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THE COMPLEXITY OF TEST GENERATION 
AT THE TRANSISTOR LEVELf

Farid Najm and Ibrahim Hajj
Coordinated Science Laboratory and the 

Department of Electrical and Computer Engineering 
University of Illinois at Urban a-Champaign 

Urbana, IL 61801

ABSTRACT
It is well known that the gate-level test generation problem for classical stuck-at fault 

models is XIP — hard. In this paper we prove that the test generation problem for a single 
general MOS channel-connected subcircuit (logic gate) is also XIP — hard. More impor­
tantly, we prove that this remains true if the subcircuit is constrained to be a series/parallel 
NMOS gate or a fully complementary series/parallel CMOS gate. This is done by special­
izing and decomposing the problem into its subproblems whose complexities are derived : 
Finding a single test vector t2 for a single MOS channel-connected subcircuit with either a 
transistor stuck-at-on (or off) or node-stuck-at-1 (or 0) fault is XIP — hard, and remains so 
for a series/parallel NMOS gate or a fully complementary series/parallel CMOS gate. For 
test vectors that require initialization, we prove that finding the initializing vector ti is 
also XIP — hard and remains so for a fully complementary series/parallel CMOS gate with 
a stuck-at-off transistor fault. Finally the problem of ensuring the robustness of a given 
test pair is shown to be XIP — hard for unconstrained designs and of polynomial complexity 
for a fully complementary CMOS gate; a linear time algorithm is given. If the subcircuit 
is restricted to be an NMOS gate or a fully complementary CMOS gate, with a classical 
stuck-at fault at its output node, then the test generation problem becomes of polynomial 
complexity. The implications of these complexity results on practical switch-level test 
generation tools are discussed.

f This work was supported by the Semiconductor Research Corporation under Contract 
SRC RSCH 86-12-109.



I. INTRODUCTION

A VLSI circuit consists of an interconnection of primitive modules which we refer to as 
subcircuits or logic gates. We consider here MOS circuits and define a primitive module 
to be a channel-connected subcircuit. The problem of automatically generating tests to 
detect logic faults in VLSI circuits can, in general, be divided into two levels: local and 
global. At the local level a fault model is constructed which reflects the effects of physical 
failures in a subcircuit or gate on its logical behavior. A test set is then generated to detect 
the faults at the local level. The global level then involves the propagation of fault effects 
forward and backward through the subcircuit interconnections to the accessible external 
nodes of the circuit.

When only a gate-level description of the circuit is available, classical stuck-at fault 
models are often used, and the internal structure and technology of the gate are not taken 
into consideration. In this case the problem of generating test vectors at the local level 
becomes trivial in the sense that tests can be readily derived; while the problem of global 
propagation of the tests through the interconnections to the external nodes is N? — hard [l].

Unfortunately, it is now well-established that many transistor-level failures cannot be 
accurately modeled at the gate level; consequently, test generation techniques derived for 
a gate-level description fail to detect these failures [6]. As a result, transistor-level test 
generation has recently attracted the attention of many researchers [7]-[ll]. However, 
many of these techniques are restricted to the detection of faults that require one test 
vector. In [2] and [3] a method is given which, for a given fault, automatically detects 
whether one or two test vectors are needed; and automatically generates test pairs that 
are robust [5].
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In this paper we concentrate on the problem of local test generation for a single gen­
eral MOS channel-connected subcircuit and prove that the problem is MP — hard. More 
importantly, we prove that the problem remains HP — hard even if the subcircuit is re­
stricted to be a single series/parallel NMOS gate or a fully complementary series/parallel 
CMOS gate. This problem becomes more complex when faults exist that require two test 
patterns for detection. Such faults are a common occurrence and have been shown to exist 
in NMOS [2]—[3] as well as CMOS [4]—[6] circuits. The significance of these results is that 
it is very unlikely that an exact polynomial-time algorithm for local test generation in 
general MOS circuits will be found.

However, if the problem is restricted to allow only NMOS or fully complementary 
CMOS gates with only node stuck-at faults allowed at the gate’s output node, similar to 
classical gate-level stuck-at faults, then the problem is trivially solvable in linear-time: a 
single test vector is required and can be obtained by a depth-first tracing of the transistor 
graph corresponding to either the N-part or P-part of the gate. Any more generality than 
this runs into NP — hard problems, as will be shown below.

The careful reader may notice that if all the problems considered below were posed as 
decision-problems, then they would be HP — complete, a slightly stronger result. The proofs 
for HP — completeness would, however, be based on the existence of polynomial-time circuit 
simulation algorithms. While examples of such algorithms abound, we have opted to avoid 
that approach because it requires one to precisely describe what circuit model is being 
used and what type of simulation is to be performed, and the results would accordingly 
be limited by these details. The HP — hardness results to be presented, however, do

2



not depend on such details and, we feel, highlight the important features of the problem 
complexity.

The remainder of this paper is divided into six sections. The problem is first formalized 
and described in section II. Section III then considers the complexity of finding a single 
test vector, section IV deals with finding an initializing vector, and section V examines 
the complexity of ensuring robustness. Finally section VI gives some concluding remarks, 
discusses the implications of these results, and gives suggestions for future work.

II. PROBLEM DESCRIPTION

We rely heavily on the terminology used in complexity theory, such as saying that a 
problem P is transformable in polynomial time to a problem P' (abbreviated P a  P '), 
a problem is in the class P, a problem is in the class XIP, a problem is MP — complete, a 
problem is N? — hard, etc... . The discussion.in [12] is sufficient background to understand 
the rest of this paper.

A boolean function or expression is said to be satisfiable if there exists an assignment of 
0’s and l ’s to its variables that gives it the value 1. We recall the satisfiability problem from 
mathematical logic [12], to be abbreviated SAT, which is defined as follows. A boolean 
variable or its complement is called a literal. Given a boolean expression in conjunctive 
normal form (CNF), ie, it is the product (logical and) of a set of sub-expressions called 
clauses where every clause is the sum (logical or) of a number of literals. The problem is 
to decide whether or not the expression is satisfiable. It is well known [13] that SAT is 
>4P — complete. 8-satisfiability (3SAT) is satisfiability in which the boolean expression in
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CNF is allowed to have at most 3 literals per clause; such a representation will be called 
3CNF. It is also known [12] that 3SAT is MP — complete.

A boolean expression is said to be in disjunctive normal form (DNF) if it is a sum 
(logical or) of a set of clauses where each clause is the product (logical and) of a number 
of literals.

Given a boolean function /  of n variables Xj,. . . ,  xn, the boolean difference or boolean 
partial derivative [14] of /  with respect to a variable xt is defined as

f) f
— f { x  1 ? • • • > ^ t )  • • •» £n ) ®  f { x  1 > • • • > *c*> • * • » x n)

where 0 is the exclusive-or operation. A boolean function will be said to be sensitized to 
one of its variables x,- if changing x, while keeping all other Xj s fixed causes /  to change. 
A boolean function is sensitized to one of its variables xt- if and only if its partial derivative 
with respect to xt- is 1. This notion of sensitization is central to the test generation issue, 
and is similar to the notion of observability. Notice that if /  = gx + h, where g and h 
are not functions of x, then d f/d x  = gh, and /  can be sensitized to x if and only if gh is 
satisfiable.

Define the following sensitization problem :

Definition 1. P0 : Given a boolean expression / (x l5. . . ,  xn) written in the form f  = 
gx{ + h where i £ {1, . . . ,  n}, and :

(i) g is a boolean expression in CNF that does not depend on xt.
(ii) h is a boolean expression in DNF that does not depend on x,.
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(in) g, h, and therefore / ,  contain no complemented literals.
Decide if f  can be sensitized to xt-.

L e m m a  1. P q is UP — complete.

proof: It is easy to see that P q 6 UP. We must still show that it is UP — hard, 
we do so by showing that 3SA T  oc P q. Let E (x i , . . .  ,x n_i) be a boolean expres­
sion in 3CNF. Scan E (xu . . .  ,x n-i)  and replace every x\ by y,, get a new expression 
E'(xu . . . i xn-.u yu . . . i yn- 1) in linear time. Let g = + 2h), h = xiVi, and
f{ x i * • • •»xn—11 xm Vi> • • • 12/n—l) — El (xi, . . . ,  xn—i , J/i j • • •»2/n— d- Then /* comprises 
an instance of P0 for which

d f /d x n = P '( x i , . . . ,£ n- i 5y i,-- -52/n-i)i/^

Therefore /  can be sensitzed to zn iff 3a!, . . . ,  an_ !, 2>i, . . . ,  6„_i such that

E  (o i,. . . , an_ i, ¿ i , .. • , &n-i)  — 1» 9 1» and h 0

But 0 = 1 means that a, + &,■ = 1, Vi. And h = 0 means that a,6,- = 0, Vi. Therefore = 
a*, Vi, and, equivalently, E '(a i,... . . .  , 6n-i)  =  , fln-i)- Then d f /d x n is
satisfiable if and only if £ l(x1, . . . ,  xn-i)  is too, and 3SA T  oc P0. ■

The fact that sensitizing a boolean function to one of its variables is MP — hard effec­
tively explains why the D-propagation step of the D-algorithm [15] at the global logic level 
is computationally expensive : D-propagation is nothing but sensitization. It is interesting 
that sensitizing such a simple function as /  above is just as hard.

We denote by external nodes all the primary inputs as well as the power supply and 
ground nodes of an MOS network. All other nodes are called internal. A channel-connected
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subcircuit is defined as a maximal subcircuit in which every transistor shares at least a drain 
or source internal node with another transistor in the same subcircuit. In the simplest cases 
such a subcircuit would be a single NMOS or CMOS logic gate, in which case the gate 
output node is well defined as its unique node that connects to transistors of different types.

A fault is basically an undesired physical modification of the circuit layout that man­
ifests itself at the circuit description level in different ways. Given a channel-connected 
subcircuit S with a fault f, then a test for /  is an assignment or a sequence of assignments 
of logic values to the subcircuit inputs (transistor gate labels and/or primary inputs) that 
produces different values at a subcircuit output in the faulty and fault-free circuits. Such 
assignments are called vectors, so that a test is composed of a test vector possibly preceded 
by one or more initializing vectors.

To establish the complexity of the subcircuit test generation problem in general we 
will study the complexity of special cases of the problem below. Specifically we will look 
at faults in the subcircuit that manifest themselves as either transistor stuck-at-on (or off, 
also called stuck-at-open) or node stuck-at-1 (or 0) faults. Of course the problem in general 
is no simpler than its special cases.

III. COMPLEXITY OF GENERATING t2

When a test consists of two vectors the second (test) vector will be called t2, while 
the first (initializing) vector will be called t\. For uniformity of presentation, a test vector 
will be called t2 even if it doesn’t require initialization. This section is concerned with the 
complexity of deriving t2.

Define the following test generation problem : I
6



Definition 2. Pj : Given an MOS channel-connected subcircuit S with either a transistor 
stuck-at-on or stuck-at-off fault f, find a test vector t2 for f, if one exists.

The single test vector derived in Pj may, in general, require initialization. Finding an 
initializing vector is a totally different problem and will be discussed later on.

Theorem 1. Pi is UP — hard. This remains true even if S is restricted to be either a 
series/parallel NMOS gate or a fully complementary series/parallel CMOS gate.

proof: We will prove that P0 oc Pj by using an instance /  of Pq to build an instance 
of Px. Let f [ x i , . . .  ,x n) = gxn 4- h be a boolean expression as defined in Definition 1 
above. Construct, in linear time, a series/parallel realization of /  using NMOS transistors. 
Consider this as the driver part of an NMOS gate and complete the construction by adding 
in a depletion transistor to V( as shown in Figure 1. Now consider the NMOS transistor 
with gate label xn in this gate, and let there be a fault f n at this transistor (either stuck- 
at-on or stuck-at-off). This constitutes an instance of P\. Suppose we find a solution for 
this involving a test vector t2. It is evident that the assignment in t2 to . . .  , xn_i must 
sensitize the gate output (and, therefore, /)  to xn, otherwise the outputs in the faulty 
and fault-free subcircuits would be the same. Conversely, if /  is sensitizable to xn, then 
a test exists for f n. So Po oc Pi. This completes the proof for the NMOS case, the same 
can be done for CMOS by replacing the depletion load device by the dual of the NMOS 
realization using PMOS transistors as shown in Figure 2. B

The complexity results obtained were for the special case of transistor stuck-at-on/off 
faults. It should be mentioned that a transistor stuck-at-on fault is equivalent to a short
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circuit (also called bridging) fault between the drain and source nodes. Similarly, a tran­
sistor stuck-at-off fault is equivalent to an open circuit fault in its drain or source wire. 
So an algorithm that generates tests for arbitrary short faults (bridging faults) and open 
faults inside a subcircuit will almost surely have exponential worst case behavior, and this 
holds even for NMOS or CMOS gates. Such is the case with the algorithm and program 
presented by the authors in [3], and by Chen et al. in [21].

The classical node stuck-at-1 and stuck-at-0 faults are special cases of the general class 
of short circuit faults, they involve a short circuit between a node and V&& or V33. We now 
prove that these faults are no easier to test for.

Define the following implication problem :

Definition 3. P2 : Given an MOS channel-connected subcircuit S, a value v 6 {0, 1}, and 
a specified internal node Y  in S, find an input vector p of S, if it exists, that causes Y  to 
take the logic value v in the steady state.

Define the following test generation problem :

Definition 4. P3 : Given an MOS channel-connected subcircuit S with either a node 
stuck-at-1 or stuck-at-0 fault f  at an internal node Y, find a test vector ¿2 f°r £ if  one 
exists.

Theorem  2. P2 and P3 are MP — hard. This remains true even if S is restricted to be 
either a series/parallel NMOS gate or a fully complementary series/parallel CMOS gate.

proof: We will prove that P0 a  P2 cx P3. Let /  be as defined in Lemma 1, construct 
in linear time a series/parallel realization of g and h using NMOS transistors. Consider
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gh to be the driver part of an NMOS gate and complete the construction by adding in a 
depletion transistor to Vt¿4 as shown in Figure 3.

Suppose we would like to make Y take the value 1 in the steady state, this constitutes 
an instance of P2. A solution can be found if and only if gh is satisfiable; which means 
that /  can be sensitized to so P0 oc P2.

Now suppose there is a fault : node Y stuck-at-O. This constitutes an instance of P3 
for which a solution t2 can be found if and only if t2 is also a solution of P2. So P2 a  P3.

The same can be done for CMOS by replacing the depletion load device of S by the 
dual of the NMOS realization using PMOS transistors as shown in Figure 4. ■

The test generation problem P3 becomes of polynomial complexity if the subcircuit 
is either an NMOS gate or a fully complementary CMOS gate and the node at which a 
stuck-at fault exists is the output node. This is because a path from the output to V3S or 
Vdd in the subcircuit graph can be found in linear time. In this case the test vector does 
not require initialization, and a valid local test for the fault is indeed derivable in linear 
time.

IV. COMPLEXITY OF GENERATING t x

Once a test vector t2 has been found, it may be necessary to derive an initializing 
vector t\. The complexity of the problem of finding such a t\ will be examined in this 
section.

Define the following initialization problem :
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Definition 5. P4 ; Given an MOS channel-connected subcircuit S with either a transis­
tor stuck-at-on or stuck-at-off fault f, for which some test vector t2 is known to require 
initialization, find a single initializing vector t\ for t2.

Theorem  3. P4 is MP -  hard. This remains true even if S is restricted to be a fully 
complementary series/parallel CMOS gate with a stuck-at-off fault.

proof: The proof will be based on the need to avoid charge sharing between the output 
and other subcircuit nodes when the test vector t2 is applied.

We will prove that P0 cx P4. Reconsider the subcircuit built in the proof of Theorem 2 
and shown in Figure 4. Assume that Cy = Cg and all other internal node capacitances 
are negligible. Let there be a stuck-at-off fault at an NMOS transistor Tf in one of the 
parallel branches in h.

Since any t2 must sensitize the output Z to the gate label of T f  then it must connect Y 
and Z by at least one path in the g block. Since Cy = Cg then an initializing vector must 
initialize both Y and Z to 1 to avoid charge sharing when t2 is applied, no other nodes 
need be initialized because they have negligible capacitances by construction. Therefore 
an initializing vector t\ can be found if and only if gh is satisfiable, so Po oc P4. I

The problem of finding an initializing vector for a fully complementary CMOS gate 
when only the output node needs to be initialized is of linear complexity. This, however, 
does not mean that a valid test can be found in linear time because initializing vectors are 
typically required for faults involving transistor stuck-at-off faults, and deriving a t2 for 
these faults is MP — hard even for fully complementary CMOS gates as shown above.
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The problem of initialization does not arise for NMOS gates. Furthermore, in case of 
a transistor stuck-at-on fault, P4 does not arise for either NMOS or CMOS gates. It may, 
however, arise in general cases when an unconstrained design style is allowed.

Theorem 4. P4 is MP — hard for stuck-at-on faults if an unconstrained design style is 
allowed.

proof: We will prove that P0 a  P4. As done previously consider /  as in Lemma 1 and 
build a subcircuit in polynomial time using NMOS transistor implementations of g and h 
as shown in Figure 5. The figure also shows an assumed stuck-at-on fault at one of the 
transistors with gate label X f .  This constitutes an instance of P4. It is easy to see that 
¿2 must make Xf = 0 and gh = 1 and requires that the output node Z be initialized to 1. 
Therefore an initializing vector t\ can be found if and only if gh is satisfiable, and Pq oc P4. 
■

The complexity results obtained for P4 were for the special case of transistor stuck- 
at-on/off faults. As was mentioned above, a transistor stuck-at-on (off) fault is equivalent 
to a short circuit (open circuit) fault between the drain and source nodes (in the drain 
or source wires). So an algorithm that generates initializing vectors for tests for arbitrary 
short faults (bridging faults) and open faults inside a subcircuit will almost surely have 
exponential worst case behavior, and this holds even for CMOS gates.

V. COMPLEXITY OF ENSURING ROBUSTNESS

Suppose a test vector ¿2 for a certain fault requires an initializing vector t\. The 
object of ti is to initialize certain internal nodes in the subcircuit to certain values. The 
success of ¿2 depends on whether or not these values are still there when it is applied,
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we will refer to these nodes sls critical precharged nodes. This in turn depends on the 
way the transition takes place. Signal skews at the inputs to the subcircuit can
cause certain transistors to switch before others, causing these critical nodes’ values to be 
changed before t2 is applied. It is of interest, therefore, to devise test pairs (t1? t2) that 
cannot be invalidated no matter how the subcircuit inputs switch; these tests are called 
robust [5]. It is helpful to visualize t\ and t2 as cubes [20] in the boolean space, a robust test 
pair then becomes one which cannot be invalidated no matter which path in the boolean 
space is actually taken to go from t\ to t2.

To ensure robustness, a given test pair (¿1,^2) can be refined to become robust by 
selecting some subcube of each of ¿1 and t2, t[ and t'2, and requiring that some inputs 
that do not change in the transition t[ —► t '2 be free of glitches (ie, static-hazard-free, to be 
abreviated shf). This gives a robust test triplet [t[,Shf,t2), where Shf is the set of entries 
that need to be shf. The choice of t[, t2, and Shf is not unique.

Define the following robustness problem :

Definition 6. P5 : Given an MOS channel-connected subcircuit S along with a test pair 
( ti,t2) for a certain fault in S; refine the test pair, if possible, so that it becomes robust.

Theorem 5. P5 is HP — hard if an unconstrained design style is allowed.

proof: We will prove that 3SA T  oc P5. Let E (a?!, . . . ,  xn) be a boolean expression in 3CNF. 
Construct in linear time a switching function realization of E  using NMOS transistors for 
non-complemented literals and PMOS transistors for complemented ones. Use this to build 
the subcircuit shown in Figure 6. Let there be a transistor stuck-at-off fault at the NMOS 
transistor driven by xx shown in the figure. The only possible test pair is one that sets
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Xi = 0 in and xt- = 1 in t2 for all i = 1, . . . ,  n, so that Z is initialized to 1 by ^  and then 
discharged to 0 by through the faulty transistor. Furthermore, E  has to be 0 when either 
ti or ¿2 is applied. This constitues an instance of P5. Since t\ and ¿2 are both subcubes of 
dimension 0 in this case, and they are different at all there entries, then t\ = ¿1, t'2 = ¿2 
and no refinement for robustness is possible : the pair is either robust or not. Notice that 
the set of possible intermediate states in the transition is the whole boolean space and 
that E should be 0 at each of these states to preserve the charge at the output node Z. 
Therefore a solution can be found (meaning that the pair is robust as is) if and only if E  
is not satisfiable. This means that 3SA T  oc P5. ■

We will now study the complexity of P5 for the case of a single fully complementary 
CMOS gate (not necessarily series/parallel) with a transistor stuck-at-off fault. We will 
prove that the problem becomes of polynomial complexity by giving a linear time algorithm 
that refines tests to make them robust. Some preliminaries must be made before the actual 
proof is given.

Given a fully complementary CMOS gate S with a stuck-at-off fault at a transistor Tf 
whose gate label is Xf. Given also a test pair (¿1, ¿2) f°r this fault. Let the gate output 
node be Z. A compact representation of t\ or 12 is a row-vector of n entries x,- 6 {0, X, 1}, 
where X  means that the value at the corresponding gate input is irrelevant to the test. 
So, for example, if t\ requires Xj = 0 and X2 = 1, and doesn’t care about X3 then it is 
represented by [0 1 X]. A subcube t[ of has at least the same non-X entries as and 
may have some more.

In as much as cubes represent special sets of points in the boolean space we will use 
the set operations C, n, and U to represent the subset relation, and the intersection and

13



union operations on these sets, respectively. Therefore, if t[ is a subcube of £,, we will write 
Q U- The fl and U operations can be performed on the row vector representation of two 

cubes by doing a bit-wise and and a bit-wise or operation, respectively, on each entry of 
the cube using ternary algebra.

We make the reasonable assumption that the capacitance of Z is not negligible com­
pared to other internal nodes of S, therefore it is one of the critical precharged nodes. We 
also assume, without loss of generality, that Tf is in the N-part of the gate. This means 
that ti joins Z as well as all other critical precharged nodes to and t2 attempts to join 
Z to along a path that goes through T f .

We will now focus on the N-part of the gate and treat it as a graph G where every 
subcircuit node (transistor) translates to a graph node (edge) of G, however, no edge is 
inserted in G for the faulty transistor Tf. If t is an input vector to S at a particular time 
involving no X  entries, define G[t] as the subgraph of G induced by the edges turned “on” 
by t. We will call this subgraph of G the conduction subgraph. It is clear (since Tf £ G) 
that if for some intermediate t in the transition the resulting G[i] joins one of the critical 
precharged nodes to then the charges will be lost and the test invalidated.

Let tJ (¿ )̂ be obtained from tx (t2) by replacing the X's  in the row vector representation 
by 0’s. contains all the critical precharged nodes in the N-part of S, and therefore
contains the output node Z in particular. In fact joins the output node Z to every 
other critical precharged node of G. As for G ^]  it contains both Z and but does not 
actually join them by a path because Tf was not included in G (£*[¿2] is not a connected 
graph). G[iJ] and G[t\\ are therefore, not disjoint, since they share at least the output 
node Z. Define G[ti] U G[tj\ to be the graph with node (edge) set equal to the union of the
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two node (edge) sets of G[ti] and G[tj\. We will also say G[t{] C G[tj] if is a subgraph 
ofG[tj].

Let ¿12 = ¿1 U ¿2* For example, if

= [OllOlOJOTX]

and
¿2 = [llXXOOlOX]

then
¿12 =  [111X101XX]

Now let = ft ls easy to see that ®2] = <̂ [¿1] U G[*2], and therefore contains
all the critical precharged nodes in the N-part including the output node Z, as well as V^.

Lemma 3. The pair (¿1, t2) can be made robust by refinement if and only if G[t^2] does 
not join Z to V^.

proof: two parts.
(i) only if p a rt : By contradiction. Suppose Z is joined to VS3 in G[t^2]• Notice that 

G[ti2] C G[t], Wt C tu  (provided t has no X  entries, so that G[t] is well defined). 
Suppose certain t[, t2, and shf requirements, Shf, have been chosen. Let s'l2 be the 
cube consisting of all the possible states in the t\ —► t2 transitions obeying the shf 
requirements. Therefore t\ C 3^2 and ¿2 Q 3\2m Any noii-X entries of s'l2 are shf and 
must be the same as their corresponding entries in t[ and t2, and must, therefore, be 
subsets of their corresponding entries in ¿1 and t2 ([0] C [X], [l] C [X]). Therefore 
¿12 fl s[<, $. Now let t C t 12 C\ ¿12 have no X  entries, then t is a possible intermediate
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state and G[t^2] C G[t], since t C tu . Therefore whatever shf requirement are made 
for the t\ —*■ ¿2 transition, Z and all other critical precharged nodes in the N-part will 
be joined to V33 for some intermediate vector t. So the test cannot be made robust.

(it) if p a rt : Constructive. Suppose G[tJ2] does not join Z to V33. The 0’s in correspond 
to either X ’s or 0’s in t\ and t2. Set all these X ’s to 0’s to get t[ and t '2 (ie, t[ = ¿j n i j2 
and t2 = t2 H ¿i2), and specify that all the entries corresponding to the 0’s of t\ 2 be 
O-static-hazard-free in the transition t\ —► t'2. Therefore if t is any intermediate state 
in the transition, C?[i].C so the precharged nodes are never joined to V33i and
the test is robust. ®

Theorem  6. P5 becomes of polynomial complexity if S is a fully complementary CMOS 
gate with a transistor stuck-at-off fault.

proof: The proof is constructive and gives a linear time algorithm that either decides 
that a test cannot be made robust, or else refines it to make it robust. Simply stated, the 
algorithm follows the proof of Lemma 3 : given tx and t2, form t 2̂ and check if Z and 
V33 are connected in G[tJ2]. If so then the test cannot be made robust, otherwise form 
¿'j = ti fl ¿12 and ¿2 = ¿2 n ¿125 an(* specify that all the entries corresponding to the 0’s of 
¿J2 be O-static-hazard-free in the transition t[ -> t'2. All the operations described can be 
easily done in linear time. ■

Even though the algorithm above is very efficient, it does give shf requirements that 
may be an overkill, the test pair can be made robust using less stringent shf requirements 
as follows (the assumption below is that Z is not joined to V33 in G[t}2])* Contract all 
the edges in G that belong to G[tJ2], this can be done in linear time. Call the new node
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of which Z is part s, and that of which VSi is part t. Orient the edges of G as follows : 
all edges incident on Z are oriented away from it, all edges incident on are oriented 
towards it, and all other edges are duplicated and oriented in both directions. This gives 
a directed graph and assigning an edge capacity of 1 to every edge we get a Network.

All the edges corresponding to the 0’s in t constitute a cui, but this may not be a 
minimum cut. It is in this sense that the shf requirements generated above may be an 
overkill. By using maxflow-mincut techniques [19] a mincut can be found in 0(1*51 • |‘S'|1/2) 
time where |5 | is the size (number of transistors) of the given subcircuit. Having found such 
a mincut, make all corresponding entries of tx and t2 0’s, this gives t\ and ¿2, and require 
all these entries to be 0-shf. This gives a robust test pair with minimum requirements in 
polynomial time.

In a test generation setup the minimum requirements generated here may not be the 
best choice : they may fail during the justification phase when the test is being propagated 
at the gate-level description of the circuit. Other alternatives, such as minimal cuts become 
important [2], [7].

VI. CONCLUSIONS

This paper proves that the problem of generating a test for a single fault in one channel- 
connected MOS subcircuit is, in general, kiP -  hard. This same result is shown to hold 
in the special cases of series/parallel NMOS or fully complementary CMOS gate designs. 
The size of the problem is the size of the subcircuit, given by the number of transistors 
in it. Although the size of many channel-connected subcircuits is small in practice, and 
tests for them can be derived within reasonable time, there are cases where the size can
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grow into the hundreds of transistors, which makes the complexity results derived here 
particularly important.

The implications of these results are that a transistor level test generation algorithm 
should use heuristics or approximations in order to perform reasonably. Furthermore, it 
is important to look for certain restricted design styles and fault types for which efficient, 
special purpose, polynomial time algorithms exist. In view of this, it is remarkable that the 
test generation problem for the special case of an NMOS or CMOS gate is still MP — hard.

One way of tackling the algorithmic complexity of the test generation problem in gen­
eral, aside from using heuristics, is to look for non-deterministic or probabilistic algorithms. 
Examples in this class are algorithms that perform efficiently on most circuits [16], or al­
gorithms that would probably perform efficiently on a given circuit [17]. Another way out 
is to look for approximation algorithms [18] which do not guarantee finding a test when­
ever one exists, but rather efficiently find only some of the tests. These represent research 
directions that are currently being investigated. The complexity of the problem can be 
reduced if design for testability concepts [22] are used during the design phase.
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Figure 1. An NMOS gate.
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Figure 2. A CMOS gate.
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Figure 3. An NMOS gate-
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Figure 4. A CMOS gate.



Figure 5. A general subcircuit.
6

 N



1 o

o

^dd
X1 o -

x n O

-------------- O '

i
i
i

c

E ( x  J .......x n )

NMOS PMOS

V s s  _

Figure 6. A general subcircuit.


