ method is given which, for a given fault, automatically detects
whether one or two test vectors are needed; and automatically generates test pairs that
are robust [9)]



In this paper we concentrate on the problem of local test generation for a single gen-
eral MOS channel-connected subcircuit and prove that the problem is MP —hard. More
importantly, we prove that the problem remains HP —hard even if the subcircuit is re-
stricted to be a single series/parallel NMOS gate or a fully complementary series/parallel
CMOS gate. This problem becomes more complex when faults exist that require two test
patterns for detection. Such faults are a common occurrence and have been shown to exist
In NMOS [2Hs] as well as CMOS [4Hs circuits. The significance of these results is that
It is very unlikely that an exact polynomial-time algorithm for local test generation in
general MOS circuits will be found.

However, if the problem is restricted to allow only NMOS or fully complementary
CMOS gates with only node stuck-at faults allowed at the gate’s output node, similar to
classical gate-level stuck-at faults, then the problem is trivially solvable in linear-time: a
single test vector is required and can be obtained by a depth-first tracing of the transistor
graph corresponding to either the N-part or P-part of the gate. Any more generality than
this runs into NP —hard problems, as will be shown below.

The careful reader may notice that if all the problems considered below were posed as
decision-problems, then they would be HP—complete, a slightly stronger result. The proofs
for HP—completeness would, however, be based on the existence of polynomial-time circuit
simulation algorithms. While examples of such algorithms abound, we have opted to avoid
that approach hecause it requires one to precisely describe what circuit model is being
used and what type of simulation is to be performed, and the results would accordingly
be limited by these details. The HP —hardness results to be presented, however, do



not depend on such details and, we feel, highlight the important features of the problem
complexity.

The remainder of this paper is divided into six sections. The problem is first formalized
and described in section II. Section I11 then considers the complexity of finding a single
test vector, section IV deals with finding an initializing vector, and section V examines
the complexity of ensuring robustness. Finally section VI gives some concluding remarks,
discusses the implications of these results, and gives suggestions for future work.

|l. PROBLEM DESCRIPTION

We rely heavily on the terminology used in complexity theory, such as saying that a
problem P is transformable in polynomial time to a problem P' (abbreviated P a P'),
a problem is in the class P, a problem is in the class XIP, a problem is MP —complete, a
problem is N? —hard, etc... . The discussion.in [12] is sufficient background to understand
the rest of this paper.

A hoolean function or expression is said to be satisfiable if there exists an assignment of
osand 1'sto its variables that gives it the value 1. We recall the satisfiability problem from
mathematical logic [12], to be abbreviated SAT, which is defined as follows. A hoolean
variable or its complement is called a literal. Given a boolean expression in conjunctive
normal form (CNF), ie, it is the product (logical and) of a set of sub-expressions called
clauses where every clause is the sum (logical or) of a number of literals. The problem is
to decide whether or not the expression is satisfiable. It is well known [13] that SAT is
XP —complete. 8-satisfiability (3SAT) s satisfiability in which the boolean expression in



CNF s allowed to have at most 3 literals per clause; such a representation will be called
3CNF. It is also known [12] that 3SAT is MP —complete.

A boolean expression is said to be in disjunctive normal form (DNF) if it is a sum
(logical or) of a set of clauses where each clause is the product (logical and) of a number
of literals.

Given a boolean function / of n variables Xj,..., xn, the hoolean difference or hoolean
partial derivative [14] of / with respect to a variable xt is defined as

f) f

— f{X12e0e>Nt) eeer £n) ® f{X1>eee>t*>e*eyxn)

where o is the exclusive-or operation. A boolean function will be said to be sensitized to
one of its variables x- if changing X, while keeping all other Xj s fixed causes / to change.
A boolean function is sensitized to one of its variables xtif and only if its partial derivative
with respect to xtis 1 This notion of sensitization is central to the test generation issue,
and is similar to the notion of observability. Notice that if / = gx +h, where g and h
are not functions of x, then df/dx = gh, and / can be sensitized to x if and only if gh is
satisfiable.

Define the following sensitization problem :

Definition 1. Po: Given a hoolean expression /(xI5..., xn) written in the form f =
o + hwhere i £ {1,...,n}, and :

(1) g is & hoolean expression in CNF that does not depend on xt.

(1) h is a boolean expression in DNF that does not depend on x,.



(in) g, h, and therefore /, contain no complemented literals.
Decide if f can be sensitized to xt.

Lemma 1. Pgis UP —complete.

proof: It is easy to see that pq 6 upr. We must still show that it is ur —hard,
we do so by showing that 3SAT o pq. Let E(xI,...,xn_I) be a hoolean expres-
sion in 3CNF. Scan E(xu ... ,xn-i) and replace every x\ by y,, get a new expression
E'(xu...ixn-uyu...iyn-2) in linear time. Let g = + ), h= XIVi, and
f{{x1*ooomn—anxmVieersnf —H (xi,..., Xn=+,Jijeesnan— ¢ Then /*comprises
an instance of Po for which

dfldxn = P'(Xi,....En-igyi,---sdn-i)il®

Therefore / can be sensitzed to zn iff 3al,..., an !, 24..., &, I such that

e (0l,...,an_I,¢l,..+,&1) =9 Dandh o

But o= 1means that a, + &= 1,Vi. And h = 0 means that a,e- = o,Vi. Therefore =
a* Vi, and, equivalently, E'(al,... 8 = fIn-i)- Then df/dxn is
satisfiable if and only if £(x,..., xn-1) is too, and 3SAT a PO, |

The fact that sensitizing a boolean function to one of its variables is MP —hard effec-
tively explains why the D-propagation step of the D-algorithm [15] at the global logic level
Is computationally expensive : D-propagation is nothing but sensitization. It is interesting
that sensitizing such a simple function as / above is just as hard.

We denote by external nodes all the primary inputs as well as the power supply and
ground nodes of an MOS network. All other nodes are called internal. A channel-connected
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subcircuit is defined as a maximal subcircuit in which every transistor shares at least a drain
or source internal node with another transistor in the same subcircuit. In the simplest cases
such a subcircuit would be a single NMOS or CMOS logic gate, in which case the gate
output node is well defined as its unique node that connects to transistors of different types.

A fault is basically an undesired physical modification of the circuit layout that man-
ifests itself at the circuit description level in different ways. Given a channel-connected
subcircuit S with a fault f, then a test for / is an assignment or a sequence of assignments
of logic values to the subcircuit inputs (transistor gate labels and/or primary inputs) that
produces different values at a subcircuit output in the faulty and fault-free circuits. Such
assignments are called vectors, so that a test is composed of a test vector possibly preceded
by one or more initializing vectors.

To establish the complexity of the subcircuit test generation problem in general we
will study the complexity of special cases of the problem below. Specifically we will look
at faults in the subcircuit that manifest themselves as either transistor stuck-at-on (or off,
also called stuck-at-open) or node stuck-at-1 (or 0) faults. Of course the problem in general
I no simpler than its special cases.

|1l COMPLEXITY OF GENERATING t2

When a test consists of two vectors the second (test) vector will be called t2, while
the first (initializing) vector will be called t\. For uniformity of presentation, a test vector
will be called t2 even if it doesn’t require initialization. This section is concerned with the
complexity of deriving t2

Define the following test generation problem ;
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Definition 2. Pj : Given an MOS channel-connected subcircuit S with either a transistor
stuck-at-on or stuck-at-offfault f, find a test vector t2 for f, if one exists.

The single test vector derived in Pj may, in general, require initialization. Finding an
Initializing vector is a totally different problem and will be discussed later on.

Theorem 1. Piis UP —hard. This remains true even if S is restricted to be either a
series/parallel NMOS gate or a fully complementary series/parallel CMOS gate.

proof: We will prove that Po .. Pj by using an instance / of Pqto build an instance
of Px. Let f[xi,... ,xn) = gxn4-h be a boolean expression as defined in Definition 1
above. Construct, in linear time, a series/parallel realization of / using NMOS transistors.
Consider this as the driver part of an NMOS gate and complete the construction by adding
In a depletion transistor to V( as shown in Figure 1. Now consider the NMOS transistor
with gate label xn in this gate, and let there be a fault fn at this transistor (either stuck-
at-on or stuck-at-off). This constitutes an instance of P\. Suppose we find a solution for
this involving a test vector t2. It is evident that the assignment int2to ... ,xn_i must
sensitize the gate output (and, therefore, /) to xn, otherwise the outputs in the faulty
and fault-free subcircuits would be the same. Conversely, if / is sensitizable to xn, then
a test exists for fn. So Po cc Pi. This completes the proof for the NMOS case, the same
can be done for CMOS by replacing the depletion load device by the dual of the NMOS
realization using PMOS transistors as shown in Figure 2 B

The complexity results obtained were for the special case of transistor stuck-at-on/off
faults. 1t should be mentioned that a transistor stuck-at-on fault is equivalent to a short



circuit (also called bridging) fault between the drain and source nodes. Similarly, a tran-
sistor stuck-at-off fault is equivalent to an open circuit fault in its drain or source wire.
S0 an algorithm that generates tests for arbitrary short faults (bridging faults) and open
faults inside a subcircuit will almost surely have exponential worst case behavior, and this
holds even for NMOS or CMOS gates. Such is the case with the algorithm and program
presented by the authors in [3], and by Chen et al. in [21]

The classical node stuck-at-1and stuck-at-ofaults are special cases of the general class
of short circuit faults, they involve a short circuit between a node and \&&or V3 We now
prove that these faults are no easier to test for.

Define the following implication problem :

Definition 3. P2: Given an MOS channel-connected subcircuit S, a value v 6 {o, 1}, and
a specified internal node Y in S, find an input vector p of S, if it exists, that causes Y to
take the logic value v in the steady state.

Define the following test generation problem :

Definition 4. P3: Given an MOS channel-connected subcircuit S with either a node
stuck-at-1 or stuck-at-o fault f at an internal node Y, find a test vector ;2 f°r £ if one
exists.

Theorem 2. P2 and Pz are MP—hard. This remains true even if S is restricted to be
either a series/parallel NMOS gate or a fully complementary series/parallel CMOS gate.

proof: We will prove that Poa P2 P3. Let / be as defined in Lemma 1, construct
In linear time a series/parallel realization of g and h using NMOS transistors. Consider



gh to be the driver part of an NMOS gate and complete the construction by adding in a
depletion transistor to Vg4 as shown in Figure 3,

Suppose we would like to make Y take the value 1 in the steady state, this constitutes
an instance of P2. A solution can be found if and only if gh is satisfiable; which means
that / can be sensitized to 0 Pocc P2

Now suppose there is a fault ; node Y stuck-at-O. This constitutes an instance of Ps
for which a solution t2 can be found if and only if t2 is also a solution of P2. So P2a P3,

The same can be done for CMOS by replacing the depletion load device of S by the
dual of the NMOS realization using PMOS transistors as shown in Figure 4, |

The test generation problem Ps becomes of polynomial complexity if the subcircuit
is either an NMOS gate or a fully complementary CMOS gate and the node at which a
stuck-at fault exists is the output node. This is because a path from the output to V& or
Vo in the subcircuit graph can be found in linear time. In this case the test vector does
not require initialization, and a valid local test for the fault is indeed derivable in linear
time.

IV. COMPLEXITY OF GENERATING tx

Once a test vector t2 has been found, it may be necessary to derive an initializing
vector t\. The complexity of the problem of finding such a t\ will be examined in this
section.

Define the following initialization problem .



Definition 5. Pa; Given an MOS channel-connected subcircuit S with either a tranis-
tor stuck-at-on or stuck-at-off fault f, for which some test vector t2 is known to require
initialization, find a single initializing vector t\ for t2

Theorem 3. Pais MP - hard. This remains true even if S is restricted to be a fully
complementary series/parallel CMOS gate with a stuck-at-offfault.

proof: The proof will be based on the need to avoid charge sharing between the output
and other subcircuit noces when the test vector t2 is applied.

We will prove that Pocx P4, Reconsider the subcircuit built in the proof of Theorem 2
and shown in Figure 4. Assume that Cy = Cg and all other internal node capacitances
are negligible. Let there be a stuck-at-off fault at an NMOS transistor Tf in one of the
parallel branches in h,

Since any t2 must sensitize the output Z to the gate label of ++ then it must connect Y
and Z by at least one path in the g block. Since Cy = Cg then an initializing vector must
Initialize both Y and Z to 1 to avoid charge sharing when t2 is applied, no other nodes
need be initialized because they have negligible capacitances by construction. Therefore
an initializing vector t\ can be found if and only if gh is satisfiable, so Po o P4, |

The problem of finding an initializing vector for a fully complementary CMOS gate
when only the output node needs to be initialized is of linear complexity. This, however,
does not mean that a valid test can be found in linear time because initializing vectors are
typically required for faults involving transistor stuck-at-off faults, and deriving a t2 for
these faults is MP —hard even for fully complementary CMOS gates as shown above.



The problem of initialization does not arise for NMOS gates. Furthermore, in case of
a transistor stuck-at-on fault, P4 does not arise for either NMOS or CMOS gates. It may,
however, arise In general cases when an unconstrained design style is allowed.

Theorem 4. P4is MP —hard for stuck-at-on faults if an unconstrained design style is
allowed.

proof: We will prove that Poa P4. As done previously consider / as in Lemma 1 and
build a subcircuit in polynomial time using NMOS transistor implementations of g and h
as shown in Figure 5. The figure also shows an assumed stuck-at-on fault at one of the
transistors with gate label x+. This constitutes an instance of P4. It is easy to see that
2must make Xf = oand gh = 2.and requires that the output node Z be initialized to 1.
Therefore an initializing vector t\ can be found if and only if gh is satisfiable, and Pqac P4,
|

The complexity results obtained for P4 were for the special case of transistor stuck-
at-on/off faults. As was mentioned above, a transistor stuck-at-on (off) fault is equivalent
to a short circuit (open circuit) fault between the drain and source nodes (in the drain
or source wires). So an algorithm that generates initializing vectors for tests for arbitrary
short faults (bridging faults) and open faults inside a subcircuit will almost surely have
exponential worst case behavior, and this holds even for CMOS gates.

V. COMPLEXITY OF ENSURING ROBUSTNESS

Suppose a test vector 2 for a certain fault requires an initializing vector t\. The
object of ti is to initialize certain internal nodes in the subcircuit to certain values. The
success of ¢2 depends on whether or not these values are still there when it is applied,
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we will refer to these nodes sk critical precharged nodes. This in turn depends on the
way the transition takes place. Signal skews at the inputs to the subcircuit can
cause certain transistors to switch before others, causing these critical nodes’ values to be
changed before t2 is applied. It is of interest, therefore, to devise test pairs (t2 t2) that
cannot be invalidated no matter how the subcircuit inputs switch; these tests are called
robust [s]. It is helpful to visualize t\ and t2as cubes [2o] in the boolean space, a robust test
pair then becomes one which cannot be invalidated no matter which path in the boolean
space is actually taken to go from t\ to t2.

To ensure robustness, a given test pair (¢1,"2) can be refined to become robust by
selecting some subcube of each of «1 and t2, f[ and t2, and requiring that some inputs
that do not change in the transition t[ —+t2 be free of glitches (ie, static-hazard-freg, to be
abreviated shf). This gives a robust test triplet [t[,Shf,t2), where Shf is the set of entries
that need to be shf. The choice of t[, t2, and Shf is not unique.

Define the following robustness problem :

Definition e. Ps: Given an MOS channel-connected subcircuit S along with a test pair
(ti,t2) for a certain fault in S; refine the test pair, if possible, so that it becomes robust.

Theorem s. psis HP —hard if an unconstrained design style is allowed.

proof: Wewill prove that sSAT ¢ P5. Let E(87,..., xn) be a boolean expression in 3CNF.
Construct in linear time a switching function realization of E using NMOS transistors for
non-complemented literals and PMOS transistors for complemented ones. Use this to build
the subcircuit shown in Figure e. Let there be a transistor stuck-at-off fault at the NMOS
transistor driven by xx shown in the figure. The only possible test pair is one that sets

12



Xi=oin and xt=2int2foralli=a,..,n sothat Zis initialized to 1by * and then
discharged to oby  through the faulty transistor. Furthermore, E has to be owhen either
ti or ;215 applied. This constitues an instance of Ps. Since t\ and .2 are both subcubes of
dimension o in this case, and they are different at all there entries, then t\ = ¢1, t2= 2
and no refinement for robustness is possible : the pair is either robust or not. Notice that
the set of possible intermediate states in the transition is the whole hoolean space and
that E should be o at each of these states to preserve the charge at the output node Z
Therefore a solution can be found (meaning that the pair is robust as is) if and only if E
Is not satisfiable. This means that 3SAT o Ps, |

We will now study the complexity of Psfor the case of a single fully complementary
CMOS gate (not necessarily series/parallel) with a transistor stuck-at-off fault. We will
prove that the problem becomes of polynomial complexity by giving a linear time algorithm
that refines tests to make them robust. Some preliminaries must be made before the actual
proof is given.

Given a fully complementary CMOS gate Swith a stuck-at-off fault at a transistor Tf
whose gate label is Xf. Given also a test pair (;1, ¢2) f°r this fault. Let the gate output
node be Z A compact representation of t\ or 12is a row-vector of n entries x- 6 {o, X, 1},
where X means that the value at the corresponding gate input is irrelevant to the test.
So, for example, if t\ requires Xj = oand Xo= 1, and doesn’t care about Xsthen it is
represented by p 2 X]. A subcube t[ of has at least the same non-X entries a5 and
may have some more.

In as much as cubes represent special sets of points in the boolean space we will use
the set operations C, n, and U to represent the subset relation, and the intersection and

13



union operations on these sets, respectively. Therefore, ift[ is a subcube of £, we will write

QU The fl and U operations can be performed on the row vector representation of two
cubes by doing a bit-wise and and a hit-wise or operation, respectively, on each entry of
the cube using ternary algebra,

We make the reasonable assumption that the capacitance of Z is not negligible com-
pared to other internal nodes of S, therefore it is one of the critical precharged nodes. We
also assume, without loss of generality, that Tf is in the N-part of the gate. This means
that ti joins Z as well as all other critical precharged nodes to  and t2 attempts to join
Zto  along a path that goes through ++.

We will now focus on the N-part of the gate and treat it as a graph G where every
subcircuit node (transistor) translates to a graph node (edge) of G, however, no edge is
inserted in G for the faulty transistor Tf. Ift is an input vector to S at a particular time
Involving no X entries, defing G[t] as the subgraph of G induced by the edges turned “on”
by t. We will call this subgraph of G the conduction subgraph. It is clear (since Tf £ G)
that if for some intermediate t in the transition the resulting G[i] joins one of the critical
precharged nodes to  then the charges will be lost and the test invalidated.

Let tJ (") be obtained from tx (t2) by replacing the X's in the row vector representation
by o*. contains all the critical precharged nodes in the N-part of S, and therefore
contains the output node Z in particular. Infact joins the output node Z to every
other critical precharged node of G. As for G*] it contains both Zand ~ but does not
actually join them by a path because Tf was not included in G (E¥¢2| is not a connected
graph). G[iJ] and G[t\\ are therefore, not disjoint, since they share at least the output
node Z Define G[ti] UG[t)\ to be the graph with node (edge) set equal to the union of the

14



two node (edge) sets of Gti] and G[tj\. We will also say G[f{] C G[tj] if s a subgraph
ofGtj]

Let ;2= 2 Ug2*For example, if

= [OlIOI0JOTX]
and
2= [IIXX00IOX]
then
¢12 = [111X101XX]
Nowlet = ft Iseasy to seethat @] = <Y;1UG[*2, and therefore contains

all the critical precharged nodes in the N-part including the output node Z, as well as VA,

Lemma 3. The pair (1, t2) can be made robust by refinement if and only if G[t"2] does
notjoin Z to VA,

proof: two parts.

(i) only if part : By contradiction. Suppose Z is joined to Vs in G[t"Z} Notice that
G[tiZ] C G[t], W C tu (provided t has no X entries, so that G[t] is well defined).
Suppose certain t[, t2, and shf requirements, Shf, have been chosen. Let s12 be the
cube consisting of all the possible states in the t\ — t2 transitions obeying the shf
requirements. Therefore t\ C 3~ and ;2 Q s\amAny noii-X entries of si2 are shf and
must be the same as their corresponding entries in t[ and t2, and must, therefore, be
subsets of their corresponding entries in c and t2 ([0] C [X], [l] C [X]). Therefore

a2flds $. Nowlet t Cti2Geazhave no X entries, then t is a possible intermediate
5



state and G[t"2] C G[t], since t C tu. Therefore whatever shf requirement are made
for the t\ —¥ ;2 transition, Z and all other critical precharged nodes in the N-part will
be joined to Vs for some intermediate vector t. So the test cannot be made robust.

(it) ifpart : Constructive. Suppose G[tJ2] does not join Zto V3. The o’sin  correspond
to either X's or o’s int\ and t2. Set all these X s to o’ to get t[ and t2 (ie, t = ¢jnij2
and t2 = t2Hi2), and specify that all the entries corresponding to the os of tv2 be
O-static-hazard-free in the transition t\ —+t2. Therefore if t is any intermediate state
in the transition, CYi].C s0 the precharged nodes are never joined to V33 and
the test Is robust. ®

Theorem e. Psbecomes of polynomial complexity if S is a fully complementary CMOS
gate with a transistor stuck-at-off fault.

proof: The proof is constructive and gives a linear time algorithm that either decides
that a test cannot be made robust, or else refines it to make it robust. Simply stated, the
algorithm follows the proof of Lemma 3 : given tx and t2, form t~ and check if Z and
Vz are connected in G[tJ2]. If so then the test cannot he made robust, otherwise form
g =tiflgeand 2= 2n g an(*specify that all the entries corresponding to the o’s of
(J2be O-static-hazard-free in the transition t[ ->t2. All the operations described can be
easily done in linear time. |
Even though the algorithm above is very efficient, it does give shf requirements that
may be an overkill, the test pair can be made robust using less stringent shf requirements
as follows (the assumption below is that Z is not joined to Vs in G[t}2)* Contract all
the edges in G that belong to G[tJZ], this can be done in linear time. Call the new node
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of which Z is part s, and that of which V3 is part t. Orient the edges of G as follows :
all edges incident on Z are oriented away from it, all edges incident on  are oriented
towards it, and all other edges are duplicated and oriented in hoth directions. This gives
a directed graph  and assigning an edge capacity of 1 to every edge we get a Network.

All the edges corresponding to the 0% in 't constitute a cui, but this may not be a
minimum cut. It is in this sense that the shf requirements generated above may be an
overkill. By using maxflow-mincut techniques [19] a mincut can be found in 0{1*51¢|S|12)
time where |5 is the size (number of transistors) of the given subcircuit. Having found such
a mincut, make all corresponding entries of tx and t2 os, this gives t\ and ;2, and require
all these entries to be o-shf. This gives a robust test pair with minimum requirements in
polynomial time.

In a test generation setup the minimum requirements generated here may not be the
best choice : they may fail during the justification phase when the test is being propagated
at the gate-level description ofthe circuit. Other alternatives, such as minimal cuts become
important [2], [7].

VI. CONCLUSIONS

This paper proves that the problem of generating a test for a single fault in one channel-
connected MOS subcircuit is, in general, kiP - hard. This same result is shown to hold
in the special cases of series/parallel NMOS or fully complementary CMOS gate designs.
The size of the problem is the size of the subcircuit, given by the number of transistors
in it. Although the size of many channel-connected subcircuits is small in practice, and
tests for them can be derived within reasonable time, there are cases where the size can

1



grow into the hundreds of transistors, which makes the complexity results derived here
particularly important.

The implications of these results are that a transistor level test generation algorithm
should use heuristics or approximations in order to perform reasonably. Furthermore, it
Is important to look for certain restricted design styles and fault types for which efficient,
special purpose, polynomial time algorithms exist. Inview of this, it is remarkable that the
test generation problem for the special case of an NMOS or CMOS gate is still MP—hard.

One way of tackling the algorithmic complexity of the test generation problem in gen-
eral, aside from using heuristics, is to look for non-deterministic or probabilistic algorithms.
Examples in this class are algorithms that perform efficiently on most circuits [16], or al-
gorithms that would probably perform efficiently on a given circuit [L7]. Another way out
Is to look for approximation algorithms [18] which do not guarantee finding a test when-
ever one exists, but rather efficiently find only some of the tests. These represent research
directions that are currently being investigated. The complexity of the problem can be
reduced if design for testahility concepts [22] are used during the design phase.
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Figure 1. An NMOS gate.



Figure 2. A CMOS gate.



Figure 3. An NMOS gate-
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Figure 4. A CMOS gate,



Figure 5. A general subcircuit,
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Figure 6. A general subcircuit.



