
May 1993 UILU-ENG-93-2220
CRHC-93-11

Center fo r Reliable and High-Performance Computing

COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY
USING A READ BUFFER

N. J. Alewine, S.-K. Chen, W. K. Fuchs, and W.-M. Hwu

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
SECU R ITY C LA SSIF IC A TIO N OF THIS PAG É

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93-2220 CRHC-93-11

1b. RESTRICTIVE MARKINGS
_None

3. DISTRIBUTION/AVAILABILITY' OF REPORT

Approved for public release;
distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A
7a. NAME OF MONITORING ORGANIZATION

Inti Business Machines
NASA and Office of Naval Research

6c ADDRESS (Gty, State, and ZIP Code)

Urbana, IL 61801
1308 -W. Main St.

7b. ADDRESS (Oty, State, and ZIP Code)Boca Raton FL
Moffitt Field, CA
Arlington, VA

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7A
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNOING NUM8ERS
PROGRAM PROJECT TASK WORK UNIT

7B
ELEMENT NO. NO. NO. ACCESSION NO.

Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer
12. PERSONAL AUTHOR(S) ALEWINE, N. J., S.-K. Chen, W. K. Fuchs, and W.-M. Hwu
13a. TYPE OF REP'ORT

Technical
13b. TIME COVERED

FROM TO
14. DATE OF REPORT (Year, Month, Day)1993 May 27 15. PAGE COUNT

31
16. SUPPLEMENTARY NOTATION

17. COSATI COOES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
fault-tolerance, error recovery, instruction retry,

compilers, hardware assisted retry
’9 A8STRACT (Continue on reverse if necessary and identify by block number)

Multiple instruction rollback (M ill) is a technique that has been implemented in mainframe computers to
provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback
data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have
also been developed which remove rollback data hazzards directly with data-flow transformations.

This paper focuses on compiler-assisted techniques to achieve multiple instructionrollback recovery. We
observe that some data hazards resulting rom instruction rollback can be resolved efficiently by provid­
ing an operand read buffer while others are resolved more efficiently with compiler transformations. A
compiler-assisted multiple instructionrollback scheme is developed which combines hardware-implemented
b'.tn redundancy with compiler-driven hazard removal transformation.s Experimental performance evalua­

tions indicate improved efficiency over previous hardware-based and compiler-based schemes.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
E u n c la ssif ie d a jn u m it e d □ sa m e as r p t . D d tic u sers

22a. NAME OF RESPONSIBLE INDIVIDUAL “

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

D D FORM 1 4 7 3 ,8 4 m ar 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGF

UNCLASSIFIED

COM PILER-ASSISTED MULTIPLE IN STR U CTIO N
ROLLBACK RECO VERY USING A READ BUFFER

N. J. Alewine1, S.-K. Chen, W. K. Fuchs, W.-M. Hwu

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

1308 West Main Street
University of Illinois
Urbana, IL 61801

Primary contact: W. Kent Fuchs
Phone: (217) 333-8294
FAX: (217) 244-5686

e-m ail to fuchsQcrhc.uiuc.edu

May, 1993

AB STR AC T

Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe com­
puters to provide rapid recovery from transient processor failures. Hardware-based MIR designs
eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-
based MIR designs have also been developed which remove rollback data hazards directly with
data-flow transformations.

This paper focuses on compiler-assisted techniques to achieve multiple instruction rollback re­
covery. We observe that some data hazards resulting from instruction rollback can be resolved
efficiently by providing an operand read buffer while others are resolved more efficiently with com­
piler transformations. A compiler-assisted multiple instruction rollback scheme is developed which
combines hardware-implemented data redundancy with compiler-driven hazard removal transformar
tions. Experimental performance evaluations indicate improved efficiency over previous hardware-
based and compiler-based schemes.

Index terms: fault-tolerance, error recovery, instruction retry, compilers, hardware assisted retry.

1 International Business Machines Corporation, Boca Raton, FI.
This research was supported in part by the National Aeronautics and Space Administration (NASA) under grant

NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace Systems and Software
(ICLASS), and in part by the Department of the Navy and managed by the Office of the Chief o f Naval Research
under Contract N00014-91-J-1283.

1 Introduction

Instruction retry is a technique for rapid recovery from transient faults in a processing system.

Multiple instruction rollback recovery is particularly appropriate when error detection latencies or

when error reporting latencies are greater than a single instruction cycle.

When transient processor errors occur, multiple instruction rollback (also referred to as mul­

tiple instruction retry or simply instruction retry) can be an effective alternative to system-level

checkpointing and rollback recovery [1-6]. Multiple instruction retry within a sliding window of

a few instructions [2-5], or re-execution of a few cycles [7], can be implemented in parallel with

concurrent, algorithm-based, or control-flow error detection methods for recovery from transient

processor errors.

1.1 Hardware-Based Instruction Rollback

Hardware implemented instruction retry schemes belong to one of two groups: 1) full checkpointing

and 2) incremental checkpointing. Full checkpointing maintains Snapshots” of the required system

state space at regular, or predetermined, intervals. Upon error detection, the system can be rolled

back to the appropriate checkpointed system state. Incremental checkpointing maintains changes

to the system state in a “sliding window” . Upon error detection the system state is restored

by undoing, or “backing-out” the system state changes up to the instruction in which the error

occurred.

The issues associated with instruction retry are similar to the issues encountered with exception

handling in an out-of-order instruction execution architecture. If an instruction is to write to a

register and N is the maximum error detection latency (or exception latency), two copies of the

data must be maintained for N cycles. Hardware schemes such as reorder buffers, history buffers,

future files [8], and micro-rollback [2] differ in where the updated and old values reside, circuit

complexity, CPU cycle times, and rollback efficiency.

Table 1 gives a description of various hardware-based methods to restore the general purpose

register file contents during single or multiple instruction rollback. In the VAX 8600 and VAX 9000,

errors are detected prior to the completion of a faulty instruction. For most VAX instructions,

updates to the system state occur at the end of the instruction. If the error is detected prior to

the updating of the system state, the instruction can be rolled back and re-executed. If the system

1

Table 1: Hardware-based single and multiple instruction rollback schemes.

Rollback Scheme Checkpoint
Type

Rollback
Distance

Location of Data
Primary Redundant

IBM 4341 [9] full single instr. register file shadow file
IBM 3081 [1] fuff 10-20 instr. register file shadow file
VAX 8600 [10] full single instr. register file not required
IBM patent 4,912,707 [6] full variable register file shadow file
IBM patent 4,044,337 [11] incremental single instr. register file shadow files
micro-rollback [2] incremental variable write buffer register file
history buffer [8] incremental variable register file history buffer
history file [8] incremental variable register file shadow file
VAX 9000 [12] fuff single instr. register file not required
IBM E/S 9000 [5] incremental variable virtual file physical file

state has changed prior to detection of the error, a flag is set to indicate that instruction rollback

cannot be accomplished. Redundant data storage is not required for the VAX 8600 and VAX 9000.

The IBM 4341, IBM 3081, IBM patent 4,912,707, IBM patent 4,044,337, and history file all

require shadow file structures to maintain redundant data. This data is used to restore the system

state during rollback recovery. Shadow file structures can add significant circuit overhead, although

the level sensitive scan design [13] of the IBM 4341 and IBM 3081 provides this feature without

additional cost over that incurred to obtain testability.2 The VAX 8600 and VAX 9000 schemes

avoid shadow files, however, require an error detection latency of only one instruction.

The micro-rollback scheme also avoids shadow files by using a delayed write buffer to prevent

old data from being overwritten until the error detection latency has expired; ensuring that the

new data is fault-free. In a delayed write scheme, the most recent write values are contained in

the delayed write buffer, and bypass circuitry is required to forward this data on subsequent reads.

The performance impact introduced by the bypass circuitry is a function of the register file size

and the maximum rollback distance [2].

The history buffer scheme maintains redundant data in a separate push-down array and there­

fore does not require bypass circuitry [8]. The history buffer does however require an extra register

file port which complicates the file design and can impact performance by increasing file access

2The 126 scan rings o f the IBM 3081 contains 35,000 bits of data.

2

times.
In an effort to increase the register file size while maintaining down-level code compatibil­

ity relative to the 16 architectural registers, the IBM E/S 9000 has introduced a virtual register

management (VRM) system [14]. The VRM circuitry dynamically maps the eight architectural

registers into 32 physical registers. When the data in a physical register becomes obsolete, the

physical register is released for reassignment as a new virtual register. Although the VRM system

was primarily intended to reduce register pressure and therefore improve system performance, it has

been extended to provide data redundancy to assist in rollback recovery. In the VRM extension,

remapping of a physical register to a new virtual register is postponed until the error detection

latency has been exceeded for the data contained in the physical register.

1.2 Compiler-Based Instruction Rollback

Recently, compiler-based approaches to multiple instruction rollback recovery have been inves­

tigated [3,4]. Compiler-based MIR uses data-flow manipulations to remove data hazards that

result from multiple instruction rollback. Rollback data hazards (or just hazards) are identified

by antidependencies* of length < N, where N represents the maximum rollback distance. Antide­

pendencies are removed at three levels: 1) pseudo-code level, or the code level prior to variables

being assigned to physical registers, 2) machine-code level,, or the code level in which variables are

assigned to physical registers, and 3) post-pass level, which represents assembler-level code emitted

by the compiler. Compiler-based multiple instruction rollback reduces the requirement for data

redundancy logic present in hardware-based instruction rollback approaches.

1.3 Compiler-Assisted Instruction Rollback

Compiler-based multiple instruction rollback resolves all data hazards using compiler transforma­

tions. This paper introduces a compiler-assisted instruction rollback scheme which uses dedicated

data redundancy hardware to resolve one type of rollback data hazard while relying on compiler

assistance to resolve the remaining hazards. Experimental results indicate that by exploiting the

unique characteristics of differing hazard types, the new compiler-assisted MIR design can achieve

superior performance to either a hardware-only or compiler-based instruction rollback scheme.

3 For a complete presentation of datarflow properties and manipulation methods, see [15].

3

2 Error Model and Hazard Classification

2.1 Rollback Data Hazard M odel

The following four assumptions are used in the general error model: 1) the maximum error detection

latency is N instructions, 2) memory and I/O have delayed write buffers and can rollback N cycles,

3) the states of the program counter and program status word (PSW) are preserved by an external

recording device or by shadow registers [2], and 4) the CPU state can be restored by loading the

correct contents of the register file, program counter, and PSW.

Given the above assumptions, any error which does not manifest itself as an illegal path in the

control-flow graph (CFG) of the program is allowed provided that the following two conditions are

satisfied: 1) register file contents do not spontaneously change, and 2) data can not be written to

an incorrect register location. There are four targeted error types: 1) CPU errors such as those

caused by an ALU failure, 2) incorrect values being read from I/O , memory, the register file, or

external functional units such as the floating point unit, 3) correct/incorrect values being read

from incorrect locations within the I/O , memory, or register file, and 4) incorrect branch decisions

resulting from error types 1, 2, or 3. ■>

2.2 Hazard Classification

The code can be represented as a CFG G(V, E), where V is the set of nodes denoting instructions

and E is the set of edges denoting control-flow. If there is a direct control-flow from instruction

t, denoted /,*, to Ij, where /,• 6 V and Ij € V, then there is an edge (/,-,/j) € E. Let dmin(Ii,Ij)

denote the smallest number of instructions along any path from /, to Ij.

The hazard set Hrega of the error model is defined as the set of pseudo registers (or machine

registers) whose values are inconsistent during different executions of an instruction sequence due

to retry. A formal classification of hazard set Hrega follows.

P roperty 1: x 6 Hrega iff there exists a sequence of instructions I\,I2, . . . , In which form a

legal walk4 in G such that x is live at I\, and x is defined during the walk.

P roof: For the if case, an error occurring in I\ will be detected by In - During the retry of I\,

x will be in an inconsistent state since it was defined during the walk. Since x is live at I\, there

4 A walk is a sequence of edge traversals in a graph where the edges visited can be repeated [16].

4

is some path along which x is used prior to its redefinition, and since x is in an inconsistent state,

x € Hrega • For the only if case, we suppose the contrary. Assume that among all legal walks of

length N in. G, either x is not live at the beginning, or x is not defined during the walk. It then

follows that x either has no use, or x is not changed. (The error model does not allow a write to

a wrong location and the contents of register x can not spontaneously change.) Therefore there is

no inconsistency problem for x, which implies x £ Hrega.

P roperty 2: Hazards can be classified as one of two types: 1) those that appear as antide­

pendencies of length < N in G(V, E), referred to as on-path hazards, and 2) those that appear at

branch boundaries, referred to as branch hazards. These two hazard types may overlap.

P roof: Since x 6 -S’, there exists a legal walk W\ = / i , / 2, . . . , / j v in (?, such that x is live at

/ i , and after the execution of i*, Ja, • • •,In in sequence, x has a different value. The latter implies

that there is at least one instruction defining x along W\ (the error model does not allow a write to

a wrong location and the content of register x can not spontaneously change). Let i be the largest

index that /, defines x, where t € { 1, 2, . . . , N }. Property 1 implies that there exists a legal walk

W2 in G, beginning with such that the first instruction I j along W2 referring x is a use. Case

1: if W2 C W\, instructions I j and /< constitute an antidependency of length < N, and there is

an on-path hazard on x. Case 2: if W2 % there exists a branch instruction Ik between I\ and

/,_ i. Since dmin(Iic,Ii) < A , there is a hazard on x at a branch boundary.

An on-path or branch data hazard occurs when /,• defines variable x, and after rollback, I j uses

the corrupted x value prior to its being redefined. To simplify subsequent discussion, such on-path

and branch hazards will be denoted h0(i , j ,x) and h&(*,j,x) respectively. Figure 1 illustrates this

hazard notation.

3 Compiler-Assisted Instruction Rollback

As shown in Section 2, rollback data hazards are of two types: 1) on-path hazards, and 2) branch

hazards. Previous work has shown that compiler-driven data-flow manipulations can be used to

resolve both on-path [3] and branch [4] hazards. Compiler-assisted multiple instruction rollback

described in this section uses hardware to resolve on-path hazards and relies on compiler assistance

to resolve the remaining branch hazards.

5

• v

i

t| i j : I
• /» Hih ofiM U
» hh(ijcri"''^ f •

i /V 'G jE

error detected — ► V «.«****
' r

rollback

Figure 1: On-path and branch hazards.

3.1 On-path Hazard Resolution Using a Read Buffer

Figure 2 shows a hardware scheme to resolve on-path hazards. A read buffer is attached to the

output ports of the register file. Each time a register is used it appears on the read port and is

saved in the read buffer. If a register r* is defined in /, and it is an on-path hazard, then rjt must

have been read within the last N cycles. In this case, the read buffer will contain the old value

and it is permissible to write the new value into the register file. In the event of a rollback of N

instructions, the contents of the read buffer are flushed in reverse order and stored back to the

register file. For an on-path hazard, the path taken after the rollback will be the same as the path4’

taken prior to rollback and each read of r* will produce the same value as before. It is assumed

that the read buffer is an integral part of the register file and any error in the system does not

corrupt the transfer to the read buffer or its contents.

In contrast to a write history buffer which forces a read of r* prior to writing r* , the read buffer

monitors the register file ports and stores only the values read as part of the normal program flow

and, therefore, should not significantly impact the register file performance or CPU cycle time. The

read buffer is twice the width of a register with a depth of N. This is twice the size of a delayed

write buffer, but eliminates the requirement for complex bypassing and prioritization logic.

Figure 2: Read buffer.

3.1.1 Covering on-path hazards

In addition to resolving all on-path hazards, the read buffer will resolve some branch hazards.

Figure 3 shows an on-path hazard and a branch hazard both with definitions of x in /,• and uses of

x, after rollback, in instructions Ij and /¿, respectively. Note that if path l is initially taken, the

read buffer will contain the old value of x and rollback would be successful. However if path m is

taken, the read buffer will not contain the old value of x and rollback would be unsuccessful. If

only paths such as / exist, the presence of the on-path hazard assures successful rollback or “covers”

the branch hazard. In this case, resolution of the branch hazard using compiler techniques is not

necessary.

3.1.2 Post-pass transformation

Given the efficiency of the read buffer in resolving on-path hazards, a post-pass transformation on

assembler-level code becomes possible as an alternative to nop insertion transformations [3]. The

post-pass transformation creates on-path hazards when necessary to assure that all branch hazards

are resolved by the read buffer. Given one such branch hazard which defines physical register r*

at instruction the transformation inserts an MOV rjt, instruction immediately before This

guarantees that all paths leading to I{ are like path l in Figure 3.

7

*;
i:

rollback

3.2 Branch Hazard Resolution

Compiler transformations have been shown to be effective in resolving branch hazards [4]. Branch

hazards are resolved at three levels: 1) pseudo-level, 2) machine-level, and 3) post-pass level.

Pseudo-level hazards are removed by variable renaming, for example, renaming variable x to y in

instruction /,• of Figure 1. Machine-level branch hazards occur when register assignments result in

branch hazards that were not present at the pseudo-level. Machine-level hazards are resolved by

adding hazard constraints to live range constraints prior to register assignment. Branch hazards

which remain after pseudo-level and machine-level transformations are resolved at the post-pass

level with read insertions as described in Section 3.1.2.

The primary pseudo-level renaming transformation for the removal of branch hazards, involves

node splitting [4]. This section presents a new one-pass node splitting algorithm which results in

marginally reduced code growths and dramatically reduced compile-times relative to previous node

splitting algorithms.

8

3.2.1 Iterative node splitting algorithm

Node splitting breaks equivalence relationships which would prevent pseudo register renaming [3,

15]. When two definitions of a hazard variable reach a node in which the hazard variable is live, the

node is split. Node splitting to resolve one hazard variable often resolves other unrelated hazard

variables. This implies that the hazard set should be recalculated after splitting is performed

for each hazard variable. Previous node splitting algorithms use this iterative algorithm to avoid

unnecessary node splitting [3].

Figure 4 demonstrates the eifect of the iterative node splitting algorithm on an example sub­

graph. Node splitting relative to hazard variable x ensures that the definition of x in node ni and

the definition of x in node n2 do not both reach the same use of x in node n5. Node splitting

relative to y ensures that the definition of y in node 713' and the definition of y in node 714 do not

both reach the same use of y in node riß. Figure 4 also shows an optimal subgraph which resolves

both hazards with less splitting than produced by the iterative algorithm, indicating that excessive

node splitting is possible with the iterative algorithm.

3.2.2 Node splitting using graph coloring

To ensure minimal splitting, a new node splitting algorithm is developed using the concept of

conflicting parents [17]. Ensuring that node 71 does not have conflicting parents enables resolution
49

of the hazard using variable renaming. The node splitting strategy for a particular node is to group

the parents of that node such that elements within a group do not conflict. Each group becomes

parent nodes for a duplicate of the original node. For example, if node n has six parent nodes and

these nodes can be organized into three nonconflicting groups, then only three total copies of n axe

required.
Figure 5 illustrates the use of conflicting parents and graph coloring in node splitting for the

QSORT application described in Table 3 of Section 4.1. Node splitting is performed on pseudo-level

code, which for this example is represented by Lcode from the IMPACT C compiler [18]. Figure

5 shows node 48 from the QSORT application. Node 48 has six parent nodes prior to splitting.

These nodes can be arranged in a parent conflict graph, where each arc of the graph represents

two nodes which conflict. Establishing groups can be achieved by finding the minimum coloring

of the parent conflict graph, i.e., coloring the nodes such that no two nodes connected by an arc

9

Unsplit subgraph Split relative to variable x

Figure 4: Iterative node splitting relative to hazard variables x and y.

10

52 30

Node 48,48*, and 48” after splitting

Figure 5: Node splitting using graph coloring; QSORT.

have the same color. For the example shown in Figure 5, three colors are sufficient to color the

parent conflict graph, resulting in the splitting of node 48 into nodes 48, 48’ and 48” . Determining

whether a graph is fc-colorable is NP-complete in general. The graph coloring heuristic used for our

one-pass node splitting algorithm is a modified version of an algorithm used for register allocation

[15].

3.2.3 One-pass node splitting algorithm

Both live-in(n) and reaching-out(n)5 analyses are required to identify conflicting parent nodes. A

one-pass node splitting algorithm becomes possible by precalculating liveJn and the hazard node

set, and then, beginning with the root node, splitting in a topological traversal of the CFG. A

topological traversal ensures than when processing node n, all ancestors of n have been processed

and no descendants of n have been processed. This latter case ensures that the presplit calculation

of liveJn(n) can be used for parent conflict identification when processing a given node. Unlike

live.in(n), reaching-out(n) is affected by the splitting of ancestor nodes. Since reaching-out(n)

5 A complete description of datar flow terminology can be found in "Compilers: Principles, Techniques, and Tools” ,
Aho et al., [15].

11

Table 2: Node splitting algorithm comparisons: COMPRESS.

• Iterative Algorithm ran time = 614.0 seconds

• One-pass Algorithm ran time = 20.3 seconds

• Speedup = 30.2

Orig. Node Cnt. Iterative Alg. % Increase One-pass Alg. % Increase
547 601 9.9 566 3.5
461 499 8.2 496 7.6
144 147 2.1 147 2.1
181 209 15.5 207 14.4
75 80 6.7 80 6.7
21 28 33.3 27 28.6
45 79 75.6 48 6.7

is based solely on node n and its ancestors, reaching-out(n) can be calculated as node splitting

proceeds. If a hazard node is split, each duplicate of the node must be added to the hazard node

set. Since the root node does not have conflicting parents, a topological traversal of the CFG

using the graph coloring node splitting technique ensures that no node in the resulting graph has

conflicting parents.

Table 2 illustrates the improvement of the one-pass node splitting algorithm over the iterative

algorithm for the COMPRESS application described in Table 3 of Section 4.1. The COMPRESS

application was compiled on a SPARCserver 490 using the IMPACT C compiler [18] with a rollback

distance of 10. Node count values represent pseudo instructions (Lcode) created by the IMPACT C

compiler before and after splitting. Seven of the 14 COMPRESS functions which required splitting

are listed. Algorithm ran times represent the overall compile times given each of the two node

splitting algorithms.

Table 2 shows a marginal overall code growth reduction for the one-pass algorithm. Although

one function demonstrated a significant code growth reduction (6.7% down from 75.6%), the func­

tion is small and has minimal effect on the overall code size. The improvement in compile-time

of the one-pass algorithm is more dramatic, resulting in a speedup of 30.2. The compile-time

improvement can be explained as follows. If 60 hazard variables are present in a given function,

the iterative algorithm may require up to 60 passes through the CFG of that function, including

12

rollback

read
insertion

Figure 6: Post-pass hazard removal using read insertion.

60 data-flow analysis and hazard calculations. Although processing a given node in the one-pass

algorithm is slightly more complex, a single datarflow analysis calculation and a single pass through

the CFG are sufficient.

3.3 Performance Enhancement Through Profiling

3.3.1 Post-pass transformation versus loop protection

After hazards are removed by the compiler, some hazards remain and must be removed using a

post-pass transformation. Previous post-pass transformations used nop insertions to increase all

antidependency distances to > N [3]. Since nop insertion can be costly to performance, previous

compiler transformations removed all hazards possible, leaving only unresolvable hazards to be

removed by the post-pass transformation.

In Section 3.1.2, a new post-pass transformation was introduced in which nop insertion was

replaced by read insertions as the primary hazard removal technique. As illustrated in Figure 6, up

to two branch hazards can be removed by a single read instruction. The new post-pass transfor­

mation is very efficient and in some cases can resolve branch hazards with less performance impact

than pseudo-level transformations. Figures 11 and 13 of Section 4.2 show performance overhead

comparisons between compiler-driven data-flow manipulations and the post-pass transformation for

the PUZZLE and TBL applications described in Table 3 of Section 4.1. Comp/PP indicates that

hazards are resolved by the compiler where possible, with the remaining hazards being resolved at

13

the post-pass level. PP (post-pass) indicates that compiler transformations have been disabled and

that all hazards are removed at the post-pass phase.

For the PUZZLE application, compiler transformations produce better performance than the

post-pass transformation alone. For the TBL application, using the post-pass transformation to

remove all hazards produces slightly better performance than the combination of compiler and

post-pass transformations. Hazard elimination via read insertion introduces a guaranteed but small

performance impact due to the longer instruction path length. As demonstrated by the PUZZLE

application, pseudo register renaming can eliminate hazards without impacting performance when

loop protection is infrequent. The save/restore operations of loop protection can result in more

performance impact than read insertion when loop protection is frequent, as demonstrated by

results for the TBL application.

Figure 7 illustrates the potential effect on performance given the following two types of hazard

removal: 1) hazard removal using register renaming that results in loop protection, and 2) hazard

removal using read insertion. If the protected loop of Figure 7 is executed 20 times and the hazard

instruction is executed two times, loop protection would require the execution of 40 additional

instructions, where read insertion would require the execution of only two additional instructions.

If the loop and hazard instruction execution frequencies were reversed, then read insertion would

produce more performance impact than loop protection. As shown in Figure 7, profiling data can

be used to aid in loop protection decisions.

3.3.2 Profiling effectiveness

Profiled data was included in the pseudo-level transformations of Section 3.2. The profile data is

comprised of both dynamic profile sampling and static prediction. The static prediction is used as

a supplement for areas of the application code that are unexecuted during profile sampling. For

static profiling, a loop is assumed to iterate ten times. Inner loops, therefore, iterate multiples

of 10 times depending on the depth of loop nesting. All loop header nodes and hazard nodes are

assigned weights based on the profile data.

Protection of loop / due to hazard node nh is required based on the following condition: if

upweight > 3 * (hdrjnode(l)jweight), then protect loop /. The constant 3 adjusts the weights

to account for both direct and indirect loop protection costs. Direct loop protection costs result

14

Loop Protection Read Insertion

Figure 7: Loop protection versus read insertion.

from the save/restore instruction pair shown in Figure 7. Indirect loop protection costs result

from: 1) an increased number of hazards which in turn required more node splitting and more loop

protection, and 2) increased register usage due to the save/restore instructions which can result

in additional register spills. Figure 8 shows the run-time overhead for the TBL application with

rollback distances from 1 to 10. Prof/PP indicates that profiling data was used in loop protection

decisions.

The results show that the use of profile data can improve application performance by postponing

some hazard resolutions until the post-pass phase. Using profile data to aid in loop protection

decisions did not produce performance equal to that for the post-pass transformation, for the TBL

application. As an extension to this work, profile data can be used to aid in register allocation. As

discussed in Section 3.2, hazards that are present after pseudo register renaming are resolved by

adding hazard constraints to live range constraints prior to register allocation. These additional

constraints can cause increased register spillage and impact performance. Similar techniques to

those developed for loop protection can be used to enhance register allocation decisions.

15

Time OH: TBL
(%)

Rollback Distance

Figure 8: TBL: profile data used for loop protection decisions.

4 Performance Evaluation

4.1 Implementation and Application Programs

The hazard removal transformation algorithms have been implemented in the MIPS code generator

of the IMPACT C compiler [18]. Transformations resolving pseudo register hazards (loop protec­

tion, node splitting, and loop expansion) are called just before register allocation. Transformations

resolving machine register hazards are called after the live range constraints have been generated

and before physical register allocation. The nop insertion algorithm, or post-pass algorithm, is

called before the assembly code output routine.

Table 3 lists the eleven application programs used in the evaluations. The applications were

cross-compiled on a SPARCserver 490 and then the compiled program was run on a DECstation

3100. Static Size is the number of assembly instructions emitted by the code generator, not including

the library routines and other fixed overhead.

The results are summarized in Figures 9 through 13. Each figure contains two plots, the first

plot shows the percent of run-time overhead (Time OH) of the referenced hazard resolution scheme,

and the second plot shows the percent of code growth overhead (Size OH) relative to the base values

in Table 3.

Four hazard resolution techniques were evaluated. Compiler 1 resolves on-path hazards only, us­

ing the compiler-driven data-flow manipulations. Compiler 2 extends the compiler transformations

16

Table 3: Application programs.

Program Static Size Description
QUEEN 148 eight-queen program
WC 181 UNIX utility
QSORT 252 quick sort algorithm
CMP 262 UNIX utility
GREP 907 UNIX utility
PUZZLE 932 simple game
COMPRESS 1826 UNIX utility
LEX 6856 lexical analyzer
YACC 8099 parser-generator
TBL 8197 table formatting preprocessor
CCCP 8775 preprocessor for gnu C compiler

to resolve both on-path and branch hazards. PP (post-pass) disables the compiler transforma­

tions and relies solely on the post-pass transformation presented in Section 3.1.2. Comp/PP uses

compiler transformations to resolve branch hazards with the techniques described in Section 3.2,

assumes a read buffer to resolve on-path hazards, and uses the post-pass transformation to remove

remaining branch hazards. Comp/PP represents the compiler-assisted multiple instruction rollback

scheme.

Due to the excessive compile times of the previous Compiler 1 and Compiler 2 algorithms for

large applications, the evaluations of these schemes were restricted to applications QUEEN, WC,

COMPRESS, CMP, PUZZLE, and QSORT. Both Comp/PP and PP were evaluated for all eleven

applications.

4.2 Performance analysis

Compiler transformations used for the removal of data hazards can impact performance in several

ways. Loop protection inserts save/restore operations at the head and tail of the loop. This increases

the path length and, therefore, the run time. Additional arcs in the dependency graph can cause

more spill code to be generated, increasing memory references and cache misses. Nop insertion

can be costly since up to N nops could be inserted for each unresolved hazard. The insertion of

MOV rjfc, ?vinstructions to create covering on-path hazards in the post-pass transformation also

17

increases path lengths, although typically less than with nop insertions. Finally, the increase in

code size, mainly due to loop expansion, may cause more run-time cache misses. The performance

numbers shown in Figures 9 through 13 are for execution of the eleven application programs on a

DECstation 3100 after they have been compiled with the transforms described.

4.3 Results: Compiler 2

As can be seen in Figures 9 through 11, extending the compiler hazard resolution scheme to include

branch hazards introduces little incremental performance impact or code growth overhead. Given a

rollback distance of 10, resolving both on-path and branch hazards using compiler transformations

resulted in a maximum performance impact of 32.6% and an average performance impact of 12.6%.

This compares with maximum and average impacts of 35.4% and 15.4%, respectively, for compiler-

driven on-path hazard resolution only. The maximum code size overhead measured for the extended

compiler-based technique was 328% with an average overhead of 207%, for a rollback distance of

10. This compares with a maximum and average overhead of 372% and 225%, respectively, for the

unextended compiler-based scheme.

These results indicate a small incremental run-time performance overhead and a small code

size overhead given compiler-based branch hazard removal compared to compiler-based on-path

hazard removal alone. Three factors account for these small incremental impacts. First, on-path

hazards dominate in frequency of occurrence. Second, resolving an on-path hazard at instruction

Ii through renaming can sometimes resolve a branch hazard at instruction Third, resolving

on-path hazards with nop insertion may resolve a corresponding branch hazard by increasing the

distance between the hazard node and its nearest predecessor branch node.

4.4 Results: PP

Figures 9 through 13 show the run-time and code size overheads for each application studied using

the read buffer to resolve on-path hazards and the post-pass transformation described in Section

3 to cover all branch hazards. The results are worst case in that many of the branch hazards

could have been resolved with no performance impact using the compiler techniques; instead,

they are resolved by the insertion of MOV instructions which cause a guaranteed, although small,

performance impact. Given a rollback distance of 10, the post-pass transformation produced a

18

maximum performance impact of 7.69% with an average performance impact of 2.43%, significantly

below the levels produced by the compiler-based scheme. Code growth overhead measurements were

correspondingly lower with a maximum overhead of 13.0% and an average overhead of 8.59%.

4.5 Results: Comp/PP

The compiler-assisted scheme achieved consistently low performance overheads across all applica­

tions and slightly better performance than with the post-pass transformation only. Given a rollback

distance of 10, the compiler-assisted scheme produced a maximum performance impact of 6.57%

with an average performance impact of 2.03%, and a maximum code growth overhead of 51.2%

with and an average overhead of 15.5%. The run time results of PUZZLE, YACC, and CCCP in­

dicate that compiler techniques are still useful in reducing run-time performance penalties. These

compiler techniques, however, have the disadvantage of requiring recompilation and additional code

growth. The primary advantage of the compiler-assisted and post-pass schemes are their utilization

of the read buffer to resolve the more frequent on-path hazards.

Time OH: QUEEN
(%)

35 -j Compiler 1: —o-
Compiler 2: - o

iU " PP: •*
25 - Comp/PP: - a

2 0 -
15-
10 -
5 -
0 -

~ i------1------1------1------1------1------1------1------1------r
1 2 3 4 5 6 7 8 9 10

Rollback Distance

Size OH: QUEEN
(%)

400 - Compiler 1:
350- Compter 2 :- o
300 - Comp/PP: •••*
250-
200-

150-
100 -

5 0 -

0 1
t t f t f t f

6 7 8 9 102 3 4 5
Rollback Distance

Figure 9: Run-time overhead and code size overhead: QUEEN.

19

Time OH: WC
(%)

35 -
3 0 -
25 -

Compiler 1:
Compiler 2: - -a- -
PP: r .*...
Comp/PP: —a—

2 0 -
15 -
10 -
5 -
0 -
c

«....« ft A* ...— *

”3 — i— i— i— i— i— i— i— i i r
1 2 3 4 5 6 7 8 9 10

Rollback Distance

Size OH: WC

Rollback Distance

Time OH: COMPRESS
(%)

35 1 Compiler 1: —
3 0 - Compiler

PP: •••*•••
25 - Comp/PP: - a- □9

9

2 0 -
9 W

15 - /
9

10-
5 -
0 - J-"-«....ft...
< _— i— i— i— i— i— i— i— i

1 2 3 4 5 6 7 8
1 !
9 10

Rollback Distance

Size OH: COMPRESS

Rollback Distance

Time OH: CMP

3 0 -
2 5 -

Compiler 1:
Compiler 2:
PP:
Comp/PP:

Size OH: CMP
(%)

Compiler 1:
Compiler 2: --a--
PP: r . K ..
Comp/PP: •••*•••

400-
350-
300-

2 0 - 250-
15 -
10 -
5 -
0 -

-5 - i ------1------1------1------1------1------1------1------1------r
1 2 3 4 5 6 7 8 9 10

Rollback Distance

200-

150-
100 -

5 0 -
0 -

0
....A....A..mAn....Au-.Air.«»AT" fr —i-----1------r——i------ 1-------1------1------r

1 2 3 4 5 6 7 8 9 10
Rollback Distance

Figure 10: Run-time overhead and code size overhead: WC, COMPRESS, and CMP.

20

Time OH: QSORT
<%)

35 -
3 0 -
2 5 -

Compiler 1: - o -
Compiler 2 : - < y -
PP: r •••><••••
Comp/PP: —a— o ' o\ /

9 / 0̂
9 ^

□
/ P9/

2 0 - / / f /
15 - 0

10- q - - ^

5 -
 ̂ ̂ W \ A IT . —A0 -

c _“J n-----1---- 1---- 1 i i i i i
1 2 3 4 5 6 7 8 9

Rollback Distance
10

Time OH: GREP
(%)

Rollback Distance

Size OH: QSORT
(%)

0 1
f f f -f...f- " f ...T...M
2 3 4 5 6 7 8 9 10

Rollback Distance

Size OH: GREP
(%)

Rollback Distance

Figure 11: Run-time overhead and code size overhead: PUZZLE, QSORT, and GREP.

21

Time OH: LEX
(%)

Rollback Distance

Time OH: YACC
(%)

(%)

Rollback Distance

Size OH: LEX
(%)

(%)

Rollback Distance

Size OH: CCCP
(%)

Rollback Distance

Figure 12: Run-time overhead and code size overhead: LEX, YACC, and CCCP.

22

Time OH: TBL
<%)

Size OH: TBL
(%)

Figure 13: Run-time overhead and code size overhead: TBL.

5 Read Buffer Size Requirement

A practical lower bound and average size requirement for the read buffer are established in this

section by modifying the design to save only the data required for rollback. The study measures

the effect on the performance of ten application programs using six read buffer configurations with

varying read buffer sizes. Two alternative configurations are shown to be the most efficient.

Given a read buffer, rollback is accomplished by first hushing the read buffer back to the general

purpose register GPRF in the reverse order of which the values were saved. Provided that the depth

of the dual first-in-first-out (FIFO) read buffers are jV, redundant copies of the appropriate register

values are available to restore the register file given a rollback of < N.

The read buffer size requirement of 2N is the worst case. The buffer maintains the last N

register reads from the GPRF, assuring data redundancy for all values required. The read buffer

may also save data which is not required during rollback. Register reads that must be saved can

be determined at compile time. If this information is added to the instruction encoding (e.g., as

an extra bit field for source 1 and for source 2), then the read buffer can be designed to save only

those values required. As long as the required values are maintained for N cycles, a less than 2N

read buffer size design is possible.

Figure 14 illustrates a case in which all register reads do not have to be placed in the read

buffer. The register values (denoted value(rx)) which require saving are marked with an Since

23

rollback 4

rollback 2

Figure 14: Read buffer of size < 2N.

only the required values are saved, the read buffer total size can now potentially be less than N.

In this case, however, the instruction count must also be saved so that the value can be maintained

for at least N cycles. In the event that the read buffer overflows, the oldest value in the buffer

must be pushed to memory and a record kept so that during rollback the value can be retrieved

from memory. Given a dual FIFO depth of M , memory would serve the function of the remaining

N - M of the two FIFOs.

5.1 Read Buffer Designs and Evaluation M ethodology

Six read buffer conflgurations were studied. Configuration A l, shown in Figure 15, has a separate

FIFO for each source bus. Configuration A2 allows access to either FIFO from either source bus.

Configuration B1 contains a single FIFO and assumes that both source operands can be written into

the single FIFO within the same cycle. This latter split-cycle-save assumption is consistent with a

register file design that writes during the first half of the cycle and reads during the second half of

the cycle [19]. Configuration B2 assumes no split-cycle-save capability. Configuration C contains

a single level dual queue to absorb a simultaneous operand save and configuration D extends this

design to allow access to either queue from either source bus.

The read buffer was simulated at the instruction level. The s-code emitted by the IMPACT

C compiler [18] was instrumented with procedure calls to a simulation program containing models

for the six read buffer configurations. Branch hazards were removed by the compiler for a rollback

24

51
52

Config. A1

S I — r------
32 = 5

s i
S2 S

51
52

Config. A2

s i — ------
52 = 5

Config. B2 Config. C Config. D

Figure 15: Read buffer configurations.

distance of 10. Parameters such as which operands require saving in the read buffer were determined

at the post-pass level and instrumentation code segments were adjusted to pass this information to

the simulation program. Table 3 lists the ten6 application programs used in the evaluations. The

applications were cross-compiled on a SPARCserver 490 and run on a DECstation 3100 with read

buffer sizes ranging from 0 to 20 (note that 20 represents the maximum read buffer size of 2N).

5.2 Evaluation Results

5.2.1 Detailed analysis: QUEEN

Figure 16 shows changes in performance overhead (Cycles OH) for various read buffer sizes and

configurations running the QUEEN application. Looking at Figure 16, configuration A l, it can

be seen that significant performance impact is incurred even with a modest reduction in read

buffer size. Configuration A l was consistently the least efficient of the six configurations across

the ten applications studied.7 This is due to the fact that the dual FIFO’s are dedicated to a

single source bus. In many cases saving SI will cause an overflow because the SI FIFO is full, even

though there is room in the S2 FIFO. Configuration A l does allow for simultaneous saves of Si and

S2, given sufficient room in each, but this feature does not compensate for the latter inefficiency.

®The TBL application was not included in the read buffer size evaluation.
7 An efficient configuration is one with a low performance overhead given a small read buffer size.

25

Cycles OH Cycles OH
J (%) (%)

Figure 16: Cyde overhead: QUEEN.

Configuration A2 demonstrates the improvement gained by allowing either source bus access to

either FIFO. Configuration B1 was the most effident of the six configurations for the QUEEN

application. In this configuration a total read buffer size of 13 would produce zero performance

impact with a 35% reduction in read buffer size.

It should be noted that configuration B1 assumes that simultaneous saves of SI and S2 can be

handled within the same cyde. If this latter assumption is invalid, Figure 16, configuration B2,

shows that no less than 9.4% performance impact is achieved regardless of the read buffer size. The

“leveling off” of B2 is due to the bottleneck at the single FIFO entry point and not the depth of

the FIFO. The flat part of the curve shows the percent of instructions requiring simultaneous saves

of SI and S2 in the QUEEN application.

Figure 16, configuration C, shows how a single levd dual queue placed between the source bus

and the single FIFO can alleviate some of the bottleneck effects. The dual queue can absorb a single

simultaneous save of SI and S2, distributing the saves over multiple cycles. A nonzero minimum

performance overhead is still present due to cases in which the dual queue has not emptied before

the next simultaneous save occurs.

Figure 16, configuration D, shows the results of an improved queue structure which permits

saves from either bus into either queue. This configuration avoids stalls in some cases (e.g., S2

must be saved while the queue dedicated to S2 in configuration C is full and the other queue

is empty). Configuration D also has a nonzero minimum performance overhead but gives better

26

Table 4: Read buffer size evaluation summary.

performance than configuration C.

The simulation results for QUEEN show that configuration A1 is the least efficient and that

given the ability to do split-cycle-saves, configuration B1 is the most efficient. Without the split-

cycle-save capability, configuration D is the best of the single FIFO designs resulting in a minimum

performance overhead of 4.5%, and configuration A2 is the best of the dual FIFO designs resulting

in a 1.7% performance overhead with a read buffer size of 14. For configurations B l, B2, C, and

D, a total read buffer size of 13 is sufficient to maximize performance.8

5.2.2 Evaluation o f all application programs

Results for the other nine application programs are similar to those for QUEEN [17]. The differences

between the application results are the points at which the curve “levels off” (i.e., the buffer size)

and, in the case of configurations B2 through D, at what level the performance overhead stabilizes.

Table 4 summarizes measurements obtained for the ten applications given the two most efficient

configurations, A2 and B l. It is assumed for this study that minimal performance overhead can be

tolerated as a result of read buffer size reduction. For this reason, configuration comparisons are

made at read buffer size values which produce low values of performance overhead. Configuration

A2 does not level off like configuration D and does not rapidly approach zero like configuration

sTwo must be added to each read buffer size value in C and D to account for the queues.

27

Bl. For a better comparison of configurations A2 and B l, Table 4 gives the read buffer size value

where the performance overhead value drops below 3%. The read buffer size value is referred to as

RB.size and the performance overhead value is referred to as OHJevel.

It can be seen from Table 4 that the read buffer size requirement is roughly the same, per

application, regardless of the split-cycle-save assumption (i.e., comparing configurations A2 and

B l). The size requirement is application dependent - from 8 for WC, to 15 for QSORT and YACC.

The measurements show that a considerable reduction in read buffer size is achievable. Given the

split-cycle-save assumption and configuration B l, a minimum of 25%, a maximum of 60%, and an

average of 42% reduction was achieved. For configuration A2 and no split-cycle-save assumption,

a minimum of 20%, a maximum of 50%, and an average of 38.0% reduction was achieved. The

measurements indicate that care should be taken relative to the ultimate selection of read buffer

size. Given the steepness of the B l curve around the RB.size value, small decreases in size can

produce large performance overheads.

5.2.3 Read buffer size requirement summary

Results show that two read buffer configurations were the most efficient. A dual FIFO with source

bus access to each (configuration A2) and the single FIFO with the split-cycle-save capability

(configuration B l) consistently out-performed the other four configurations. There were moderate

variances between the buffer sizes required for minimum performance impact between the ten

applications studied and the performance stabilization value assuming no split-cycle-save capability.

Up to a 55% read buffer size reduction was achieved with an average reduction of 39.5% given the

most efficient read buffer configuration for the applications. It was also found that given the

split-cycle-save assumption and single FIFO configuration, significant changes in the performance

overhead result from small changes in the read buffer size. Our results indicate that care should be

taken in the final selection of read buffer size in any given design.

6 Concluding Remarks

This paper has presented a compiler-assisted multiple instruction rollback scheme which combines

compiler-driven data-flow manipulations with dedicated data redundancy hardware to remove data

28

hazards that result from multiple instruction rollback. Experimental evaluation of the proposed

compiler-assisted scheme with a maximum rollback distance of ten showed performance impacts of

no more than 6.57% and an average impact of 1.80%, over the eleven application programs studied.

The performance evaluation indicates lower performance penalties than for previous compiler-only

approaches or comparable hardware-only approaches. Six read buffer configurations were studied

to determine the minimum size requirement for general applications. It was found that a 55% read

buffer size reduction is achievable with an average reduction of 39.5%, but that additional control

logic to handle read buffer overflows may limit the overall hardware savings.

Future research includes application of compiler-assisted multiple instruction rollback recov­

ery to super-scalar, VLIW, and parallel processing architectures. Evaluations of compiler-assisted

rollback recovery applied to speculative execution repair would include modifying compiler trans­

formations to operate in a super-scalar and VLIW environment.

7 Acknowledgements

The authors wish to thank C.-C. Jim Li for his help with the compiler aspects of this paper, and

Scott Mahlke and William Chen for their invaluable assistance with the IMPACT compiler. We

also express our thanks to Janak Patel for his contributions to this research.

References

[1] M. S. Pittler, D. M. Powers, and D. L. Schnabel, “System Development and Technology
Aspects of the IBM 3081 Processor Complex,” IBM J. Res. Dev., vol. 26, pp. 2-11, Jan. 1982.

[2] Y. Tamir and M. Tremblay, “High-Performance Fault-Tolerant VLSI Systems Using Micro
Rollback,” IEEE Trans. Comput., vol. 39, pp. 548-554, Apr. 1990.

[3] C.-C. J. Li, S.-K. Chen, W. K. Fuchs, and W.-M. W. Hwu, “Compiler-Assisted Multiple
Instruction Retry,” Tech. Rep. CRHC-91-31, Coordinated Science Laboratory, University of
Illinois, May 1991.

[4] N. J. Alewine, S.-K. Chen, C.-C. J. Li, W. K. Fuchs, and W.-M. W. Hwu, “Branch Recovery
with Compiler-Assisted Multiple Instruction Retry,” in Proc. 22th Int. Symp. Fault-Tolerant
Comput., pp. 66-73, July 1992.

[5] L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, “Design for Fault-Tolerance in
System. ES/9000 Model 900,” in Proc. 22th Int. Symp. Fault-Tolerant Comput., pp. 38-47,
July 1992.

29

[6] P. M. Kogge, K. T. Truong, D. A. Richard, and R. L. Schoenike, “Checkpoint Retry Mech­
anism.” United States Patent, no. 4912707, Mar. 1990. Assignee: International Business
Machines Corporation, Armonk, N.Y.

[7] Y. Tamir, M. Liang, T. Lai, and M. Tremblay, “The UCLA Mirror Processor: A Building Block
for Self-Checking Self-Repairing Computing Nodes,” in Proc. 21th Int. Symp. Fault-Tolerant
Compute pp. 178-185, June 1991.

[8] J. E. Smith and A. R. Pleszkun, “Implementing Precise Interrupts in Pipelined Processors,”
IEEE Trans. Comput., vol. 37, pp. 562-573, May 1988.

[9] M. L. Ciacelli, “Fault Handling on the IBM 4341 Processor,” in Proc. 11th Int. Symp. Fault-
Tolerant Comput., pp. 9-12, June 1981.

[10] W. F. Bruckert and R. E. Josephson, “Designing Reliability into the VAX 8600 System,”
Digital Tech. J. Digital Equip. Corp., vol. 1, no. 1, pp. 71-77, Aug. 1985.

[11] G. L. Hicks, D. Howe, Jr., and A. Zurla, Jr., “Insruction Retry Mechanism for a Data Process­
ing System.” United States Patent, no. 4044337, Aug. 1977. Assignee: International Business
Machines Corporation, Armonk, N.Y.

[12] D. B. Fite, T. Fossum, and D. Manley, “Design Strategy for the VAX 9000 System,” Digital
Tech. J. Digital Equip. Corp., vol. 2, no. 4, pp. 13-24, Fall 1990.

[13] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI Testability,” in
Proc. 14 th Design Autom. Conf., pp. 462-468,1977.

[14] J. S. Liptay, “The ES/9000 High End Processor Design,” IBM J. Res. Dev., vol. 36, no. 3,
May 1992.

[15] A. V. Aho, R. Sethi, and J. D. UUman, Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[16] J. A. Bondy and U. Murty, Graph Theory with Applications. London, England: Macmillan
Press Ltd., 1979.

[17] N. J. Alewine, Compiler-assisted Multiple Instruction Rollback Recovery using a Read Buffer.
PhD thesis, Tech. Rep. CRHC-93-06, University of Illinois at Urbana-Champaign, 1993.

[18] P. Chang, W. Chen, N. Wärter, and W.-M. W. Hwu, “IMPACT: An Architecture Framework
for Multiple-Instruction-Issue Processors,” in Proc. 18th Annu. Symp. Comput. Architecture,
pp. 266-275, May 1991.

[19] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. San
Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

