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ABSTRACT

The errors due to a faulty high speed multiplier are shown to be 

iterative in nature. These errors are analyzed in various aspects. The 

arithmetic coding technique is suggested for the improvement of high speed 

multiplier reliability. Through a number theoretic investigation, a large 

class of arithmetic codes for single iterative error correction are 

developed. The codes are shown to have near-optimal rates and to render 

a simple decoding method. The implementation of these codes seems highly 

practical.
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I. INTRODUCTION

General Background

A great deal of research has been done on the improvement of speed 

and reliability of computers» The fast arithmetic units, especially high 

speed multiplier and divider schemes, contribute significantly to the overall 

petformance of digital computers» For reliability, the. employment of signal 

redundancy via error detecting or correcting codes seems to be a promising 

approach (Avizienis, 1965) although other techniques, such as hardware 

redundancy, are also helpful.

Recent developments in carry-save adders and iterative adders 

speed up addition and subtraction. Recoding techniques, employing minimal- 

non-zero representation of operands, have been well adopted for speeding up 

the multiplication and division» Practical schemes for high speed multi­

plication such as the one proposed by MacSorley (1961) have been implemented 

in many computers.

In a high speed arithmetic unit, the multiplier is divided into 

blocks of two (or more) bits each and each block is multiplied to the multi- 

plicant to form partial sums» The partial sums are appropriately shifted 

and added in a multi-input parallel adder with minimum carry provisions»

The longer the blocks, the faster the multiplication, but the complexity of 

hardware, increases sharply with the size of blocks. The speed of such a 

multiplier has been analyzed by Freeman (1967).

Arithmetic Codes

The objective of this study is to find an arithmetic coding scheme 

to improve the reliability of the high speed multiplier. Arithmetic codes 

are designed to detect or correct errors in digital computations. One such
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error may change many output digits by propagations. Single error correcting 

codes are summarized in Peterson (1965), and multiple independent error 

correcting codes have been studied by Barrows (1966), Mandelbaum (1967),

Chang and Tsao-Wu (1968) and Chien, Hong, and Preparata (1968, 1969). Burst 

error correcting arithmetic codes have been investigated by Stein (1962),

Chien (1964), and Mandelbaum (1965).

Arithmetic codes are of the form AN, where A is a fixed integer 

called the generator. N is an integer in the interval (0, B“l), and B is 

the number of code words. If the code length is n, B is the smallest integer 

such that AB>2n . In the binary case, A is obviously an odd number. The error 

correcting capability of ordinary AN codes depends on the minimum distance 

of the code, which in turn depends on the generator A. A corrupted signal 

(correct signal plus error) modulo A is called the syndrome of the error which 

is the same as the error modulo A. Syndrome of an error, usually denoted as 

S, then leads to the correct decision of the error through the decoding 

algorithms.

The error pattern expected in high speed multiplier is quite different 

from either the multiple independent errors or the burst errors. The iterative 

errors we expect from the high speed multiplier scheme are multiple equally 

spaced errors. A number theoretic investigation will be used in analyzing 

these errors, synthesizing codes for such errors, and demonstrating an 

easy implementation and high efficiency of such codes.

Definition of Iterative. Error

If a faulty circuit occurs in the high speed multiplier, the re­

sulting error pattern in the output will be of the following special form.

First, since partial products are shifted by multiples of block length, 

the erroneous digit in each block will occupy the same relative position.
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Hence, it is called the Iterative Error. Second, since a faulty circuit 

(stuck on 0 or 1) contributes to either carry or borrow type mistakes but not 

both, the entire erroneous digits will be of the same polarity. Now let 

ra = the length of a block in bits, r = the number of blocks, and let E be 

a single interative error.

k r_l
Definition 1 E = + 2 E e.2m:L, where 0 < k < ra and e. = 0 or 1 for all i.

i=0 1 1

Of course, if e . = 0  for all i, there exists no error. It is also

feasible to extend the definition to cover multiple such error patterns

occuring at the same time; for instance, a double iterative error would be 
k1 r-1 . k„ r-1

E = + 2 E e.2mi + 2  E f.2mi, where 0 < k. < k0 < m, e. = 0 or 1 and 
1=0 1 -  1=0 1 1 2 * 1

f . = 0 or 1 for all i. Obviously any code that corrects all single iterative, 

errors will detect all double iterative errors and vice versa. The following 

code for the detection of single iterative errors is well known.

Theorem 1 The code with generator A, a divisor of 2m-l and A>r detects all 

single, iteration errors in r blocks of length m.

Proof It must be shown that E ^ 0 mod A for any error. Note that 2mi = 1
k mimod A for all i. Now, suppose E = + 2 E e .2 = 0  mod A. Since 2 and A

r-1 i=0 1 r-1
are relatively prime, we have E e. = 0 mod A. But 0 <  E e„ < r < A and

i=0 1 i=0 1
hence a contradiction. Q.E.D.

Example Let m = 6. The generators of single iterative error detecting codes

A = 3 if r<3
A = 7 if 3<r<7

A = 21 if 7<r<21
A = 63 if 2l<r<63

are:
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II. PRELIMINARY DISCUSSIONS

It follows from the definition that, to correct any single iterative

error, one must correctly determine the polarity of the error, the position of

the error, k, and the set of e'.s called the distribution of the error. For1
convenience, we introduce three notations, EqjE^ and Erespectively defined 

as

E = E = + 2k 2 e.21”1
0 _ i-0 1

i, r -1
E, = 2k E e.2ml 

1 1=0 1

and
r -1

E0 = 2 e .2
2 1=0 1

mi

( 1)

( 2)

(3 )

1cOne can easily verify the relation, EQ = + E = 2 E^, representing 

the error in the order of decreasing complexity» The three different aspects 

of error analyzed in this chapter will serve as a basis for the forthcoming 

derivation of error correcting codes.

Polarity of Error, +

First, let us consider the case for integers m = 2n + 1 and 

r <2( 2  -1) for some n > 1. We will find a simple method with which the 

polarity can be uniquely determined. The same method will be used for the 

general case later.

Lemma 1 Let m = 2n+l and r<2(2n-l) for some n>l, then S = E^ mod 2m -l has less 

than or equal to nl's if and only if the polarity of error is positive.

r -1
Proof Let Sv = E_ = 2 e.2mi mod 2m -l. Since e'.s are either 0 or 1, we have

n m i=0 ^ 10<S <2(2 -1)<2 -1. The maximum number of l's S can have is therefore n.
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Now S 7/ = E^ = 2^2 mod 2m -l is merely a cyclic shift of S* modulo 2m-l, which 

does not affect the number of l's in S^. Thus, if Eq = E^, S has less than

or equal to n l's. But if Eq = -E^, -S = 2  -1-S ' which can not have less 
than 2n+l-n = n+1 l's. Q.E.D

With the above discussion in mind, consider now a general case where 

there is no obvious relationship between m and r. Let 4 be an integer less 

than r, then r = s4 + t where s > 1 and 0 < t < 4. Clearly,

r-1 4-1
E = E e .2 = E f .2

2 1=0 1 i-6 1
mi,mod 2 - 1 (4)

where 0 < f^ < s + 1 for all 0 < i < t and 0 < f < s for all t < i < 4.

The Hamming weight of an integer I is defined as the number of l's 

in the binary expression of I. Let w(x) be the maximum Hamming weight of I 

for all 0 < I < x. Notice that w(x) is a non-decreasing function of x.

Lemma 2 w(x) = [log2(x+1)],

n  I 1

Proof Clearly w(x) = n if 2 -1 < x < 2 -1 for some n > 1. Thus

n < log9(x+l) < n+1 and n = [log (x+1)] = w(x) Q.E.D
m  0 1

Define M(x) as the Hamming weight of x mod 2nu'-l. M(x) = M(2x) 

for any k 3 because 2^ amounts to a cyclic shift of l's and 0's modulo 2 ^ - 1  
Rewriting Eq. (4), we get 0 < M(E^) = M(E2) < w(s+l)t + w(s)(4-t) and hence

MiE'i) = w(s)4 + {w(s+l) - w(s)}t

fr 1Lajdenotes - the integer part of a

(5)
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Theorem 2 Given m and r, if Z < r satisfies the condition, M(E,) < k  mZ ,1 max
then M(Eq ) < \  rnZ if and only if the polarity of error is positive.

ffro°f If Eq = E^, the theorem follows from the hypothesis. If Eq = -E^, 

then M(-E1) = mZ - M(EL) > mZ - M.O^) > % mZ . Q.E.D.

The condition M(E,) < \  vaZ is not as involved as it might seem.i max °
In fact, lemma 1 is a special case of this theorem. We know that s = [y] and

t = r mod Z . Also by lemma 2, w(s+l) - w(s) = 1 if and only if s = 2n-2 for

some n > 1. It is equal to zero otherwise. Given these facts, the table of

maximum r 1 s (r _ ) for which Z satisfies the condition,, is not difficult.

Note that M(E.) is a non-decreasing function of r and hence Z and r are L max max
mutually non-decreasing functions of each other. From Table 1, one finds the

smallest Z that satisfies the condition M(E-.) < % m$ via the first r > ri max max —
in the row of given m. The reason for the smallest Z is to maximize the rate 
of the code (see the section III).

Position of Error, k

We begin with the assumption that the number of error digits,
r- 1

d = E e is given as well as E 1 mod 2m-l. Let S = E. = 2kd mod 2m-l. We 
i=0 1 l

now derive a condition on r such that given d (d < r, necessarily) k can be

uniquely decided from S.

Define T to be the smallest integer such that 2XT = T mod 2m-l for 

any integer x in the range 0 < x < m. Then, there must exist a least positive 

integer, y, such that x=y satisfies the above relation for T.



Table 1. r for max m and i

m ji 1 2 3 4 5 6 7

3 2 4 7 9 12 14 17

4 2 5 8 11 14 17 20

5 6 12 19 25 32 38 45

6 6 13 20 27 34 41 48

7 14 28 43 57 72 86 101

8 14 29 44 59 74 89 104

9 30 60 91 121 152 182 213

10 30 61 92 123 154 185 216

11 62 124 187 249 312 374 437

12 62 125 188 251 314 377 440

13 126 252 379 505 632 758 885

14 126 253 380 507 634 761 888

15 254 508 763 1017 1272 1526 1781

16 254 509 764 1019 1274 1529 1784
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inLemma 3 y is the largest divisor, Xq , of m (Xq < m) and T = (2 -1)/(2 -1)

Proof By the division algorithm, m = ay+b where 0 < a and 0 < b < y. Now, 

2mT = 2a^+^T = 2^T - T mod 2m-l. This implies that b = 0 and m = ay, for y 

is the. least positive integer for the above relation to hold. Therefore, 

2y-l divides 2m-l and

0 mod 2m- 1 
2y-l

m x0Clearly T = (2 -1)/(2 -1) is the minimum when Xq is the largest divisor of
x0m (Xq < m) . We must now show that y = xn for this T. First, (2 ~1)T = 00

>mmod 2 -1. Suppose y < Xq , then

2m-l 2m-lT = s 0 modx02 U-1 2y-l

which is a contradiction because y < x^ implies that (2m-l)/(2 ^-1) < 

(2m-l)/(2y-l). Q.E.D.

1c mTheorem .3 Given d and S = 2  d = mod 2 -1, k can be uniquely decided if 

and only if r < T.

X q 2x q
Proof If r > T, there is an error with d = T, for which 2 T = 2 T =
3x0 m
2 T... mod 2 -1, which results in a multiple solution for k. However, if

r < T, and 2kd = 2k d mod 2m-l, then (2k"k -l)d = 0 mod 2m-l and 0 < k-k" < m. 

Since d < r < T, k -k* = 0 by the definition of T. Furthermore, 2kd = 0 mod 2m~l 

only when d = 0, i.e., when there is no error. Q.E.D.
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Table 2. T for given m

m T m T m T

3
32 - 1  = 7 8 42 + 1  = 17 13 132 - 1  = 8191

4 22 + 1  = 5 9 26+23+l = 73 14 27+l = 129

5 25-l = 31 10 25+l = 33 15 10 52 + 2 + 1  = 1057

6 23+l = 9 11 2L1-1 = 2047 16 28+l = 257

7 27-l = 127 12 26+l = 65
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Distribution and the Number of Error Digits, d

In the previous section we have assumed that d was known» Now, 

we derive a condition on r such that d and the set of e^s, namely the 

distribution, can be uniquely decided. We begin with a lemma which can be 

proved easily.

Lemma 4 If (m,r) = 1, the mapping from the set, {2mi|0 < i < r-l}, to the 

set, {2 |0 < j < r-l}, defined by 2 — 2^ mod 2 -1 is one to one and onto.

Theorem 4 Let (m,r) = 1, E l  f  0 and S s e  mod 2r-l. S = 0 if and only if 

e^ = 1 for all i, and when S f  0, S has d l's. Furthermore, can be 

uniquely decided given k and S.

Proof By lemma 4, each term 2 maps to 2 mo<̂  r in one. to one correspond- 
kence, and 2 amounts to a cyclic shift which does not alter the number of l’s

in S. Now given k and S ^ 0, 2 S mod 2 -1 can be uniquely mapped back to

E2» digit by digit, from which we obtain E^ If S = 0, E^ =
r-lE nHll1 • Q.E.D.
i=0

III. CORRECTION OF SINGLE ITERATIVE ERROR

Now we are ready to synthesize codes for single iterative error 

correction. First, the A^-code is shown with its error correcting ability 

demonstrated by a simple decoding algorithm. We then present some variations 

of this code. The rate (efficiency) considerations and a comparison of these 

codes are given with examples.
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A^-Code

As it was mentioned earlier, a successful correction of error 

depends on the correct decoding of the polarity, position, and distribution 

of error. A^-Code is designed to do all these in the above order. Thus, 

from the syndrome we decipher Eq + = + 2kE .

Generator of the A^-code is defined as A-̂  = LCM[ ( 2 ^ -1) , (2r -1)] , 
where r < T given in lemma 3, (r,m) = 1 and 4 is the smallest integer satisfy­

ing the condition given by theorem 2. When m is given, r < T (one may use

Table 2) and (r,m) = 1, one finds 4 from Table 1. The number of codewords 
2rnr 2mris B = [—£-■] + 1 «  ——  for large mr.

Theorem 5 The A^-codes correct all single iterative errors

Proof (Decoding Algorithm) Let a corrupted output be K = AN + E^ and let 

h(x) denote the Hamming weight of the integer x. A = A^ in this case.

Step 1) Let the initial syndrome be Sq £ K = AN + E^ mod A. If 1i(Sq mod 

2 -1) < % mi , the polarity is positive and otherwise negative.
(By theorem 2.) If Sq = 0, there is no error, (By theorem 3)

Step 2) Let S-̂  = Sq if the polarity is positive and let S^ = A - S^ if the 

polarity is negative. In either case S^ = E^ mod A.

Step 3) Let S^ = s E^ mod 2r-l.

h(S2) = d or, if S2 = 0, d = r (By theorem 4)
,m vm ,m4Step 4) Let S^ - mod 2 -1. Since 2 -1 divides 2 -1 for any 4 > 1,

_ .k >mS3 = ^1 = E]_ = 2 d mod 2 -1. Starting with d from the previous step,

3
. . 4

form 21d mod 2m-l (cyclic shift of d) , When 21 d = S«, k = i/

(By theorem 3)
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Step 5) Now - 2 kS2 mod 2r-l (cyclic shift left), 
r- 1

If S2 = 0, E = Z 2mi.
i-0

If S f  0, let

, r -1
2 S„ mod 2r-l = Z a.21

2 i-o 1

r-1 (— i mod r)m
E = Z a.2 m 

i=0 L

(a. = 0,1)

(By theorem 4) QoE,D0

One of the many interesting aspects of this code is that the decoding 

is very simple, which is quite unusual for ordinary arithmetic codes. In fact, 

the decoding requires essentially three shift registers of length m,r and mr 

each, plus some basic combinatorial threshold elements and a few constant- 

divisor divider circuits.

A2-Code

Suppose a faulty multiplier has its kth position stuck either on 0

or 1, Assuming all inputs occur with equal frequency, the probability that

this fault will actually contribute to an error digit in any particular block

is very close to one half. Therefore, the probability that the entire blocks
r-11c mi rwill contain the error digits, i»e,, EQ = + 2 Z 2 , is (1/2) . Define
i=0

this type of error as a solid error, then the probability of the occurrence

of a solid error is less than 1% if r > 7, or less than 0,1% as r > 10, It

is apparently desirable to have a code that corrects all but solid iterative

errors if a higher rate is achieved,

A modified code for given m and r is defined by the generator 
niX rA2 = [ 2 -1), (2 -1)], where \  is the same as the l  for the A^-code with m
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and r-1. Obviously A, = An whenever 4 = X , i.e., for given m, no r in

Table 1 equals r-1. For example, if m = 6 and r = 20, X = 4 = 3; but if

m = 6 and r = 21, 4 = 4 and r = 4-1 = 3 (from Table 1). Hence, from now on,

we assume that r-1 = r for given m in Table 1 and X = 4-1, when the A«-max 2
code is used.

Theorem 6 The A^-codes correct all but solid single iterative errors and 

detect solid error.

Proof Since for non-solid errors, d=r-l is the maximum number of digits in 

error, given X satisfies the condition for theorem 2. Thus Sq f  0 and = 0 

is the only case when the polarity is undecidable, but the solid error is 

detected. The rest of the cases follow the same decoding steps as the 

A^-code. Q.E.D.

The A9-codes are especially effective when the block length, m, is
2 2 n _ i  n

even. Notice that if m = 2n (for some n > 2), T = -----  = 2 + 1. But (r,m) = 1
2n-l

forces r to be odd < T, and so r = 2 -1 is a likely candidate for the number

of blocks. We mention here that r = 2n-l and m = 2n are relatively prime for

most cases except when n = 6, 12, 18, 20 or 21, etc. The first column of

Table 1 shows, and it is easy to prove that, for m = 2n and 4 = 1 ,  r x = 2n-2,

which makes r = r  + 1 = 2n - 1 be indeed suitable for A_~codes.max 2

A^-Code

Even though the discussion in this section can be applied to any m, 

we limit the scope to the even m cases. The objective is to remodify the
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modified codes so that the resultant code will correct all the single itera­

tive errors including the solid error - Define the generator of remodified 

code as ° A , where A ' is called the remodifier factor. Of course,

it is desirable to have a smaller A' for a higher rate. We redefine A* as
r-1 . _mr ,

an integer such that the solid error E = £ 2rai = — — — f  2X (-E) mod A* ,
i=0 2m-l

for any x.

Theorem 7 The A^-codes correct all single iterative errors»

Proof When a solid error is detected by the syndrome modulo A^, the syndrome 

modulo A * uniquely reveals the polarity. Hence, all the decoding steps are 

applicable. Q.E.D.

The reason behind employing remodified A^-code instead of the 

original A^-code is to gain a higher rate if possible. This requires that 

log2A <m 0 Because, for given m and r = r + 1, A- «  2 A0 for most cases 

(see example 2). Finding such A* for arbitrary m may be very difficult. 
However, possible candidates are 7, 23...etc., i.e., those numbers x for 

which y f  -2~Iy mod x for any j and y # 0. A simple test shows that 7 fails 

to be an A"'; for a solid error of m = 2n and r = 2n-l, becomes 0 mod 7.

Lemma 5 A ' =2 3  is a remodifier for m = 2n (n = 3,4,5,7,8,9).

o o
Proof First, log^ < 5 < m given. Second, for any y ? 0 mod 23, y f  2Xy
mod 23 for any x, because {2 mod 23 = prime} forms two mutually complementary

r-1
cosets. We now have to prove that £ 2mi 0 mod 23 for all the given m's.

i=0
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Since r = 2n-l, this sum becomes (2mr-1)/ (2™-1) = (2^n^  ^ -1)/(2^n-l) .
11 nSince 23 is a factor of 2 -1, it is sufficient to show that 11 and 2n(2 -1)

are relatively prime for the given n's. But the smallest 2n-l divisible by

11 is when n = 10 which is larger than all the given n values. Q0E„D.

Lemma 6 Let p be a prime. If -2 (but not 2) is primitive modulo p,

(2rm-l)/(2m-1) # 0 mod p and log2p<m; then A * = p is a remodifier for any 
m and r .

Pxroof Let (2 -1)/ (2 -1) = x ^ 0 mod p. It is well known that if e is the 

least positive integer to satisfy 2 -1 = 0  mod p, e divides p-1 , but since 

2 is not a primitive root of p, e is a proper divisor of p-1. Suppose 

x = -2 x mod p for some y. Let y = ae+b with a> 0, 0<b<e. If b = 0, then
y —2 = 1 mod p and we arrive at a contradiction that x = -x mod p. If b f  0,
then x = -2 x mod p or 2 = -1 mod p. Thus 2 = 1 = (-2) ^  mod p, but e

divides 2b and so e = 2b < p-1. This is a contradiction on the hypothesis 

that -2 is a primitive root of p. Q.E.D.

Rate Comparison and Examples

Rate or efficiency of a code is defined as

r = number of code words in bits
code length  ̂ ^

We will first derive a sphere packing upper bound on the rate of single 

iterative error correcting codes. To correct all the errors, the syndrome 

of each distinct error pattern must also be distinct. This sets a lower 

bound on A, the generator. The total number of distinct single iterative
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errors is

2 *rn° (2 -1) + 1 (7)

£>-)- l 1
For large m and r, this rapidly approaches m2 , Hence A > m2 , or the 

number of codewords is less than or equal to 2mr/m2r+ ô From Eq, (6)

log (2im7 m2r+1) . 1+log m
R < ---------------  = 1 - --------- —
— mr m mr (8)

This is a strict upper bound on the rate for large m and r, This shows that 

the upper bound approaches 1 - ^ for large r or 1 for large m and r.

Now consider the rate of A^-code, for A^ and A^ codes are already

improved versions of the former. At the worst case [ (2^-1) , (2r-l)] =
•£>

(2 -1)°(2 -1), Hence, the rate is lower bounded as

R > mr - (ml+r) _ _ l  _ l
mr m r (9)

which is an encouraging result. Although l  is related to m and r, it clearly

shows the tendency that the. lower bound for fundamental code approaches 1 - —m
for large r and also approaches 1 for large m and r, which is exactly how the 

upper bound behaves. To be precise, let us estimate j&/r. Recall theorem 2

and Eq, (5), For large m we have 2w(s) «  m. But w(s) log2 [j] «  log 

«  — and so l  «  r°2 , Thus, for large m, Eq, (9) becomes
’2 ji

R > - — - 2"m/2 «  1 - - m m ( 10)

This demonstrates that indeed the A^-code is nearly perfect. We formally 

state this as a theorem.
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Theorem 8 The rate of the A^-code assymtotically approaches the upper 

bound for large m.

Further comparison of the codes will be presented in the following 

two sets of examples. Some typical values for m and r are chosen. In 

Examples 1, we show A^-codes with odd m ’s. Examples 2 compares the 

generators A-^ A^, and A^. In both cases, the approximate rate and the 

upper limit is presented for a verification of theorem 8, in Table 3.

Examples 1 A^-Codes for m = odd

(m ,r) i
a) (3,2) 1 A 1 = [(23-l),(22-l)] = (23-l)(22-l)

6) (5,18) 3 Ax = [(215-l),(218-l)] = (215-l)(218-l)/(23-l)

c) (7,13) 1 A l = [(27-l), [213-1)J = (2'-l)(213-l)

d) (9,58) 2 A x = [(218-l),(258-l)] = (218-l)(258-l)/3

e) (11,62) 1 A3 = [(2U -1),(262-1)] = (2U -1)(262-1)

Examples 2 Comparison of different codes for m = even. All the examples

here have l  = 2, X = 1, m = 2n, r = 2 ° - 1 .

(6,7)

f)

(8,15)

\  = [(212-1)(27-1)] = (212-1)(27-1) 

A2 = t(26-l)(27-l)] = (26-l)(27-l)

A3 = (26-l)(27-l)-23 

A l = (216-1)(215-1)

A2 = <28-l)(215-l)

g)

\

fA 3 = (28- l ) ( 2 l5 - l ) -23 

<A1 = (220- l ) ( 2 31- l )

: ( lo ,3 i )  <| A2 = (210-1 )(2 31-1)

h) 1’ A3 = (210-1 )(2 31- 1 ) “23

i ) (14,127) 14 17
A3 = (2 -1) (2 -1).23

j ) (16,255) A3 = (216-1 )(2 255-1)«23

k) (18,511) A = (218-1 )(2 511-1)°23
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Table 3.

Comparison of actual rates with the upper bound^"

A^-Codes, odd m A3'-Codes, even m

(m r) Rate Upper
Bound (m r) Rate Upper

Bound

a 3 2 0.333 0.333 2 f 6 7 0.60 0.748

b 5 18 0.65 0.763 g 8 15 0.78 0.842

c 7 13 0.78 0.815 h 10 31 0.85 0.886

d 9 58 0.86 0.879 i 14 127 0.918 0.926

e 11 62 0.89 0.903 j 16 255 0.931 0.936

k 18 511 0.943 0.945

Calculated by Eq. (8) except for (m,r) = (3,2)
l
For small m and r Eq. (7) is used for the bound R <

,mr
log2([^-]+l)

mr
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IV. CONCLUSION

The likely errors due to a faulty high speed multiplier are shown 

to be iterative in nature. These errors are analyzed in various aspects.

An arithmetic coding technique to correct these iterative errors have been 

suggested for the improvement of reliability.

It was shown that this class of codes are nearly optimal in rates. 

The A^-c.odes form the basic scheme from which the modified A2_codes and 

the remodified A^-codes are derived. It is shown that the A2_codes generally 

achieve higher rates than the A^codes, at the small expense of not being 

able to correct a specific solid error. The A -codes, on the other hand, 

correct all the single iterative errors with usually higher rates than the 

A^-codes. The latter two codes are especially useful for even block length.

The decoding is shown to be very simple. The encoding consists

of pr emu It ip ling either the. multiplicand or the multiplier by the fixed

generator A. Also, possibly losing a few bits, we may drop the LCM in the
itgenerator so that A = (2 — 1) (2 -1) which is very easy to multiply . One

jpj*

can also multiply (2 -1) to the multiplicand and (2r-l) to the multiplier 

to achieve a faster encoding time. The implementation of these codes seem 

to be. very promising.
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