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ABSTRACT

The momentum transfer collision frequency of thermal electrons with 
neutrals in a decaying plasma established in helium-krypton and helium-xenon 
mixtures of known proportions were measured by microwave interferometer at 
gas temperatures of ~  200 to 600°K. The energy dependences of the momentum
transfer cross sections of electrons with krypton and xenon atoms deduced 
from these measurements are best represented by:
(^(u) = 6.56 X 10" 15 - 2.79 X 10“14u^ + 3.14 X 10_14u and
1.91 X lo ^4 - 8.30 X 10 14u 2 + 9.40 X 10 ^4u cm^, respectively. Here u is 
the electron energy in electron volts. Mobilities of Kr+ and Xe+ in helium 
and in their respective parent gas have also been determined, from the 
characteristic time constants of the electron density decay measured in the 
afterglow in the mixtures at low pressures, to be: M-(Kr+ in He) =
2.02 + 1.2 cm^/volt-sec, |i(Kr+ in Kr) = 1.01 + 0.06, |i(Xe+ in He) = 18 + 1.1 
and |i(Xe+ in Xe) = 0.55 + 0.03 at ~  300°K. A study of the pressure dependenc 
of the characteristic time constants of the electron density decay at fixed 
ratios of krypton to helium and xenon to helium concentrations yields the 
three body conversion frequency of atomic krypton and xenon ions to their 
respective molecular ions.
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I. INTRODUCTION

The employment of microwave technology in studying the fundamental 

atomic collision processes in a weakly ionized gas is well known.^ Never

theless, questions have been occasionally raised as to the assumption of 

thermal equilibrium of the electron gas with the neutrals at times in the 

afterglow the experiment was performed. In some cases, evidences showed that 

the electron temperature did sustain at a level above that of the neutrals at 

times several hundred microseconds to a few milliseconds after removal of the 

excitation source. Since almost all physical parameters determined by micro- 

wave methods are related directly or indirectly to the electron temperature, 

it would be appropriate that the electron temperature is measured experi

mentally. In the present communication, the complete thermalization of the 

electrons with the neutrals in He-Kr and He-Xe mixtures is demonstrated by a 

comparison of the microwave noise emitted from the plasma with that of a 

standard noise source as detected by a ruby maser. One of the reasons for 

mixing krypton and xenon with helium is to utilize the helium as a "recoil" 

gas for the electrons. Quantitative and qualitative descriptions of various 

collisional processes are then obtained from the measurements made in the 

afterglow established in such mixtures. The problems of interest are:

(1) the energy dependence of the momentum transfer cross sections of electrons 

with krypton and xenon atoms at energies below Ramsauer minimum; (2) the mo

bilities of thermal Kr̂ ~ and Xe~*" ions in helium and in their respective parent

gas at room temperature (i.e. ~  300°K); (3) the conversion frequency y ofconv
atomic krypton and xenon ions to molecular ions according to the three-body

2process
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Kr+ Kr
+ + He -» + He

Xe+ Xe

and (4) some qualitative evidence in supporting a suggested process of molecu

lar krypton ions formation, through collisions of high-lying, short-lived 

excited atoms with ground state atoms,

by Hornbeck and Molnar.

II. EXPERIMENTAL APPARATUS
4The gas handling system is of standard high vacuum type baked at

then introduced into the discharge tube, and the pressure is measured by a 

(capacity) null reading m a n o m e t e r T h e  gases used are mass spectrometer 

controlled grade supplied from Linde Air Products Company. The discharge 

tube is made of thin wall (0.7 mm thick) pyrex tubing of 22 mm outside dia

meter and 72 cm long with 6 cm tapering to a point at each end. The tube 

is housed coaxially in a one inch by one inch square waveguide which is con

nected to the standard x-band waveguidev system through two six inch tapering 

sections. The gas is ionized by a variable high voltage dc pulse of several 

thousand volts and seven microseconds duration repeated at a frequency of

31.2 cycles per sec. The electrodes of the discharge tube are made out of

Kr" + Kr -* Kr* + e+

3

~  400°C for more than 24 hours prior to each sequence of experiments. An 

ultimate vacuum of the order of 2 to 6 X 10 ^  mmHg is attained. Gases are
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high purity titanium for its good gettering property for the atmospheric
6gases. Electron density variations and the effective electron collision 

frequency u for momentum transfer are measured by microwave interferometry 

in the decaying plasma created in helium-krypton and helium-xenon mixtures.

A schematic diagram of the microwave circuitry used in part of the experiment 

is shown in Figure 1. A low power 2 (iw) , 9.03 or 8.53 kMc/sec probing 

signal (continuous or pulsed) is employed to measure the phase shifts and 

attenuations on the microwave due to the presence of plasma. The temperature 

of the discharge tube is monitored constantly by three copper-cons tantan 

thermo coup1e s.

III. MOMENTUM TRANSFER COLLISION CROSS SECTION

Margenau has shown that the electrical conductivity a of a weakly

ionized gas under the action of a low level rf field is given by
3f

, • nect = a + jct. = - -—  c r J i 3m
s£ L

v + j(JU
,3d v (1)

where cr̂  and o\ are the real and imaginary parts of ac« m is the electron 

mass, e the electron charge, n the electron density and v the electron velocity. 

(JD is the radian frequency of the applied electric field. v = ^  Nm ^  (v)v is
l l

the momentum transfer collision frequency of the electrons witli all species
tilin the plasma. Here N^ is the density of the i—  species. In the case of 

2 2 1
0) »  v and the electron velocity distribution function to be independent

of the proportion of the gas mixture and furthermore f (the zeroth ordero
spherical harmonic expansion of the electron velocity distribution function) 

to be maxwellian,

2nea = —  r mou2 Ve f f ( 2 )
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where

- V + V + l? . err em em ei (3)
1 3

is the effective electron collision frequency for momentum transfer, uem
are the electron collision frequencies with gas species 1 and 2 , re

spectively, and
N

em.
m4 9 h m 
—  (-) (-S_) 
3 V  VkT 'e

5/2 „=o 1 r 2 I
(v)v exp [- 

U i e
(4)

i = 1, 2. k is the Boltzmann's constant and the electron temperature.

(v) is the momentum transfer collision cross section of electrons with i
 ̂ g

species of atom and is defined as

. th

(v) = J (1 - cos0)I(e,v)dQ

where 1 (0 ,v) is the differential scattering cross section for a scattering
9angle 0 and relative velocity v. is the electron-ion collision frequency

and is represented by10

3 3/2N. 3.32 X 10 T '
u • = 3.59 — i n  -*■ — — r—

61 T 3 /2 N.%e l
(5)

where N. is the ion density. In our experiments, v . /v is of the order i ei eff
of 1 to 10$ in the afterglow in which u __ is measured. If we define veff iem
V + v , then it is easily shown that en̂  emg y

em em
■ t v -

em p 
s

Ps
+

em2

P3
( 6 )

where p is the total gas pressure and is equal to the sum of the partial 

pressures px and p2 of the mixtures. All pressures are hereafter referred 

to 0°C. Therefore, the ratio of measured electron-molecule collision frequenc)
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V /p, and v /p9 are determined from 
en  ̂ 1 emg

to the total gas pressure is a linear function of fractional concentration 

of gas 1 at a fixed temperature, 

the intersections at P1 /Pt = 1 and 0 , respectively. (v) can then be de

termined experimentally from Eq (4) should there be enough data of /pt

as a function of temperature is provided.

IV. ION MOBILITIES AND CONVERSION FREQUENCIES

The main electron loss process in the afterglow of a low pressure,

weakly ionized noble gaseous discharge is ambipolar diffusion. ^  For the

present experiments (helium-krypton or helium-xenon mixtures of various

proportions) the ions created in the active discharge are believed to be

atomic krypton or xenon ions when suitable breakdown voltage pulse is em- 
12ployed. This is supported by the spectral examination of the discharge

in He-Kr mixtures with a Bausch and Lomb Littrow No. 5402 Spectrograph which

has a dispersion of 7.7 A/mm at 3670 A and 45.5 A/mm at 6700 A. It is found

that no band spectra of any kind and only atomic krypton lines are presented.
3

Hornbeck and Molnar noticed in their mass spectrometric studies of molecular

ions in noble gases that Kr^ and Xe* ions are much more difficult to be

formed than He^, Ne"̂ , and A^ through a process suggested by them. At low
12gas pressures and careful breakdown conditions, the molecular ion formation

3process proposed by Hornbeck and Molnar can be ignored. However, another 

mechanism seems to be possible for their formation. That is, Kr+ or Xe+ ions, 

while traversing through the mixture to the walls in a decaying plasma, ex

perience not only elastical scatterings from helium and their parent gas atoms, 

but also may change their identities to molecular ions through three-body

collisions
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Kr+

Xe+

Kr

+ + He
Xe

Kr+

+ He
Xe+

(7)

The differential equations governing the decaying plasma are

dnA 5772T7” = D V  n. - u n.at aA A conv A (8a)

Î'M V -72
i T  = Da«V  "" + Vconvn* (8b)

and n = nA + n̂ (8c)

Here electron decay through recombinations has been neglected in this case
13for its ineffectiveness. nA and n̂  are the number densities of the atomic 

and molecular ions, respectively. and are the ambipolar diffusion

coefficients of the atomic and molecular ions in the mixtures and v conv
Cc0nvPiPs t̂ le atomic to molecular ion conversion frequency according to

reaction (7). The conversion coefficient C is a constant and is differentconv
■f* -f-for Kr than for Xe . The set of equations is solved for the boundary condi

tions of zero densities for all constituents at the walls.

The solution for the electron density is

n(t) = nA (0)

+ r nA
["u C°) + -

Vconv r t 1
1 1 exp " ta
ta tm

(0)uconv t .
1 exp (9)

where
aA + v

A conv ( 10)
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and

A
( 11)

A is the characteristic diffusion length of the discharge tube. Since p

is proportional to the square of the gas pressure, pconv 'M J
-1

conv
< < 1

at low pressures. This together with the initial condition 1̂ ( 0) ~  0 (see

section V) and the fact that tm < ta (due principally to the lack of charge

transfer process of the molecular ions with the neutrals) gives the final

slope of j in n versus t plot to be - ta It is easy to show from Eq (10)

that the product of ambipolar diffusion coefficient D of electrons to thea
partial pressure of helium in the helium-krypton mixtures, for example, takes 

the following form

D p(He) = - r -~ - ----- . + A2C p2 (He)p(Kr) (12)a 7.63 .. p(Kr) u,(Kr^ in He) conv  ̂ '
p(He) ^(Kr-1- in Kr)

where p,(Kr in He) and (̂Kr"*" in Kr) are the mobilities of atomic krypton 

ions in helium and in krypton, respectively, referred to 0°C and 760 mmHg 

gas pressure. p(Kr) and p(He) are the partial pressures of krypton and

helium in the mixtures. In deriving Eq (12), Einstein's relation14

n _ kT 
D - e H

and Blanc's law15

1 = P(Kr) 1 + p(He) 1
^ Pt |i(Kr+ in Kr) Pt |i(Kr+ in He)

have been employed. Here jj, is the mobility of Kr+ ions in helium-krypton 

mixture. Mobilities of Kr ions in helium and in krypton and the proportion

ality constant C in the conversion frequency can be determined from a conv J
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best fit of D p(He) as a function of p(Kr)/p(He) according to Eq (12).cl
Similar treatment can be applied in the case of helium-xenon mixtures.

V. RESULTS AND DISCUSSIONS

One of the crucial parameters in studying atomic processes in a
16decaying plasma by microwave is the electron temperature. Radiometer 

has been used in the past to study the electron temperature decay in an after

glow. Evidences'*"^ showed, in some cases, that electrons did sustain at a 

temperature much higher than that of the gas even several hundred microseconds

in the post-discharge. To bring down the electron temperature to that of the
18gas quickly in the afterglow, Biondi employed helium as a "recoil" gas.

That helium gas is added to krypton and xenon in the present experiment is 

just for this purpose. The electron temperature relaxation after termination 

of the breakdown pulse in the present experiment is observed by a ruby maser 

operating at a pump frequency of ~  21 kMc/sec and a signal frequency of 

8.53 kMc/sec to monitor the noise emanating from the discharge tube. A 

standard noise source is used for comparison. The maser has a gain of ~25 db.

A typical example is shown in Fig. 2. In this case, a plasma is created by 

a high voltage pulse in helium-xenon mixture of 54.66/o xenon and a total pres

sure of 4.83 mmHg. The background gas temperature is 303°K. Fig. 2b is the 

picture of the transmitted microwave signal. It remains cut off up to 450 p,sec 

in the afterglow. In this time interval, no reflection is detected and the 

absorptivity of the plasma is unity. A direct comparison of the noise emitted 

by the plasma with a standard noise source, as shown in Fig. 2a, indicates 

that the electron temperature has reached that of the gas approximately
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300 |j,sec after termination of the pulse. Fig. 2c is the microwave inter

ferometer trace from which the decay of electron density is calculated.

It is shown in Eq (6) that the ratio of total measured electron- 

molecule collision frequency to the gas pressure is a linear function of 

the fractional concentration of either gas in a binary mixture at constant

temperature. This is confirmed in the experiments of He-Kr and He-Xe mix-
2 2

tures at 200 and 303 K, under the condition of (̂ j) »  1 (usually (:jy) ~  100

in the present experiment). The results are shown in Figures 3 and 4. From

the extrapolated values of Vem/pt at p(Kr)/pt and p(Xe)/pt = 0 and 1, the
— 19momentum transfer collision probability P of electrons with He, Kr, andm

Xe atoms are calculated at these two temperatures. They are: 18.9, 54.7,

and 151 cm2/cm3, respectively, at 303°K and 18.9, 77.5, and 221 cm2/cm3,

respectively, at 200°K. Thus, within experimental accuracy, P^CHe) and hence

Q^Cv) for He is a constant in this range. This fact agrees with what has
20been found by other investigators and is utilized later on in deducing 

Vem(Kr)/p(Kr) and Vgm(Xe)/p(Xe) from ^eff/pt measured at higher temperatures. 

The temperature dependence of Uem(He)/p(He) is taken to be

V (He)  ̂ ,
- 7  - \ = 1.56 X 10?T ^p(He) e

-1 „ -1  sec -mmHg (13)

By subtracting electron-ion (as calculated from Eq (5)) and electron-helium 

(as calculated from Eq (13)) contributions from v , the resulting momentum 

transfer collision frequency of electrons with Kr and Xe atoms as a function 

of electron temperature is shown in Figures 5 and 6. The velocity dependence 

of the momentum transfer cross section (^(v) is determined from a best fit 

to the experimental points according to Eq (4). In so doing, Q^(v) is 

assumed by a three term polynomial of the following form
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Q^(v) = A + Bv + Cv2 cm2

The solid curves on Figures 5 and 6 are so
-15A = 6.56 X 10

-22B = -4„70 X 10
-30C = 8.87 X 10

found with 
2cm

cm-sec
2sec

for krypton and
-14 2A = L91 x 10 cm

-21B = -1.40 X 10 cm-sec
-29 2C = 2.67 x 10 sec

for xenon. Then the energy dependence of these cross sections can easily 

be shown to be

(^(u) = 6.56 X 10" 15 - 2.79 X 10"14u^ + 3.14 X 10"14u cm2 (14)

for krypton and

(^(u) = 1.91 X 10" 14 - 8.30 x 10"14u^ + 9.40 X 10_14u cm2 (15)

for xenon. Here u is the electron energy in electron volts.
21Recently, Pack, Volshall and Phelps (PVP) have deduced Q^(u) from 

their electron mobility studies in Kr and Xe. Their results, together with

the present one, are shown in Figures 7 and 8 . In which PVP's notations
22 23 are preserved. O'Malley has adopted "atomic effective range formulas"

24to analyze Ramsauer-Kollath (RK) scattering experiments. In this analysis, 

the parameters of the theory are so chosen to fit RK experimental cross sec

tions. These calculations were extrapolated to zero energy and are shown in 

Figures 7 and 8 . All agree fairly well with each other in shape but not in 

absolute value. The disagreements can be attributed partly to the approxi

mations and experimental errors in each case.
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In Section IV it is shown that at low gas pressures and suitable 

breakdown conditions the ultimate inverse characteristic time constant of 

the electron density decay is given by Eq (10) from which Eq (12) is de

rived. Since the second term to the right hand side of Eq (12) is propor

tional to the third power of the total gas pressure, and can be neglected 

at very low gas pressures, i.e.,

Dap(He)
Te ____

7 „63
1 +I

U,(Kr+ in He)______
p(Kr) u(Kr+ in He)
p(He) f  .|i(Kr in Kr )

(16)

|i(Kr in He) and (̂Kr"*" in Kr) are then determined from the best fit of the 

measured quantities D p(He) and p(Kr)/p(He) at a constant temperature accordingcl
to Eq (16). This is shown in Figure 9 and the results are; |i(Kr+ in He) =

20.2 + 1.2 cm /volt-sec and p,(Kr in Kr) = 1.0 + 0.06 at 303°K. Figure 10

shows the results in the case of He-Xe mixtures, the best fit gives;

p,(Xe+ in He) = 1 8 + 1 . 1  and ^(Xe* in Xe) = 0.55 + 0.03 at 303°K.

The theoretical calculated mobilities of thermal energy ion relevant

to the present experiment, together with the values determined by other

authors, are presented in Table I. The theoretical values of |i(Kr+ in He)

and |j,(Xe in He) are calculated by the use of Langevin's theory in the polari- 
25zation limit. The dielectric constant for helium adopted here is that

26recommended by Maryott and Buckley.

A close examination of Eq (12) suggests that, for a fixed percentage

of krypton (or xenon) in helium, the measured values of D p(He) should vary
2linearly with p (He)p(Kr) should there be the three-body molecular ion forma-

2tion process. The slope of D p(He) versus p (He)p(Kr) yields the value ofcl
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2C A , and it is independent of the krypton percentage in helium. Figure 11 conv
presents the results in four different krypton percentages, i.e„, 1.7, 4.3,

5.97, and 14$. The slopes are fairly well the same, and Cconv so determined 
-2 -1is (76 + 4) mmHg sec and

v = (76 + 4)p(He)p(Kr)conv —

Similar studies are also made for Xe+ to Xe* conversion. Typical results
-2 -1are shown in Figure 12. In this case, C = (140 + 9 )  mmHg sec and ® conv —

V = (140 + 9)p(He)p(Xe)„conv ~
27Similar to the gas-kinetic conditions in two-body charge or exci

tation transfer collisions, it is reasonable to believe that the lesser the 

amount of energy carried away by the third body in reaction (7), the higher

the probability of molecular ion formation. Then the larger value of Cconv»
-j- "f1 -f"which is proportional to the probability, for Xe to Xe£ than Kr to Kr^

indicates that the amount of energy carried away by He is smaller in the

former than in the latter case. Should this be so, the binding energy of

Xe* would be smaller than that of Kr*. This has to wait a further study in

appearance potentials in these gases to confirm it. Nevertheless, observa-
3tions by Hornbeck and Molnar seemed to suggest the same explanation. They

noticed, in their mass spectrometry studies of molecular ions formed by

electron bombardment in noble gases, that the current peaks of Xe* to Xe* is 
4 + + 44 X 10 to 1 while Kr to Kr^ is 2 XlO to 1. The apparent more difficulty

+ +in Xe^ formation than Kr^ through (taking xenon as an example)

k
e + Xe -* Xe + e (17a)

Xe^ + Xe -* Xe* + e (17b)
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could be explained as that Xe (stands for xenon atom in a high-lying,

short-lived excited state) required for the reaction must be very close to

the ionization limit if the binding energy of Xe^ were very small. The

excitation cross section is known to drop off rapidly in general as the total
27quantum number increases. Therefore, their finding seems to be in harmony

with C determined here, conv
We have also studied qualitatively the molecular ion formation processes

3
proposed by Hornbeck and Molnar [see Eqs (17a) and (17b)]. We observe (see 

Figures 13, 14) that the characteristic time constant of the electron density 

decay is a strong function of the excitation light in the active discharge, 

while keeping p and the relative concentration of Kr unchanged. Qualitatively, 

the brighter the excitation light (indicated in Figures 13 and 14 by the 

higher breakdown voltage pulse setting) the smaller the characteristic ambi- 

polar diffusion time constant. Since electrons have already relaxed back to 

the gas temperature at times in the afterglow the measurements were made and 

high order modes of diffusion are believed not to exist at such late times 

in the afterglow. The only feasible explanation offered to such phenomenon 

is the formation of molecular ions through processes (17a) and (17b). Xe^ 

or Kr^ ions are known to have a higher mobilit^ than Xe+ or Kr+ in their

parent gases. The light intensity in the active discharge is interpreted
k k

as an indirect measure of Xe or Kr concentrations. No detailed correla

tions between the distribution of line intensities and the molecular ion 

concentrations are pursued at the present time. Further mass- and optical 

spectrometry studies are necessary.
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Table ID Comparison of Experimental and Theoretical Values
+ + 2 of Kr and Xe Mobilities (in cm /volt-sec).

a. Présent data
b. R0 N 0 Varney, Phys. Rev. j$8 , 362 (1952).
c. M 0 A 0 Biondi and L 0 M„ Chanin, Phys. Rev. 94, 910 (1954).
d. I. B0 Bernstein (unpublished) 0

e. A. Dalgarno, Phil. Trans. Roy. Soc. London A, 250, 426 (1958).
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Figure 1. Schematic diagram of one of the microwave circuitries 
employed in the present experiment.
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Figure 2. Noise and microwave measurements in He-Xe mixture of 54.6% Xe and 
a total pressure of 4.83 mmHg. (a) Direct^comparison of the noise emitted
by the decaying plasma with that from a standard noise source of 300 K.
(b) Microwave signal (8.53 kMc/sec) transmitted through the decaying plasma.
(c) Microwave interferometer trace.



Percentage of krypton

Figure 3. Uen/Pt versus percentage of krypton in helium-
krypton mixtures at 200 and 303°K. The straight 
line behavior is predicted by Eq (6) in the text 
under the condition of ( ^ )2 «  1. The two ordi
nates of V /p at 0 and 100% Kr give u (He)/p(He) em t em
and u (Kr)/p(Kr) at the temperatures indicated, em
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Figure 4. Uen/ P t versus percentage of xenon in helium-xenon 
mixtures at 200 and 303°K. The straight line be
havior is predicted by Eq (6) in the text under the 

■y 3condition of (— ) «  1. The two ordinates of v /p^ 
cjd em t

at 0 and 100% Xe give Vem(He)/p(He) and vem(Xe)/p(Xe) 
at the temperatures indicated.
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Figure 5. v^CKr)/p(Kr) versus T^. The various symbols on the graph
represent the values of i?em(Kr )/p(Kr ) deduced from different
fractional krypton concentrations: • from Fig. 3, * 41.6%
Kr, © 50.1% Kr, + 58.8% Kr, A 73% Kr. The solid curve is the
best fit to the experimental points according to Eq (4) and

2assuming 0 (v) = A + Bv + Cv .
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Figure 6 . vem(Xe)/p(Xe) versus Tg. The various symbols on the graph
represent the values of v (Xe)/p(Xe) deduced from differentem
fractional xenon concentrations: • from Fig. 4, + 50% Xe,
© 58.8% Xe, □ 73.4% Xe, A 84.9% Xe, * 93% Xe. The solid curve
is the best fit to the experimental points according to Eq (4)

2and assuming 0 (v) = A + Bv + Cv .
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Figure 7. Momentum transfer cross section of electrons with krypton atoms. 
The result Of"the present" experiment is compared with those 
found by PVP and the theoretical calculations by O'Malley.
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Figure 8 . Momentum transfer ciross section of electrons with xienon atoms.
The result of the present experiment is compared with those 
found by PVP and the theoretical calculations by O'Malley.
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Figure 9. D p(He) versus percentage of krypton in helium-krypton mixtures.
cl

The solid curve is the best fit according to the functional 
form of Eq (16). From which, it is determined that: jj,(Kr+ in He)
=20.2— 1.2 cm^/volt-sec and jj,(Kr\+ in Kr) = 1.01—0.06.
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Figure 10. Dp(He) versus percentage of xenon in helium-xenon mixtures.a.
The solid curve is the best fit according to the functional form 
of Eq (16). From which, it is determined that: p,(Xe+ in He) =
18 + 1.1 cm2/volt-sec and |i(Xe+ in Xe) = 0.55 + 0.03.
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2D p(He) versus p (He)p(Kr). The slope of which is proportional
cl

to the conversion frequency reaction (7).
Figure 11.
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Figure 12. 2D p(He) versus p (He)p(Xe). The slope of which is proportional
cl

to the conversion frequency of reaction (7).



P
h

a
se

 s
h

if
t 

(in
 

3
.2

6
x1

0
 

ra
d

ia
n

s)

30

Figure 13. Electron density decay for two different breakdown voltage
strengths in helium-krypton mixtures. The settings indicate 
the relative strength.
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Figure 14. Electron density decay fro two different breakdown voltage 
strengths in helium-xenon mixtures. The settings indicate 
the relative strength.
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