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ABSTRACT

A synchronous detector based on the polarity coincidence principle

has been constructed and tested. The theory of operation is discussed with

special emphasis on the influence of correlation between samples and the

influence of error sources. Details of the construction are presented and

test results are discussed. The present instrument works in the range of

20 c/sec to 20 Kc/sec and is capable of measuring signal-to-noise ratios as 
-4low as 10 . It has been in constant laboratory use for several months and 

has proven to be a very reliable tool for the synchronous measurement of 

small ac signals.
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Introduction:

Synchronous detectors have received widespread application in various 

branches of experimental physics for the measurement of small signals in the 

presence of noise. Among the various schemes the Polarity Coincidence 

Detector (PCD) occupies a unique place because several outstanding features 

make it particularly suited for the measurement of very small signal-to- 

noise ratios.

Despite its simplicity and reliability, it has not yet found its way 

into laboratories as a standard research tool. It is the purpose of this 

report to summarize and extend the theory of operation of a PCD, and discuss 

the design and performance of a working model.

Historical Background:

Polarity coincidence schemes for signal detection have been proposed 

by several authors. Faran and Hills (1) calculated the cross correlation 

function of two waveforms after discarding all amplitude information. They 

constructed a detector where coincidences between two waveforms were produced 

after hard limiting. The output of the coincidence circuit was averaged by 

passing it through a low pass filter.

Melton and Karr (2) proposed a PCD-scheme where the waveform under 

consideration is sampled at appropriate time intervals and polarity coinci­

dences are recorded. They restrict their consideration to the use of uncor­

related samples which is an unnecessary restriction. It leads to an 

underestimation of the statistical error.

Wolff, Thomas, and Williams (3) have shown that the polarity coinci­

dence detector is nonparametric with respect to the "false alarm rate."
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Bitzer (4) applied the polarity coincidence scheme in the space domain 

to phase quantization in connection with radar antennae.

In the following, the principle of operation of a PCD will be 

presented in a form suitable for its use as a synchronous detector for 

general laboratory purposes.

Theory of Operation:

A signal of known frequency may be embedded in noise. In the PCD- 

scheme the waveform of signal + noise is sampled with short pulses at the 

signal frequency. Coincidences are recorded whenever the sampled waveform 

and the sampling pulse have the same polarity (+ or -). With pure noise 

present, on the average half the samples will result in a polarity coinci­

dence if we sample, i.e., with positive pulses.

In the presence of a signal, slightly more or less coincidences will 

be recorded according to the phase relationship between signal and sampling 

pulses.

In order to arrive at a quantitative description let us assume a 

signal \\J2 • sin (out + cp) in the presence of narrow band Gaussian noise,

where x and x are Gaussian random variables distributed according to

x(t) = xgsin cut + xc cos cut (1)

s c
2

p(xs) ----- ------  exp (-----®r)
V 2tt • CT 2a

2 ( 2 )

P(xc)
1 A 1 X C x' ---- exp (- — 2>

J2.J] • CT 2cr
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The sum of noise + signal can be written

x(t) = (xg + û /2«coscp)sin(J0t + (xc + \\J2 sincp) *cosU)t

= X sinttt + X *cosU)t s c

Xg and X£ are also distributed normally, and their joint distribution is

P<Xs’V  = 1 t— -r exp (- 
2tto  y

2 2 X + X ' s____ jĈ_
2 CT2

We now sample in phase with X and X , respectively. A coincidences c
is recorded whenever the waveform exceeds a certain threshold x+ (for posi* 

tive coincidences). The fraction of sampling pulses that results in an 

in-phase coincidence is given by

n£2 1   2.
o 2na“ 0-»n . 2 J exp

(X -uv/̂ sincp)' 

2a2 h  L

(X -t̂ /2coscp)
expl -

2a'
dX

■ i [ 1 - erf |— “  - ^£220
P*/2 CT /

(3)

In an analogous way we find for sampling 90 out-of-phase
t

.a(£Q?. = I fl - erf i—  - — inq
“o 2 1  W 2 c

nQ is the total number of samples in a given time,

]  ■

x+ and x+ ' are usually different because different channels are involved.

For small values of the argument (small signal-to-noise ratios and

hard limiting) the error function can be expanded, erf(x) «  —  , and we obtain
V tt

i
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^  = I  fx  -  .  » coJ  1
no 2 L V ^ a / 7  a J  J

^ 2 2 2 . 1 n  . 2_( V  . » s. \ 1
no 2 L ^ \ a j 2  c 7  -1

(4)

nNLet —  be the relative count of the noise alone n
° nN nsignal part by subtracting —  from ——

o o

We then obtain the

1 u----cosm
^  CT

n(0) - nN (0)

(5)
, n(90) - n (90)1 u N----smcp = ---- n

/s/ttct n0 V [n(0)-nN (0)3 + [n(90)-nN (90)] * (6)

We notice that the measurement does not yield the signal itself but 

the signal-to-noise ratio. This has the great advantage that fluctuations 

in the noise level affect the measurement only slightly. The signal can 

still be measured as accurately as the noise is known, independent of how 

small the signal-to-noise ratio may actually be.

The response of the PCD is linear for small enough signal-to-noise 

ratios. The signal phase does not have to be known if the data are processed 

in the described way.

Statistical Error of the Measurement:

If all samples were statistically independent, the mean error of n 

counts is An =
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Due to the finite bandwidth of the noise, the samples are not 

statistically independent and the error will be larger than ̂ n.

The variance of the sample means is given by (5)

2 n-1
at = 2- + - Y  (1 - -)R(kt„).M n n n 0

k=l
(7)

a is the variance of the process being sampled. R(t ) is its correlation

function, N is the total number of counts. t^ is the time between samples. 
CTM I An I__ = -u=i— u ¿g the relative error of the measurement. We can write this (7 n

An
n +  (1 -  ^ P (k to>

k=l
(8)

wi
n /_ \

th o ( t )  = n'7n( the normalized correlation function.p^' ' R(0)
The correlation function for clipped signal + noise has been derived 

by Davenport (6) and Galejs (7). If V is the clipping level we have

2  00 00

r ( t )  = h  I  I  k  t>N2pN (T)3 v V osn T- (9)
1=0 k=0

is the variance of the noise before clipping.

Pn(t )  =
V T) .is the normalized correlation function of the noise

before clipping.

1 for 1 = 0

2 for 1 > 0
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jfck
17 b S ^

------ 2̂ r F( 2 ); i+1; ■ 5i\ r (-y 1) 2

F is the confluent hypergeometrie function,
2b = a + (for hard limiting a -» 0) ,

2
» = ii— ̂ 2 * 

ctn

For small signal-to-noise ratios | «  1, and we may expand the hypergeometrie 

function
F ^  -i k+l

2(X+1) 5 •

Retaining only linear terms in | we obtain 

A = 0:
R0 = V2 v  i pN^T^nk k^L kT L b J

k=odd r2d- f)
— C-2)with r(l-fck) = ^ tt ” 375... (2s-1) ; k = 2s+1

= 2 ^ r ( P  +  % - Sa - + 1  +  . . . )
IT L^PN 2 3 2 4 5 '

3 1 3
?(PN + 2 Pn + 2 4

Pn

pn5 +

2V r PN—  j^arcsin pN - § - =
V1_pN

i  = 1:

R, = 2V
9k k 2 Pm 5V  -L ^

L  k! 9,1 K  -77™ r (2 • 2^
COS U) To

k=even

_ JL k. _ _  (-2;
r(2 " 2' ^ l - 3 * 5 - ••(2s-l) ; k = 2s
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R, = “1 TT ? [X + %PN2 + I ‘4‘PN4+ " ' ]  COS V
2V2 ?

TT
7 ^ 7

COS 0) T .  O

Up to linear terms in I* we obtain finally

,2 _  cosO) t  -  p.
x 2V r . . _ o' "N1

R(T) = ~  Larcsin pN + 5 T ' ; ~ r  J-
PN

(10)

For a concrete example let us consider two different spectral 

densities of the narrow band noise. Acu is defined to be the total amplitude 

bandwidth of the spectral density.

1. A lorentzian
S

S((B) = ------- 9----- T (11)
1 + 1 2

((0-C0 )' O
2 A co

2. A gaussian
_ (co-co ) «

S(co) = Sq exp -8 • 4n2 --- -—  •
L Aco J

1. Lorentzian

S+ (co) = for co > 0
1 + 1 2

Curacy
A 2 Aco

S (co) = for a) < 0
1 + 1 2

(urHooy
A 2 Aco

+UU
RN(t )  = 2tt J S ^ e ^ d c o
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We write approximately

RjjOO = *[J S+ (o))eiUJTd(jü + J Sjœ)eiujTdu)} = R+ + R_ .

The integrals are readily evaluated by contour integration
*'hm

pn (t) = 6 ‘V  * cos v - ( 12 )

We obtain

P(t ) = arcsinj^e
_ Act) « T 

2n/3 cos 0) T o ]
2ttwith t = kt and t = —  we have o o Ü)o

2 n-1
(âH> . Ì fi . 4i 1 + - >n n l tt L

k=l

_ rrkcy
arcsinj^e ^ cos2rrk] }

with o' = ~  • If of is not too small the sum converges rapidly. We define 
^o

a factor p by An = j^n as the factor by which the mean error is increased 

over the uncorrelated error. In Figure 1, p is plotted as a function of

2. Gaussian

S, = S exp +  o r -8 in 2 --- -—  for u) > 0
Ad)

r  iS_ = Sq exp -8 Jin 2 --- -—  for U) <
L Ao) J

2a 2T A(J0
Pn (t ) = e 32 in 2 * COS U) T. 0

We obtain for ~  in n an analogous way
2, 2 2

2 n-1 TT k 01
(AS) . 
n arcsinĵ 8 ün 2e cos

k=l

(13)

(14)

2-nkJ }
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Atu
cu

Figure 1. Statistical error as a function of bandwidth.
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This sum converges very rapidly. Again, £ is plotted in Figure 1.

Output Signal-to-Noise Ratio

The measurement yields the signal-to-noise ratio according to

U = i ^ (ns‘V o 2 +  (V V 9o2 (15)

The error of this measurement (r.m.s. deviation) for small signal-to-noise 

ratios is given by

A ~ = x/tt /n_ + n.T a v n V S N

where (3 is the increase of the statistical error over the uncorrelated error
An = fyjn. —  can be considered as the output amplitude signal-to-noise ratio 

2 2or with S = u ; N = a
2 2 

s% ("S'Vo + (nS'nN)90
V out ß (ns+nN)

for small signal-to-noise ratios ng «  %nQ; nN &

n̂S~nN 0̂ + n̂S_nN^90
n

—  ( - )
TT V  .m

hence

(S)V -  ( - )2 V  * (16)
out rrp in

We consider first the signal to be embedded in wide-band noise. The samples

taken in the PCD will thpn be completely uncorrelated (¡3 = 1) and the result
* )

n
of the measurement will be

( f ) = —  ( f )  .N . TT N . out in
(17)

* This is only approximately true, because (15) is derived under the 
assumption that we are dealing with narrow-band noise.
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We now pass signal + noise through a filter with a system function H(iaj) 

which reduces the variance of the input noise, but in consequence introduces 

correlation between adjacent samples.

<l>
n

out Tip
(J>)2 V,

where (— ) is the signal-to-noise ratio at the output of the filter. The 
N F

filter does not act on the signal but only on the noise.

Let G^n (uu) be the spectral density at the input, Go (uq) the spectral

density at the output, then

Go (cju) = jH(ia)) | Gin(oj)

N
-j-00

= 2tt J G(u,)dm
hence

( f i ) --------------
N f i r+“

2rr -00|H(io))| Gin(u))do)
or since

+00
N. = —  in 2tt

G. (et) ) del) in
+ 0 0

G. (cd) duo in
V . +00F in *

n

I* |H(icu) | Gin(iuD)d(D 
— 00

r+ ° °G . (a))da) in
2 >ooout rr{3

(fi)V  .in| H(iuu) | G±n(aj)dCJD
00

Let us consider white input noise up to a frequency

o A £ V
-/ II O o for Cl) < “ n

= 0 for (JO > “n
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and a system function H(icu) = 1 for (JUQ - ^Aud < ud < (J0o + Âu)

= 0 for outside
This results in

out Trp
( 18)

in
_ i-i-i Atofor small values of —

We notice that there is an advantage to filter out frequencies > u)0 
before coincidence detection. Nothing, however, is gained by filtering out 

low frequencies, except near zero. A band-pass filter of width is 

equally as effective as a narrow band-pass filter.

The necessity for introducing a filter before coincidence detection 

arises because the signal is sampled at a low rate. The effect of sampling 

can be illustrated more easily if the coincidence detector is replaced by a 

linear integrator. In the linear integrator the amplitude of the signal at 

the instant of sampling are summed as compared to the polarity coincidence 

detector where the amplitudes are converted to + 1 before summing. The 

effect of summing the sampled signal is the same as transmitting the original 

signal through a comb filter. The center frequencies of the pass bands are 

separated from the neighboring bands by (juq , where is the sampling rate.

The width of each pass band is approximately the reciprocal of the total 

integration time. Since the desired part of the signal is monochromatic at 

frequency cuo, it is desirable to filter out all of the pass bands except the 

band centered at uoQ. This can be accomplished by using a filter of width

U).o
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Experimental Part:

The technical realization of the polarity coincidence principle 

presents no essential problems. Figure 2 shows the block diagram of an 

operational model that is presently in laboratory use for several months.

The use of a synchronous detector in an experiment usually proceeds in the 

following way. A generalized carrier (which can be an rf-signal, an electron 

beam, a molecular beam, and so forth) interacts with the system under investi­

gation. If the carrier is modulated with a certain frequency any change in 

the system that results from the interaction will exhibit the same frequency 

component. This change is detected and transformed into an ac signal which 

is cross-correlated with the modulation frequency.

In the case of the polarity coincidence detector, the signal is passed 

through a limiting amplifier. In the present model the limiting amplifier 

consists of three wideband feedback loops with an individual gain of 50 and 

a rise time of 0.1 microsecond. Limiting is accomplished by a pair of biased 

diodes after each stage. The output is a square wave of 40 V amplitude.

The reference signal is split into two channels 90° out of phase, where 

it is converted into sampling pulses of 0.5 microsecond duration. Sampling 

pulses and output of the limiting amplifier are applied to the two control 

grids of 6BN6 tube. The output of the coincidence tubes triggers multi­

vibrators that generate standard pulses for the counters. In order to cancel 

out fluctuations in bias level or noise level, signal + noise is counted for 

a given time determined by a pre-set count of the master counter. The modu­

lation is switched off and the noise alone is recorded for the same time on 

a different set of counters. The noise + signal and the noise counts alternate 

typically every 10 seconds.
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C arrier

Figure 2. Schematic diagram of polarity coincidence detector
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The instrument operates in the range 20 c/sec-20 kc/sec. The 

performance is demonstrated by the following set of diagrams.

Figure 3 shows a plot of the output signal, defined as
/  _ _

yCng-n^)^ + (ng-n^)^Q in arbitrary units versus the input amplitude signal- 

to-noise ratio. The signal frequency was 10 kc/sec. We notice the deviation 

from linearity for signal-to-noise ratios larger than 0.2.
The response of the individual channels to a phase shift between signal 

and reference signal is demonstrated by Figure 4, where the counting rates of 

the individual channels are plotted versus the phase shift between signal and 

reference signal. The signal-to-noise ratio was 0.05, frequency 10 kc. The 

measured values fit smoothly a sin and cos dependence.

In order to check the increase of the error with decreasing bandwidth 

of the noise, series of 50 individual readings of the counting rate were taken. 

The computed statistical error of a single reading together with its error 

is plotted in Figure 1 versus the relative bandwidth of the noise. Although 

the error is smaller than predicted for a Lorentzian or Gaussian spectral 

density, the qualitative behavior is confirmed.

The appendix contains the complete circuit diagrams of the instrument.

Error Sources:

a) Fluctuations of threshold:

The main uncertainty is introduced in the first limiting stage of the 

amplifier. We have

BiOi
no

2x
L J 2  TT-CT

'+ . 2uH---- coscp
CXy/TT ']

¿n(0) _
n

<V2tt

a is the variance of the noise after amplification by the first stage.
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Figure 3. Response of polarity coincidence detector to input 
signal-to-noise ratio. (0 db corresponds to S/N=l)
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Figure 4. Counting rate as a function of phase shift 
between signal and reference signal.
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The error of the measurement can then be written

7_< V tt £_
2 2 Ax+ + Ax+ ' *

22TO

(19)

The conditions for the influence of the threshold fluctuation to be small 

compared to the statistical error can then be written

2 2(Ax),2 ^  • n
TTCT O

a is limited by the dynamical range of the amplifier. In a typical example 

one may have <j = 100V

Ax = 0.1V
_ * 6

(3 = J2 . This requires n^ < 6 X 10 , and the minimum

detectable signal-to-noise ratio would be 5 x 10

b) Phase Fluctuations:

When the signal is passed through narrow band filters the possibility 

of phase fluctuations must be considered. We have

An(0) = -n — coscp • A<P
° rok/rr

An(90) = n -A—  sincp * A9 .
C/s/tt

This contributes to the error according to

In the limiting case nQ - ♦  oo we
o ttcj

, Au have —  = Acp. u

2 . (20)

The influence of phase fluctu

ations is negligible in most situations.
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c) Noise Fluctuations:

A fluctuation in the noise level changes the counting rate by

An0 (0)
n

/ += —  (—  - u coscnŷ -z .fi fi V
An analogous expression holds for An (90).s
The error in the signal-to-noise ratio becomes

(a> = fi 2 » 2 P Aa
n ~ + 2 2 2o n u a o

{ ^ s - V o 2 )2]

+ ( " s - V s o T ^ - + ^  - usintP)2]  }  •

In two limiting cases this simplifies considerably

1) u «  x+ x+ «  x+ ’ = x

Aa J* JZ ~ 1 (A2)2 .
n n 2 g o a

( 21)

The minimum detectable signal-to-noise ratio then becomes

,Un x , Aa
o ̂ a amin u

2) u »  x,

ûa = Æ ^ + 1 «4 (A£)2(cosa,
no n a2 ° 

The minimum relative error becomes

cp + sin cp)

Ah = Aa /— — --- 4
V'

4 . . 4  varies between 1 andcos cp + sin cp

ct v cos 9 + sin cp 
1

( 2 2 )
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d) Linearity:

In order to get an estimate of the deviation of the measurement from
ns (°)

linearity we expand the error function in the expression for —---- .
o

ns(°)
no

2 / x u , 2 , x_ u .3  ,—  (— —  - — coscp) - — — (— — - — coscp) + • • •
Vtt a j l  CT V tt °7 2 CT

V 0) ir. _2_ __x_
^  ? I _ _o z L Vtt ox/2 V tt ct323/s

nS N
no

-ir- [i + c-^-)2 +

For a signal-to-noise ratio of 0.1, i.e., the deviation from linearity is 

less than one per cent.

We are indebted to Professor D. Cooper for valuable discussions on 

the subject of signal detection.
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$«47 t&+  7 *«*22 .5<947 5 8 4  7 é«?22 5S-47 AS+7 6922

UOTCS

1. ALL DIODES HJ66I
2. FILAMEUTS i  l  VDC AVJD 

BYPASSED B.Y 33 /*/*
AT EAC.V4 SOCKET

3. FILAMEUT LEAD CrJ 
AT FIAST AMP TUEE

4. ALL OXJTPOL ¿AIDS UAVE

Figure 1 (Appendix). Limiting Amplifier.
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b oil resistor* 1/2 W 9%
C oil condensers 400V poper

2 Ground filaments externally
3 Pin 9 of all 6922's is grounded

Figure 2 (Appendix). Coincidence Circuit.
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2 UULtS*. OTWtRVIse u<nv>
«. *U- ORC.ftW' . AU. C0UTROC UAVE A
k AU. CAPACITOR«. WV SSRtS«» 4T il ttSSISTOR

Figure 3 (Appendix). Counter.
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Figure 4 (Appendix). Master Control.
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