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A genetic-algorithm approach to architectural-level 
justification of precomputed vectors1

Michael S. Hsiao and Janak H. Patel
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1308 W. Main Street

Abstract

Test generation is an NP-complete problem in which the bottle-neck of the task is in value 

justification. A new technique is proposed in which the architectural information is efficiently 

used while gate-level description is unnecessary to guide value justifications. Justification of values 

consists of excitation phase and propagation phase. Previous work done have always been cen­

tered around branch-and-bound backtracing techniques, ARGAJUS (ARchitectural-level Genetic- 

Algorithm-based Justification) takes the genetic-algorithms approach involving only forward com­

putation to solve this problem.

1This research was supported in part by the Semiconductor Research Corporation under contract SRC 95-DP-109, 
in part by DARPA under contract DABT63-95-C-0069, and by Hewlett-Packard under an equipment grant.



1 Introduction

There has been much research effort devoted to the test generation problem for combinational 

and sequential circuits in the recent years. Based on the stuck-at fault model, algorithms such 

as PODEM[l], D-algorithm[2], along with recent developments [3, 4, 5, 6] have been developed 

for the gate-level automatic test pattern generation (ATPG). Due to the hierarchical design style 

of modern VLSI circuits, high-level and hierarchical test generation have extended the gate-level 

ATPG to a new level of abstraction, using functional blocks as primitives in place of logic AND and 

OR gates[7, 8, 9]. With the functional information added to the global knowledge of the circuit, 

ATPG is no longer hierarchically blind to the upper-level information as did the gate-level test 

generators.

In addition to obtaining global high-level knowledge, other motivations for a higher level of 

ATPG are the desire to speed up the test generation process and reduce the complexity by hier­

archically dividing the circuit into smaller partitions or modules. Furthermore, while a gate-level 

ATPG may be used to generate test vectors for the individual modules in the circuit, a hierarchical 

high-level ATPG may later be used to justify the precomputed vectors for the module. Gate 

level structures are not needed for justifying the values at high level; instead, equivalent behavioral 

C-like functions are used to guide the justification and propagation of values. This enables testing 

of the module prior to the implementation of the entire circuit is finished.

Based on the forward and backward value implication as well as fault effect propagation algo­

rithms for the gate-level ATPG, new algorithms have been developed for higher level primitives so 

that the ATPG process can be accelerated. However, because most of these algorithms were ex­

tended from the D-algorithm or PODEM, the performance would be constrained by the properties 

of the search algorithms as well as the size of module partitions.

The proposed work, ARGAJUS (ARchitectural-level Genetic-Algorithm based Justification), 

deviates from the traditional branch-and-bound approach of requiring both forward and backward 

implications during excitation and propagation of the fault. Instead, only forward calculations are 

involved to justify precomputed vectors for the internal modules. Genetic algorithm is used to 

implement the value justification process. The circuits that have been used are full-scan sequential
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circuits. ARGAJUS, however, can easily be extended to general non-scan sequential circuits.

This paper is organized as follows: an overview of architectural-level test generation and value 

justification is presented in Section 2, previous work in high-level ATPG discussed in Section 3, 

a tutorial of genetic algorithms given in Section 4, description of the framework and algorithm of 

ARGAJUS explained in Section 5, followed by experiments and conclusion in Sections 6 and 7, 

respectively.

2 Overview of Architectural-level ATPG and Value Justi­
fication

Primary Inputs

Combinational Sequential
Logic Counter

Figure 1: Architectural-level circuit.

The concept of architectural-level test generation is illustrated in Figure 1. The module with the 

gate-level structure, namely M ux2, is the module under test (MUT). Hierarchical test generation 

requires gate-level structure only of the MUT while all other modules’ structure need not be present. 

Moreover, if the test vectors have been precomputed for the MUT, even the gate-level structure of
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the MUT needs not be present.

The vector that is either derived or precomputed for the MUT needs to be justified from the 

primary inputs and its corresponding fault effect propagated to the primary outputs at the archi­

tectural level. Value justification at the architectural level, however, is non-trivial and has not any 

standard forward or backward implication methods.

Random
Logic

Figure 2: Example of value justification on a module.

Take the situation given in Figure 2 as a simple example. In order to justify the two values 125 

and 60 at the inputs of the MUT, what values should the primary inputs X and Y  take? For the 

ADDER to have 125 as the the output, many possible combinations may exist (ie. (X=50, Y=75), 

(X=80, Y=45), etc). Together with the global constraint that the output Q, which depends on Y, 

of block B1 needs to be 60, the justification becomes more complicated due to data flow and data 

value conflicts [10].
Furthermore, unlike the simplicity of backward implication at the gate level, backward processing 

at the architectural level is much more cumbersome and complex. The user often has to hand-code 

the reverse behavioral function for the modules as in [10, 11]. Using the same example of the 

ADDER, the test generator may have to be given that X =  P  - Y  and Y  =  P  - X as its reverse 

functions, to be able to derive appropriate input values for an output of 125. Similarly, the reverse 

function for block B1 would have to be coded. These reverse behavioral functions for the modules, 

especially those that involve state machines, are complex and hard to derive automatically, thus 

often avoided.
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Therefore, the method that has often been proposed are the branch-and-bound techniques. They 

derive justification by reverse directional path search with forward behavioral function evaluations. 

Using the ADDER as an example again, in order to have an output of 125, random values are 

assigned to the inputs of the ADDER and hopefully to gradually converge to the desired value 125. 

The backtrack is continued through the predecessor modules until the primary inputs are reached. 

This method, however, does not overcome the problem of data flow and value conflicts described 

earlier.

In attempt to overcome these global constraints and expensive reverse behavioral functions, this 

paper proposes a genetic algorithms (GA) approach to the solution. A brief tutorial of GA will be 

presented in a later section. Before doing so, previous work in the area of high-level ATPG will be 

discussed.

3 Previous Work

[12,13,14,15,16] are some of the work that centered around branch-and-bound techniques. Brahme 

and Abraham [12] assumed a reverse device function already present for each module of the circuit 

to help backtracing through the circuit. Murray and Hayes [13] assumes the test vectors for the 

modules are precomputed and used the branch-and-bound D-Algorithm for value justification and 

propagation at the high level. Sarfert et. al. [14] implemented the non-trivial functions such as 

multiplexer, decoder, etc., but these functions still adopted single bit-level signals at the high level; 

thus speedup is limited. Kunda et. al. [15] took advantage of both high-level primitives and 

bit-vectors still using branch-and-bound approach. Anirudhan and Menon [16] derived symbolic 

constraints to help guide the test generation; however, these constraints are often computational 

prohibitive and computation becomes non-trivial as commented in [11].

Lee et. al. [10, 11], as briefly mentioned earlier, did not use the branch-and-bound technique; 

instead, an equation-solving technique using discrete relaxation Gauss-Siedal iterations is taken, 

similar to that of the SPICE technique. This technique, however, requires complex reverse be­

havioral functions and manually coded constraints for each module in the circuit prior to test 

generation.

For these previous work, the circuits were divided into data-path and control sections, and only
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the data-path portions were tested. In addition, they had an assumption that states represented by 

flip-flops are somehow extracted from the sequential circuit. However, these assumptions are not 

true in today’s hierarchical design in general. Modules such as controllers have flip-flops embedded 

in them, which are difficult to be separated. ARGAJUS, the proposed algorithm, does not make 

these same assumptions; instead, it handles both combinational and sequential modules, in either 

data-path or control section of the circuit, during value justification.

Regarding the usage of genetic algorithms in the area of test generation, GA’s have been used 

as a framework for test generation in [17, 18, 19]; however, [17] only handled gate-level combina­

tional circuits while [18, 19] handled gate-level sequential circuits. No hierarchical information was 

explored in these work.

4 A Tutorial of Genetic Algorithms

1 001101100011 1 111110001110

2 111011111000 2 001100101101

3 001100001110
------------\  3

111110110001

4 010011010010 selection \  4 111010101101

5 111110101101
crossover y  
mutation /  J 111111000011

6 111010110001 --------H /  6 000110101101

7 010010100101 7 010010001110

8 000010110111 8 001101010010
•
•
•

•
•
•

n 000111000011 n 111101100001

generation 0 generation 1

selection
crossover
mutation

m nonoverlapping 
generations

Figure 3: The simple genetic algorithm.

Figure 3 illustrates a simple example of genetic algorithm (GA). GA’s are composed of a population 

of n strings, or chromosome£, and three evolutionary operators, namely selection, crossover, and 

mutation [20]. The population size n will vary with the chromosome length; the longer the length, 

the more diverse representation of chromosomes the population needs to be, hence resulting in a 

larger population. Each chromosome, or individual in the population, is an encoding of a solution 

to the problem, and it has an associated fitness value which depends on the nature of the problem.

5



The initial generation may be generated randomly or provided by the user. A new individual 

in the succeeding generation is evolved by selecting two individuals from the current generation, 

crossing the two individuals, and mutating random bits in the resulting individual with a given 

mutation probability. In a simple GA, distinct generations are evolved each time and each new 

generation involves repeated processes of selection, crossover, and mutation until all entries in this 

new generation are filled.

To guarantee monotonic increase in the fitness between successive generations, one has to make 

sure selection is to be biased toward more highly fit individuals. The evolutionary process ends 

when either the number of generations has exceeded a preset number m  or the fitness has stopped 

to increase. Various selection schemes have been proposed [21, 22], but we will focus on the binary 

tournament selection. In binary tournament selection, two individuals are picked at random from 

the parent generation and the better-fit individual is selected. The two parents may or may not be 

replaced back into the parent population for the next selection.

Once two individuals are selected, crossover operator is used to produce two offsprings. Several 

crossover schemes have been studied, namely the one-point, two-point, and uniform crossovers. In 

one or two-point crossover, one or two chromosome positions are randomly chosen within the length 

of the chromosome, then the two parents are crossed at those points. For example, in a one-point 

crossover, if the position chosen was /, then the first offspring has an identical bit pattern up to 

position l as the first parent, and the rest of the bits are identical with those of the second. In 

uniform crossover, each position is crossed between the two parents with a probability, usually 

set to 0.5. As the two offspring are generated, mutation is done by flipping a random bit in the 

chromosome.

The fitness function is used to evaluate how highly fit an individual is. This function must be 

carefully chosen so that selection of individuals during the evolutionary process will guarantee a 

better-fit population of solutions in each successive generation. The fitness function is problem- 

dependent and is designed by the user.
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5 The ARGAJUS Framework and Algorithm

Figure 4 depicts a scenario of justifying the MUT’s input values as well as propagating the fault 

effect during one time frame of test generation. The circles in the figure represent other modules in 

the circuit.

PIO PII PI2 PI3 PSI PS2 PS3 PS4

Figure 4: Value justification in one time frame.

Unlike traditional approaches of separating the excitation of the MUT’s inputs and the propa­

gation of the fault effect into two phases, ARGAJUS computes both the value excitation and fault 

effect propagation simultaneously in one single phase. This will save much computation because 

in traditional two-phase evaluations, if the fault effect is not propagated to a primary output or 

a state in the second phase, the excitation derived in the first phase is inapplicable and needs to 

be recomputed. So in order to avoid expensive, complex backward behavioral functions and back- 

tracing algorithms, ARGAJUS proposes a forward-only justification algorithm involving GA and 

forward behavioral C functions for the modules.
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As will be discussed in the following subsection, long individual string lengths will need a large 

population size. So in order to avoid long individual string lengths, only those primary inputs and 

state busses that directly influence the excitation and propagation are to be considered. Using 

Figure 4, the primary inputs and previous state busses that directly influence the inputs of the 

MUT, together with the corresponding paths form a cone, defined as the influencing cone, or i-cone 

for short. In this figure, the busses at the input of the i-cone are PI1, PI2, and previous state 

signal bus PS1. Note that PIS is not included in the i-cone. Similarly, the primary outputs and 

state busses that the fault effect may propagate to, along with their corresponding paths, form the 

propagating cone, or p-cone. Busses POl, P02, and next state signal NS1 are at the boundary of 

the p-cone in this figure. There may be input paths to the modules in the p-cone which have not 

been included in the i-cone, thus secondary i-cones will be needed to assist the propagation of fault 

effects in the p-cone. Notice that there may be more than one secondary i-cone for the MUT. Paths 

formed from signals PIS and PS2 make up s-i-conel, and the path from PS3 make up s-i-cone2. 

Using these cones, the individuals in the GA framework represent the values of the primary input 

and the previous state value in the current time frame.

ARGAJUS starts by taking a precomputed vector for the module under test, and this vector 

becomes the target for justification. A GA having a random initial population of test vectors is used 

to evolve succeeding generations, and an architectural-level simulator is used to simulate the circuit 

at high level for each test vector with the corresponding fitness computed. Evolution of generations 

of the candidate test vectors is repeated until either a justifying vector is found or if the fitness of 

the best individual has ceased to increase. Below is the pseudo-code for the ARGAJUS algorithm:

for each module in the circuit do 
begin

for each vector justification do 
begin

while no justification is found and best fitness still increasing 
begin

evolve a new generation in GA;
update new fitness values for the new generation;

end;
end;

end;
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Details on the parameters of the GA are described in the following subsections.

5.1 Population size, individual length, and number of generations

A diverse population is needed to represent individuals of a given length to escape local maximums. 

For instance, with an individual length of L, the population size n should be sufficiently large to 

represent a diverse mixture of individuals. Shown below is the relationship between individual 

length and population size used by ARGAJUS.

Individual length 
less than 4 
between 4 and 16 
between 16 and 32 
between 32 and 64 
between 64 and 100 
over 100

Population size 
8 
16 
24 
32 
40 
48

Because population size is directly proportional to the individual length, it is essential to limit 

the individual length to be as short as possible in order to have shorter run times without loss of 

accuracy. The length of individuals is bounded by the inputs to the i-cone and s-i-cones for the 

MUT as discussed in the previous section.

The bound on the number of generations in the case where the fitness value reaches a plateau 

depends on the depth of the circuit. The depth of the circuit is defined as the number of levels from 

the primary inputs and previous states to the primary outputs and the next states. The deeper the 

circuit, the more levels it needs to go through to excite the value and propagate the fault effect. This 

generally would involve a greater number, perhaps also more complicated, of paths before arriving 

at the MUT and propagating the fault to the output. More generations would be needed to converge 

to the target goal value in this case. GA stops when no more fitness improvement occurs in this 

bound of consecutive generations. The minimum bound on the number of generations without 

improvement is set to 8 and the maximum set to 64. If a solution is found in the initial, or the 0th, 

generation, no more iterations need to be run.
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5.2 Fitness function

Fitness function should be carefully chosen such that improvement between successive generations 

may be guaranteed. Fitness value, in the case of ARGAJUS, is composed of two parts: 1. justi­

fication of the excitation of the MUT inputs and 2. propagation of the fault effect. Starting with 

justifying the input excitation of the MUT: The individual vector is applied to the circuit and a 

value is arrived at the input of the MUT via the i-cone as illustrated in Figure 5. The i-cone of 

the MUT, consisting of modules described by their behavioral functions, may be represented the­

oretically by a function g. With this function, the input vector X  of the MUT may be written as 

X  = g(Individual). If G denotes the target, or the objective, vector for the MUT’s input, then the 

fitness function would evaluate how close the vector X  is from G.

Individual

Figure 5: Computing fitness.

In the case that the function g is primarily arithmetic, it would make sense to have the fitness 

function related to the arithmetic distance:

fitness = 1 /  (arithmetic distance + 1)

where arithmetic distance is defined as the absolute value of the arithmetic difference between 

G and X .
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On the other hand, if the function g is primarily logical (ie. composed of mux’s, decoders, buffers, 

etc.), it would make sense to have the fitness function measure the logical distance between G and 

X . Logical distance is the count of bit differences between two vectors. For instance, the vectors 

101101 and 011001 have a distance of 3 because the two vectors differ in three positions, namely 

the first, second, and the fourth bit positions. Mathematically, the fitness function would be

fitness = L - d

where L is the length of an individual and d is the logical distance.

For general circuits, however, the modules that make up the function g are of both arithmetic and 

logical nature, composed of ALU’s, M ux’s, and Decoders. If either of the above fitness functions 

is taken to evaluate how well an individual fits the desired goal, the vector X  = g(individual) will 

not approach the vector G monotonically. The reason behind the non-monotonicity in improvement 

is the lack of commonly matched patterns among selected individuals. The parent vectors may give 

similar fitness but match uncommon bits in the target vector G. Hence crossing uncommonly 

matched patterns would likely result in an individual that matches yet another set of bit positions 

in G.

The solution to a good fitness function is one which will maintain the commonly matched 

pattern as well as increasing the common pattern length from one generation to the next. One such 

solution is to use a weighted-sum of the matched bit positions that takes the advantages of both 

the arithmetic and logical distances. With this fitness function, more weight is given to the more 

significant bit positions in the vector as in the arithmetic difference approach, and one bit-position 

is evaluated at a time as in the logical difference method.

total # of bits

ex citation .match =  ( ^2 ith bit value * 2l)/(2total * °* Wis — 1)
¿=1

The second and minor component of the fitness function in ARGAJUS is to measure how well 

the fault effect is propagated. In this case, more weight is given to fault effect propagated to the 

primary output than to those propagated only to a state flip flop. In addition, it doesn’t make any 

difference if the fault effect was propagated to merely one PO, or had it propagated to more PO’s, 

because detection at one primary output is sufficient to detect the fault. On the other hand, if
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the fault effect is not detected at a primary output, the more flip flops the fault effect reaches, the 

higher the probability that the fault will be detected in the next time frame.

propagation-match = (detection at PO) -f (ft of f f  s reached) /  (total ft  f f  s in p-cone)

Between value excitation and fault effect propagation, more emphasis is given to value excitation 

because the precomputed inputs for the MUT must be justified. Thus the combined fitness function 

used in ARGAJUS becomes

fitness = 10 * excitation-match + propagation-match.

5.3 Other GA parameters

The parameters used for selection and crossover are tournament selection and uniform crossover. 

Tournament selection, as explained earlier, selects the better individual of two randomly picked in­

dividuals. This selection scheme has shown to perform better than other selection schemes [19]. The 

various crossover schemes, on the other hand, have not shown significant difference in performance, 

thus uniform crossover was chosen for this work. The mutation rate is chosen to be the inverse 

of the individual length such that it is also less than 1/n, the inverse of the population size. It is 

important not to mutate more than 1 bit in an individual string, so to preserve the heredity from 

the parents. It is also important to keep the number of mutants in a population low, preferably 

less than one individual per population. Small mutation rates encourage exploitation in the current 

search space; however, higher mutation rates would encourage exploration across search spaces.

6 Experiments

Figure 6 shows the architectural block diagrams of three of the five circuits used for the experiment; 

and the architectural composition of all five circuits are shown in Table 1. Three of the circuits, 

namely Am2910, Mpl, and Div, are of both control and data-path structures, while PCONT2 and 

PIIR8 are data-path dominant digital filter circuits. Am2910 is a microprogram sequence controller; 

Mpl is a 16-bit two’s-complement multiplier using shift-store; Div is a 16-bit two’s-complement 

divider; PCONT2 and PIIR8 are both 8-bit digital filters. All five circuits are full-scan circuits.
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Am2910 Microprogram Sequencer
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12 

Output

PIIR8 filter: 8-Point infinite Impulse Response Filter
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Mp1:16-bit Two’s Complement Multiplier

Figure 6: Block diagrams of three architectural circuits
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However, the flip flops are not extracted from the sequential modules during value justification to 

preserve the sequential nature of the circuits.

Table 1: Architectural-level circuit information

circuit #  gates #  faults module composition
8,16-
bit

mux

8,16-
bit

buffer

8-bit
adder

8-bit
m ulti­
plier

random
comb
logic

reg counter random
seq

logic
Am2910 1054 2391 1 0 1 0 3 1 1 3
M pl 754 1708 4 1 1 0 3 1 0 1
Div 973 2147 3 2 1 0 5 3 0 1
PCO N T2 4290 11300 3 4 8 2 5 3 0 0
PIIR8 11437 29801 7 9 7 8 4 7 0 0

The columns of Table 1 show the circuit name, total number of gates, total number of faults, 

followed by columns describing the composition of the internal modules for each circuit.

Test vectors for each internal module are precomputed with HITEC, a gate-level test generator. 

These precomputed vectors are fed to ARGAJUS to be justified at the architectural level. Each 

precomputed vector may detect multiple faults, thus different fault effects may arise. Different fault 

effects need to be successfully propagated to verify detection of each fault.

Not all precomputed vectors are justifiable. Unjustifiable vectors are different from hard-to- 

justify vectors. Unjustifiable vectors may be due to inexcitable inputs or unpropagatable fault 

effects. Figure 7 shows two simple cases where a module input may be inexcitable. In the case of a 

fault-free Decoder, only one bit can take the value 1 at the output. Therefore, if the MUT’s input 

requires vectors with two or more 1 bits, such as 1001, 0101, etc. from the output of the preceding 

Decoder, this vector would be unjustifiable. Similarly, if the inputs of the MUT are fed by the 

output of a Control Unit, a vector would be unjustifiable if the vector is not one of the Control 

Unit’s possible output patterns.

Secondly, if the inputs of the MUT are justifiable but the corresponding fault effect cannot be 

propagated due to conflicts with the influencing cone value assignments, no justification would be 

found either.

The results will focus on all the justifiable precomputed vectors. Two runs per circuit were 

performed using two separate random seeds. Tables 2 to 6 show the results of the number of

14



(a) Not all ouptut patterns of the (b) Not all output patterns of the
Decoder are possible Control Unit are possible

Figure 7: Examples of unjustifiable values.

vectors justified and the number of generations used to justify them for each module n the five 

circuits. The columns in the tables display the lengths of the individuals in the GA, the i-cone 

depth, the number of collapsed faults in the module, the number of vectors generated by the gate- 

level generator HITEC, the corresponding number of vectors justified by ARGAJUS, followed by 

the maximum and average numbers of GA generations in the two runs of ARGAJUS. The length of 

the individual is the number of primary inputs and flip-flops in the primary and secondary i-cones. 

The i-cone depth shows only the depth of the primary i-cone.

As indicated by the results, most of the vectors in the three non-filter circuits are justifiable. 

In some modules the justification is so easy in which a successful vector is found in the initial 

randomly produced generation for the precomputed vector; these are the modules which have both 

the maximum and average number of generations equal to 0. In the filter circuits PCONT2 and 

PIIR8, however, some modules have many unjustifiable precomputed vectors. For the multiplier 

modules in these filter circuits, one of the two inputs is always supplied by a constant buffer as shown 

in the block diagram of Pcont2 in Figure 6. This architectural information, however, is blind to the 

gate-level generator during the precomputation of the vectors for it. As a result, the precomputed 

vectors become unjustifiable at high-level due to these constant inputs. These constants in the 

circuits may influence other modules in the circuit to have unjustifiable precomputed vectors as 

well.
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In terms of the number of generations ARGAJUS’s GA takes to find a justification, the results 

show that most justifiable vectors are found within a few generations on the average. In the circuit 

Am2910, the module Stack is the module with the hardest vectors to justify because it has a deep 

i-cone and shares the same inputs with the Stack Pointer module which are fed from the Control 

Unit. Many conflicts may, then, arise when justifying a vector for this module, thus requiring more 

generations for the GA to converge. For most other modules in all five circuits, the trend is that 

the deeper the influencing cone, the more generations it requires to find a solution. Nevertheless, a 

solution is found in a few number of generations on the average. This is different from the branch- 

and-bound approach in which its backtracking algorithm may involve exploration of many different 

paths.

Table 2: Number of generations for Am2910

m odule
name

indiv.
length

i-cone
depth

#
faults

#
HITEC
vectors

#
vectors

just.

#  GA generations
first run second run

max average max average

Reg C ntr 95 3 402 120 120 111. 4.31 53 4.03
Zero Det 107 3 17 34 34 19 10.24 19 10.59

M ux 107 6 294 44 40 256 18.57 176 16.97

Incr 107 6 232 42 42 30 1.95 31 1.91

PC 95 6 48 10 10 35 2.69 37 3.53
Stack P tr 104 3 294 54 49 26 4.06 26 4.00
Stack 47 6 1008 91 55 114 30.31 104 30.13

Instr PLA 107 3 198 58 54 64 8.58 56 8.39

buffer 1 31 4 6 6 5 0 0.00 0 0.00

buffer2 107 3 14 6 4 0 0.00 1 0.50

7 Conclusion

ARGAJUS, a new approach to value justification at the architectural level using behavioral functions 

and genetic algorithms has been presented. Complicated and cumbersome reverse functions for the
f

modules are unnecessary and no backtracing algorithms are used. Instead, genetic algorithms with 

good fitness functions are explored to solve the value-justification problem at high-level. Results 

indicated that convergence of value justification and fault effect propagation in the GA framework 

to be very promising. ARGAJUS can easily be adapted in an architectural-level ATPG environment
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Table 3: Number of generations for Mpl

module
name

indiv.
length

i-cone
depth

#
faults

#
HITEC
vectors

#
vectors

just.

#  GA generations
first run second run

m ax average m ax average

M REG 57 1 64 8 8 44 2.78 151 5.24
AREG 57 7 64 8 4 77 2.41 93 5.20
QREG 57 8 64 8 6 71 3.67 65 3.07
XOR 73 2 226 12 12 136 10.25 146 10.25
Passl 73 7 66 14 14 138 21.68 137 17.25
Pass2 73 4 66 14 14 93 6.38 116 7.37
ADDER 73 4 652 28 20 159 1.72 100 1.36
MR_Mux 41 3 130 20 19 149 10.62 143 11.82
AR_Mux 73 7 130 20 8 158 8.05 125 7.35
QR_Mux 73 8 130 20 20 129 8.36 142 8.85
QJn_m ux 73 4 130 20 20 146 8.47 113 7.82
C ntrl unit 66 8 230 75 75 32 4.83 54 5.17
Join 73 5 32 8 8 30 3.13 24 2.88
Invert 73 2 2 2 1 23 17.50 21 15.50

and easily extendible to multi-frame justification problem for justifying sequences of vectors.
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Table 4: Number of generations for Div

module
name

indiv.
length

i-cone
depth

#
faults

#
HITEC
vectors

#
vectors
just.

#  GA generations
first run second run

max average max average
Alu 67 2 952 86 19 57 0.74 67 0.91
Cntrl unit 81 0 52 22 18 0 0.00 0 0.00
Cmp 67 4 422 114 101 121 13.09 109 13.73
Incr 19 1 311 62 52 97 3.44 74 3.41
Muxl 67 3 130 20 20 107 8.70 89 9.02
Mux2 67 3 130 20 20 123 10.70 113 10.60
Passl 19 2 66 14 13 65 5.55 60 6.25
Pass2 19 1 66 14 12 54 4.81 71 4.93
Invert 19 4 2 2 1 17 15.50 22 16.50
RegA 67 4 64 8 8 28 1.70 27 1.66
RegB 67 4 64 8 8 23 1.28 20 1.27
RegC 51 4 64 8 0 - - - -

Zero det 67 2 22 44 44 30 22.35 42 22.95
buffer 1 67 0 20 4 2 0 0.00 0 0.00
buffer2 67 0 14 6 3 0 0.00 0 0.00
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Table 5: Number of generations for PCONT2

m odule
name

indiv.
length

i-cone
depth

#
faults

#
HITEC
vectors

#
vectors

just.

#  GA generations
first run second run

m ax average max average

nzl 33 1 2 2 1 0 0.00 0 0.00
nz2 33 2 4 4 2 0 0.00 0 0.00
nz3 33 2 4 4 2 0 0.00 0 0.00
nz4 8 3 2 2 1 0 0.00 0 0.00
nz5 33 3 2 2 1 0 0.00 0 0.00
reg l 25 9 32 8 8 12 0.63 15 0.94
reg2 25 9 32 8 8 15 1.53 21 1.06
reg3 25 9 32 8 8 39 3.25 34 1.47
m ult 1,2 33 4 3143 142 0 - - -

a d d l 33 8 633 40 9 62 1.76 68 2.03
add2 33 3 633 40 10 62 5.72 56 5.53
add3 33 4 633 40 14 16 0.10 16 0.14
add4 33 5 633 40 0 - - - -

add5 33 7 633 40 11 63 2.11 48 1.16
add6 33 8 633 40 0 - - - -
add7 33 6 633 40 1 10 10.00 7 7.00
add8 33 7 633 40 12 95 5.73 120 7.00
m uxl-3 33 6 66 18 0 - - - -

buffer 1 33 9 16 8 8 8 1.38 13 1.31
const 1 33 3 16 6 2 0 0.00 0 0.00
const2 33 3 16 6 2 0 0.00 0 0.00
z8 33 3 16 6 3 22 22.00 22 22.00
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Table 6: Number of generations for PIIR8

module
name

indiv.
length

i-cone
depth

#
faults

#
HITEC
vectors

#
vectors
just.

#  G A generations
first run second run

max average max average
nzl 65 1 2 2 1 0 0.00 0 0.00
nz2 65 2 4 4 2 0 0.00 0 0.00
nz3 65 2 4 4 2 0 0.00 0 0.00
nz4 65 3 2 2 1 0 0.00 0 0.00
regi 57 12 32 8 8 34 9.09 47 9.63
reg2 57 12 32 8 8 37 11.09 32 10.97
reg3 57 12 32 8 8 34 2.09 32 2.09
reg4 57 12 32 8 8 40 4.53 62 7.43
reg5 57 12 32 8 8 28 2.31 28 2.31
reg6 57 12 32 8 8 34 10.84 36 11.22
reg7 41 12 32 8 8 34 10.94 38 11.00
mult 1-6 65 4 3143 142 0 - - - -
mult7 65 4 3143 142 10 1 0.06 2 0.13
addi,2 65 5 633 40 0 - - - -
add3 65 7 633 40 6 52 0.65 35 0.44
add4 65 8 633 40 6 9 0.19 30 0.53
add5 65 9 633 40 7 31 0.65 50 0.93
add6,7 65 10 633 40 0 - - - -
muxl-7 17 4 66 18 0 - - - -
buffer 1 65 12 16 8 8 5 0.75 4 0.75
consti 65 3 16 6 1 0 0.00 0 0.00
const2 65 3 16 6 2 0 0.00 0 0.00
const3 * 65 3 16 6 2 0 0.00 0 0.00
const4 65 3 16 6 3 0 0.00 0 0.00
constò 65 3 16 6 2 0 0.00 0 0.00
const6,7 65 3 16 6 0 - - - -
z8 65 3 52 16 8 28 28.00 28 28.00
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