UILU-ENG 71-2221

COORDINATED SCIENCE LABORATORY

# ON THE SPATIAL STABILIZATION OF THE BEAM-PLASMA INSTABILITY

E. ATLEE JACKSON

**UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS** 

"THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED."

## ON THE SPATIAL STABILIZATION OF THE BEAM-PLASMA INSTABILITY

by

E. Atlee Jackson

This work was supported wholly by the Joint Services Electronics Program (U. S. Army, U. S. Navy and U. S. Air Force) under Contract DAAB-07-67-C-0199.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

#### ON THE SPATIAL STABILIZATION OF THE BEAM-PLASMA INSTABILITY

by

#### E. Atlee Jackson

## 1. Introduction

It has been observed in many experiments (1,2,3) that when a low density energetic beam of electrons is injected into a plasma, oscillations are generated which increase in amplitude as one moves away from the injection point. At larger distances these oscillations saturate and subsequently decay. There are at least three mechanisms which can be responsible for this control of the linear instability. These are, in the order of increasing nonlinearity: (a) If the linearly unstable modes have a broad spectrum of wave numbers  $^{(4)}$ ,  $\Delta k$ , then the beam may be stochastically heated<sup>(5)</sup> as it passes into the plasma. Once the beam obtains a thermal spread,  $\Delta v_b$ , such that  $\Delta v_b \gtrsim |u_o - (w/k)|$ , where  $u_o$  is the beam velocity, then collisional processes will cause stabilization, and possibly the subsequent decay; <sup>(3)</sup> (b) If the unstable modes have a narrow spectrum, it is possible that the generation of harmonics might induce stabilization and decay through their interaction back on the unstable modes. (6-8) It is this mode-mode coupling which is the primary subject of investigation in the present study; (c) If the mode-mode coupling does not stabilize the system then the oscillations may grow to an amplitude which is large enough to trap the beam particles. Since this trapping cuts off the beam movement over the waves, the instability is terminated.<sup>(9)</sup> The subsequent spatial behavior would presumable have some oscillatory features which have

not yet been experimentally observed. This may, of course, simply be due to the conditions of existing experiments rather than the universal effectiveness of (a) and/or (b).

In Section 2 we derive the nonlinear equations describing the mode-coupling in the case of a low density beam. In the present case, where we are concerned with spatial growth, it is necessary to retain the electron-ion collisions in the plasma component in order to obtain finite spatial growth for cold components (as this collision frequency tends to zero, the plasma thermal spread controls the spatial growth). The character of the linear dispersion relationship in that case is therefore reviewed. In Section 3 we discuss, and illustrate some of the difficulties involved in establishing the bounded character of solutions of nonlinear systems of equations - particularly those of the convolution type. The results of this section are largely negative in character. In Section 4 we obtain coupled mode equations for this system, and determine the modes which are most strongly coupled. A brief discussion of the three-mode coupling is also given. In Section 5 we present results of computer solutions of the equations obtained in Section 2 and discuss their implication concerning the spatial stabilization of the beam-plasma instability.

# 2. Basic Equations

To investigate the effectiveness of mode coupling we consider a semi-infinite plasma in the region x>0, with a beam of density  $n_b^0$  injected with a velocity  $u_o(>0)$  at x=0. Since we are concerned with the case of an energetic beam,  $u_o^>> \Delta v_p$  (where  $\Delta v_p$  is the plasma thermal spread), we will

2

base the analysis of mode coupling on the cold hydrodynamic equations. This approximation is valid provided that the phase velocities of the waves are outside the thermal spread of both the beam and plasma, i.e.  $\omega/k \gg \Delta v_p$  and  $|u_o^-(\omega/k)| \gg \Delta v_b$ . While this may be easily satisfied for the most unstable modes, it is not equally true for the harmonics, for which  $|u_o^-(\omega/k)|$  is very small. We will return to this point below. For the present we assume that the dynamics is governed by the equations

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x} (nu) = 0$$
 (1)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{e}{m} E = vu$$
 (2)

$$\frac{\partial E}{\partial t} = 4\pi e \Sigma (nu - n_0 u_0)$$
(3)

where (1) and (2) holds for both the plasma and beam components, v is the collision frequency with the background ions (and  $v_b^{=0}$ ), and the sum in (3) is over both components. The constant current is subtracted in (3) to account for the return current outside the system (otherwise E would increase linearly with time).

Since we are concerned with the stationary state, all functions are of the form  $f(x,t) = \sum_{\omega} f(\omega,x)e^{-i\omega t}$ , where  $\omega$  is real and  $f(-\omega,x) = f(\omega,x)$ . Equations (1-3) then become

$$\frac{d}{dx} [n(\omega')u(\omega-\omega')] - i\omega n(\omega) = 0 \qquad (1')$$

$$\frac{1}{2} \frac{d}{dx} \left[ u(\omega')u(\omega-\omega') \right] + (v-i\omega)u(\omega) + \frac{e}{m} E(\omega) = 0 \qquad (2')$$

 $-i\omega E(\omega) = 4\pi e \Sigma n(\omega')u(\omega-\omega')$ (3')

where the sum on  $\omega'$  is implied and the variable x is suppressed. The physical situation which will be considered is the case of a low density beam and small collision frequency v ( $\neq 0$ ). Specifically it will be assumed that

$$1 \gg \mu = \nu/\omega_{\rm p} \gg \alpha \equiv n_{\rm b}^{\rm o}/n_{\rm p}^{\rm o} > 0 \tag{4}$$

It should be emphasized that the collisions are necessary to obtain a finite spatial gradient when the plasma is cold. If  $v \rightarrow 0$ , then the assumption that  $\omega/k \gg \Delta v_p$  no longer holds, and the finite gradient is due to plasma thermal effects. Under the conditions (4) the spatial variation of the zero frequency components can be neglected. Moreover the plasma dynamics will be linear, even though the beam dynamics is nonlinear. To show this, and reduce the system of five equations (1') - (3'), we note that  $u_p(\omega=0) = 0$ . Then the linearized plasma equation (2') and (3') yields

$$u_{p}(\omega) = \frac{\omega_{b}^{2}}{\omega(\omega+i\nu)-\omega_{p}^{2}} n_{b}(\omega^{\dagger})u_{b}(\omega-\omega^{\dagger}) \quad (\omega\neq 0)$$
(5)

where now, and below,  $n(\omega)$  is the fractional density variation (so  $n(\omega=0) = 1$ ). Simularly from equations (1') and (5)

$$n_{p}(\omega) = \frac{\omega_{b}^{2}}{\omega(\omega+i\nu)-\omega_{p}^{2}} n_{b}(\omega) \quad (\omega\neq 0)$$
(6)

so that  $|n_{b}(\omega)| > (\mu/\alpha) |n_{p}(\omega)|$ , showing that the fractional density variation is larger for the beam component under the conditions (4). Using (5) and (6) to eliminate the plasma component, equation (2') for the beam becomes

$$\frac{1}{2} \frac{d}{dx} u_{b}(\omega')u_{b}(\omega-\omega') - i\omega u_{b}(\omega) + \frac{i\omega_{b}^{2}(\omega+i\nu)}{\omega(\omega+i\nu)-\omega_{p}^{2}} n_{b}(\omega')u_{b}(\omega-\omega') = 0$$
(7)

In the following the subscript on  $(n_b, u_b)$  can be dropped without confusion, since the plasma component has been eliminated.

It should be noted that, contrary to the more common nonlinear temporal problem, the equations (1') and (7) are nonlinear in the differential terms. To remove this feature we explicitly introduce the rapid spatial variation, setting

$$n(x,\omega) = N(x,\omega)e^{i(\omega/u_o)x}, \quad u(x,\omega) = u_o U(x,\omega) e^{i(\omega/u_o)x}$$
(8)

and neglect the derivative of the nonlinear products  $U(\omega')U(\omega-\omega')$  and  $N(\omega')U(\omega-\omega')$  compared with  $(\omega/u_0)$  times these products.<sup>(10)</sup> Therefore (1) becomes

$$\frac{d}{dx} [N(\omega)+U(\omega)] + i(\omega/u_0) U(\omega) = -i(\omega/u_0) \Sigma' N(\omega') U(\omega-\omega')$$
(9)

where the prime on the sum indicates that  $\omega' \neq 0, \omega$ . Again using the conditions (4), the nonlinear portion of the last factor in (7) may be neglected (see below). Then (7) yields

$$\frac{d}{dx} U(\omega) + \frac{i \omega_b^2(\omega + i\nu)}{u_o [\omega(\omega + i\nu) - \omega_p^2]} [U(\omega) + N(\omega)] = -\frac{i\omega}{2u_o} \Sigma' U(\omega')U(\omega - \omega') (10)$$

From (8) and (9) it is easily shown that in the linear approximation  $U = O(\sqrt{\alpha/\mu}) N \ll N$ . Introducing the notation

5

$$z = \sqrt{\alpha/\mu} (x\omega_p/u_o)$$
,  $\Omega = \omega/\omega_p$ ,  $U(z,\omega) = i\sqrt{\frac{\alpha}{\mu}} V(z,\omega)$  (11)

so that N and V are now of the same order, and using the conditions (4), equations (9) and (10) reduce to

$$\frac{\mathrm{d}}{\mathrm{d}z} N(\Omega) = \Omega V(\Omega) + \Omega \Sigma' N(\Omega') V(\Omega - \Omega')$$
(12)

$$\frac{\mathrm{d}}{\mathrm{d}z} V(\Omega) = \in (\Omega) N(\Omega) + \frac{1}{2} \Omega \Sigma' V(\Omega') V(\Omega - \Omega')$$
(13)

where

$$\in (\Omega) = \frac{-\mu(\Omega + i\mu)}{\Omega(\Omega + i\mu) - 1}$$
(14)

and  $N(-\Omega) = N^*(\Omega)$ ,  $V(-\Omega) = -V^*(\Omega)$ . The spatial variation in (12) and (13) is now in terms of the slow variable z. The approximations which have been used to obtain (12) and (13) are such that the linear dispersion relation of these equations is exact. If we set  $N(z,\Omega)$  and  $V(z,\Omega)$  proportional to  $e^{\sigma z}$ , then the linear equations yield

$$\sigma_{\pm}(\Omega) = \pm \sqrt{\frac{\mu}{2a}} \left\{ \sqrt{-b \pm \sqrt{b^2 + \mu^2 \Omega^2}} + i \operatorname{sign}(\Omega) \sqrt{b \pm \sqrt{b^2 + \mu^2 \Omega^2}} \right\}$$
(15)

where  $a = (\Omega^2 - 1)^2 + \mu^2 \Omega^2$  and  $b = \Omega^2 (\Omega^2 + \mu^2) - \Omega^2$ . The root  $\sigma_+$  corresponds to the spatially growing mode in the positive z direction. The form of  $\sigma_+(\Omega)$  is shown in Figure 1 (note that the linear wave number,  $e^{ikx}$ , is related to  $\sigma$  by  $k = (\omega/u_0) - i(\alpha/\mu)^{\frac{1}{2}}(\mu_p/u_0)\sigma$ ). The unstable frequencies have a range  $\omega_p + \frac{1}{4} v \gtrsim \omega \gtrsim \omega_p - 2v$  in which the real part of  $\sigma$  is at least one half its maximum value. Thus the spectrum is more narrow as v decreases, and the mechanism (a) discussed in the introduction is less effective. For the most unstable mode one finds  $\sigma_+ \equiv (\sigma_r + i\sigma_i)$ 

$$\Omega^{2} = 1 - (\mu/3^{\frac{1}{2}}) ; \sigma_{r}^{2} = (3^{3/2}/8)^{\frac{1}{2}}$$
(16)  
$$\frac{\omega}{k} - u_{0}^{2} \simeq - (3^{\frac{1}{2}}\alpha/8\mu)^{\frac{1}{2}}u_{0}^{2}$$

Since it has been assumed that  $\left|\frac{\omega}{k} - u_{o}\right| \gg \Delta v_{b}$ , we need  $(3^{\frac{1}{2}}\alpha/8\mu) \gg (\Delta v_{b}/u_{o})^{2}$ . On the other hand if  $\omega \gtrsim 2\omega_{p}$ , one find that  $(\omega/k) - u_{o} \simeq -\alpha^{\frac{1}{2}} (u_{o}/\Omega)$  which is much smaller than for the unstable modes. Thus the present treatment, in which all modes are treated as nonresonant, is erroneous for the harmonics of the unstable modes. To correct for this we might take as a reasonable approximation the dispersion relation for a cold plasma and a Lorentzian beam (with a velocity spread  $\Delta v_{b}$ )

$$1 = \frac{1}{\Omega(\Omega + i\mu)} + \frac{\alpha}{\left[\Omega - (ku_o/\omega_p) + i(k\Delta v_b/\omega_p)\right]^2}$$

or, in terms of  $\sigma$ ,

$$1 = \frac{1}{\Omega(\Omega + i\mu)} + \frac{\alpha}{\left[i\sigma(\alpha/\mu)^{\frac{1}{2}} + i\left|\Omega\right|(\Delta v_{b}/u_{o}) + \sigma(\alpha/\mu)^{\frac{1}{2}}(\Delta v_{b}/u_{o})\right]^{2}}$$

Referring to Figure 1, it is clear that the last term in the denominator is negligable, so that

$$\sigma_{\pm} = (\sigma_{\pm})_{\Delta v_{b}=0} - |\Omega| (\mu/\alpha)^{\frac{1}{2}} (\Delta v_{b}/u_{o})$$
(17)

For  $\Omega \simeq 1$  this correction is negligible, provided that  $(\alpha/\mu) \gg (\Delta v_b/u_o)^2$ , but for  $\Omega > 2$  the correction is the dominant real part of  $\sigma_{\pm}$  if  $\Delta v_b/v_o \gg \mu \alpha^{\frac{1}{2}}/\Omega^4$ . Note that this correction can not be obtained from a hydrodynamic treatment (since it is the Landau damping generated by a Lorentzian beam). Nonetheless it can be appended to the hydrodynamic equations by changing the function  $\in (\Omega)$  in equation (14), or by altering both linear terms in (12) and (13). Since this alteration is not unique we may presumably choose either method (see Section 5).

# 3. The Problem of Bounded Solutions

The mode coupling mechanism will produce saturation only if all solutions of (12)-(13), which are initially sufficiently small, are bounded (as functions of z). The problem of establishing conditions for boundedness of all solutions of a system of differential equations is generally very difficult<sup>(11)</sup>. Before considering the system (12,13), for which the conditions are not known, we will first review some known results and some further simple examples.

One system of equations which arise from perturbation methods<sup>(7)</sup>, for which both necessary and sufficient conditions are known, is

$$\frac{dN_{k}}{dt} = \sum_{k',k''} |V_{kk'k''}|^{2} s_{k} N_{k}N_{k'}N_{k''} \left(\frac{s_{k}}{N_{k}} + \frac{s_{k'}}{N_{k'}} + \frac{s_{k''}}{N_{k''}}\right)$$
(18)

where  $s_k = \pm 1$  and  $N_k \ge 0$  (real functions). The functions  $|V_{kk'k''}|^2$  are

symmetric under the interchange of (k,k',k''). In this case the linear equations are neutral  $(N_k = \text{constant})$ . The necessary and sufficient condition for the boundedness of all solutions such that  $N_k$  (t=0)>0, is that there exist a set of positive finite constants  $\{c_k\}(\infty > c_{\max} \ge c_k \ge c_{\min}>0\}$ such that, for (k,k',k'') for which  $V_{k'k'}, k'' \ne 0$ ,  $c_k s_k + c_k s_{k'} + c_k s_{k''} = 0$ . If this condition can not be satisfied (e.g., if all  $s_k$  have the sign) then (18) generally has singular solutions  $(N_k \sim (1-at)^{-1})$  which diverge for finite times ("explosive instabilities"). The proof in this case rests heavily upon the fact that the (real)  $N_k$  are positive definite functions, which are linearly neutral. If either of these conditions are dropped, the problem of establishing boundedness becomes much more complicated.

To illustrate this point we consider a generalization of a common three mode model

$$\dot{x}_{1} = \alpha_{1} x_{1} + \beta_{1} x_{2}^{*} x_{3}$$

$$\dot{x}_{2} = \alpha_{2} x_{2} + \beta_{2} x_{1}^{*} x_{3}$$

$$\dot{x}_{3} = \alpha_{3} x_{3} + \beta_{3} x_{1} x_{2}$$
(19)

where the star refers to the complex conjugate. Here the nonlinear term is of a convolution form (if  $x_{-k} = x_k^*$ ) similar to (12,13). First consider the case where the  $\alpha_k = i \omega_k$  are purely imaginary (linear stability), and let

$$x_{k}(t) = A_{k}(t) e^{i\omega_{k}t + \theta_{k}(t)} \qquad (A_{k}(0) \ge 0)$$

One readily obtains from (19), if the  $\beta_k$  are all real

$$A_{k} = \beta_{k} A_{k}, A_{k''} \cos \theta ; \theta = \theta_{3} - \theta_{2} - \theta_{1} + \Delta \omega t$$
 (20)

where  $(k \neq k' \neq k'')$  and  $\Delta w = w_3 - w_2 - w_1$ . Also

$$\dot{\theta} = \Delta \omega - (\beta_1 A_1^{-1} A_2 A_3 + \beta_2 A_2^{-1} A_1 A_3 + \beta_3 A_3^{-1} A_1 A_2) \sin \theta \quad (21)$$

From (20) one obtains two constants of the motion

$$\beta_2 A_1^2 - \beta_1 A_2^2 = C_1; \beta_3 A_1^2 - A_3^2 = C_2$$
 (22)

This shows that if  $\beta_k \beta_k < 0$ , then  $A_k$  and  $A_k$ , are bounded, and hence  $A_{k''}$  is bounded. Furthermore, multiplying (21) by  $A_1 A_2 A_3 \cos \theta$ , yields a third constant

$$A_1 A_2 A_3 \sin \theta = C_3 + \frac{\Delta \omega}{2\beta_1} A_1^2$$

If one sets  $N_k = A_k^2$ , these constants can be used in (20)(for k = 1) to obtain

$$\dot{N}_{1} = \pm 2\beta_{1} \left\{ N_{1} N_{2} N_{3} - (C_{3} + \frac{\Delta \omega}{2\beta_{1}} N_{1})^{2} \right\}^{\frac{1}{2}}$$
$$= \pm 2 \operatorname{sign}_{1} (\beta_{1}) \left\{ N_{1} (\beta_{3} N_{1} - C_{2}) (\beta_{3} N_{1} - C_{2}) - \beta_{1}^{2} (C_{3} + \frac{\Delta \omega}{2\beta_{1}} N_{1}) \right\}^{\frac{1}{2}} (23)$$

where  $\pm = \operatorname{sign}(A_1 A_2 A_3 \cos \theta)$ . Now, if  $\Delta \omega = 0$  (three resonant modes), and  $\theta(0) = 0$  or  $\pi$  then  $C_3 = 0$ . If all  $\beta_k \beta_{k'} > 0$  then one can readily see from (20) that unbounded solutions can be obtained by taking  $\theta(0) = 0$ ,  $\pi$  such that  $\operatorname{sign}(\beta_k A_1 A_2 A_3 \cos \theta) > 0$ . From (22) it then follows that all solutions of (19) with  $\alpha_k = i\omega_k$  and  $\Delta \omega = 0$  are bounded <u>if and only if</u>  $\Sigma a_k \beta_k = 0$  for some set  $\{a_k > 0\}$ . Moreover the unbounded solutions are singular, going as  $N_k \sim (1-a t)^{-2}$  near the singularity.

An important point to note is that the solutions of (20,21) can be made bounded by a small change in the linear term (if the  $A_k(0)$  are sufficiently small). Thus, if  $\Delta \omega \neq 0$ , it can be seen from (23) that N<sub>1</sub> will be stabilized if the square root vanishes as N<sub>1</sub> increases. Clearly for large enough  $\Delta \omega (N_1^0, N_2^0, N_3^0)$  dependent on the initial conditions, all solutions will be bounded. The details are not of interest here, but only the fact that the linear terms can have a significant influence on the boundedness of the solutions.

This simple case also can be used to shed light on the necessary conditions for singular solutions ("explosive" instabilities) recently discussed by Wilhelmsson, Stenflo and Engelmann.<sup>(12)</sup> In the present context one looks for solutions of the form

$$A_{k} = \frac{\beta_{k}}{t_{o}-t} + 0(1) ; \theta = \theta_{o} + 0(t_{o} - t)$$

and considers only the most singular terms of (20,21). One then readily obtains the conditions

$$\beta_k \beta_k$$
; >0 and tan  $\theta_0 = 0$ 

This necessary condition is, however, not sufficient. Clearly, from above, if  $\Delta \omega$  is sufficiently large the solutions are bounded. However, the above necessary condition is based only on the most singular terms, which do not depend on the value of  $\Delta \omega$ . If one carries the analysis to the next order taking

$$A_{k} = \frac{\beta_{k}}{t_{o}-t} + C_{k} + O(t_{o}-t) ; \theta = \theta_{o} + D(t_{o}-t) + O((t_{o}-t)^{2})$$

one obtains (among other conditions)

$$-D = \Delta \omega - (\beta_1 \beta_1^{-1} \beta_2 \beta_3 + \text{etc.}) D \cos \theta_0 - (\beta_1 \beta_1^{-1} (\beta_2 C_3 + C_2 \beta_3) + \text{etc.}) \sin \theta_0$$
$$+ (\beta_1 \beta_1^{-2} C_1 \beta_2 \beta_3 + \text{etc.}) \sin \theta_0$$

$$- D = \Delta \omega - 3 D$$

which yields a value for D even when  $\Delta \omega \neq 0$ . Clearly this approach will not indicate the conditions for nonsingular solutions when  $\Delta \omega \neq 0$ . This deficiency is related to the fact that t<sub>o</sub> is never obtained by this method, and moreover t<sub>o</sub> is related to the initial conditions, which determine whether the solution is singular. A simple example illustrates this fact. Thus the equation

$$\dot{x} = \alpha x + x^2$$

has a singular solution (for  $t \ge 0$ ) if and only if  $\alpha^{-1} \ln(1+\alpha/x_0) > 0$ , in which case the singularity occurs at  $t_s = \alpha^{-1} \ln(1+(\alpha/x_0))$ . Substituting the expression

$$x(t) = \sum_{k=0}^{\infty} \beta_k (t_o - t)^{k-1}$$

and equating powers of  $(t_0^{-t})$ , yields the correct values for  $\beta_k$  (and therefore a convergent series), but gives no expression for  $t_0^{-}$  and, in particular, does not establish under what conditions  $t_0^{-}$  is <u>positive</u>.

Another interesting point should be noted about singular solutions of (19). If one assumes that  $x_k = z_k/(t_o-t)$  (where  $z_k$  are complex) near the singularity, then it readily follows that a necessary condition is

$$\beta_k \beta_k > 0 \quad (complex \beta_k)$$

If  $\beta_k = \rho_k e^{i\phi_k}$ , this implies that

$$\phi_{k} + \phi_{k'} = 0$$
, or  $2\pi$  (all k,k')

If there are three or more coupled modes, one concludes that all  $\phi_k = 0$  or all  $\phi_k = \pi$  in other words, all  $\beta_k$  are real and of the same sign. This is quite different than the result obtained for singular solutions of the  $A_k$ , namely

$$\sum_{k} \tan (\theta_{0} + \theta_{k}) = 0$$

for some  $\theta_0$ . This can easily be satisfied even if all  $\phi_k \neq 0, \pi$ . However, when this latter condition is not satisfied, one finds from the equations for  $\dot{\theta}_k$  (not  $\dot{\theta}$ ), that  $\dot{\theta}_k \rightarrow \infty$  at the singularity of the  $A_k$ . This means that the  $x_k$  of equation (19) rotate infinitely fast in their individual complex planes as one approaches the singularity, hence  $x_k$  is not of the form  $z_k/(t_0-t)$ , but rather  $C_k \exp(i\lambda_k/t_0-t)/(t_0-t)$ . Hence a singularity in the variables  $A_k$  can correspond to two radically different types of singularities in the  $x_k$  variables - one being an essential singularity.

What is even more important to notice is the influence of a real part of  $\alpha_k$  in part of  $\alpha_k = i \omega_k + \gamma_k$  then (20) is replaced by

$$\mathbf{A}_{k} = \gamma_{k} \mathbf{A}_{k} + \beta_{k} \mathbf{A}_{k'} \mathbf{A}_{k''} \cos\theta$$
(24)

where, again ( $k \neq k'' \neq k''$ ), and (21) still applies. In this case (22) is replaced, for example, by

$$\frac{d}{dt} (\beta_2 A_1^2 - \beta_1 A_2^2) = 2(\beta_2 \gamma_1 A_1^2 - \beta_1 \gamma_2 A_2^2)$$
(25)

This equation implies that if either  $\gamma_k$  is positive (corresponding to linear instability), and  $\beta_1 \beta_2 < 0$ , then there are unbounded solutions  $(A_k \neq 0)$ . These solutions may or may not be singular (the sign of  $\beta_3$  is not specified), but in any case they are unbounded. Even if  $\beta_1 \beta_2 < 0$ , so that there is no singular solution, the solutions will be unbounded if <u>both</u>  $\gamma_k > 0$ . Thus the only possibility for (21,24) to have only bounded solutions when the system is linearly unstable is for only one mode to be unstable (say  $\gamma_1 > 0$ ) and  $\beta_1 \beta_2 < 0$ ,  $\beta_1 \beta_3 > 0$ . The important question then is whether these conditions are sufficient as well as necessary.

To show that these conditions are not sufficient, consider the equations

$$\frac{d}{dt} (A_1 A_2 A_3 \sin\theta) = \Delta \omega A_1 A_2 A_3 \cos\theta + \Gamma A_1 A_2 A_3 \sin\theta$$
(26)

 $\frac{d}{dt} (A_1 A_2 A_3 \cos\theta) = -\Delta \omega A_1 A_2 A_3 \sin\theta + \Gamma A_1 A_2 A_3 \cos\theta + \Sigma \beta_k A_k'^2 A_k''^2$ where  $\Gamma = \Sigma \gamma_k$ , which are obtained from (21,24). Clearly, if  $\Delta \omega = 0$  first equation shows that there are unbounded solutions if  $\Gamma > 0$ . Characteristically one can not immediately conclude that the solutions  $A_k(t)$ , are bounded when  $\Gamma < 0$ .

What has been established about the solutions of (21) and (24) is only that if  $\gamma_1>0$ , there are unbounded solutions if any of the following conditions hold:

- a) if  $\beta_1 \beta_2 > 0$  or  $\beta_1 \beta_3 > 0$
- b) if either  $\gamma_2$  or  $\gamma_3$  is positive
- c) if  $\Delta \omega = 0$  and  $\Sigma \gamma_{L} > 0$

However, if  $\gamma_1 > 0$ , no sufficient condition for bounded solutions has been obtained.

To indicate the difficulty in establishing sufficiency, consider the simplest case of resonance ( $\Delta \omega = 0$ ), and the particular solution  $\theta = 0$ . Then the three equations (24) are of the form

$$\dot{A}_{1} = \gamma_{1} A_{1} + \beta_{1} A_{2} A_{3}$$
(27)  
$$\dot{A}_{2} = -\gamma_{2} A_{2} - \beta_{2} A_{1} A_{3}$$
  
$$\dot{A}_{3} = -\gamma_{3} A_{3} - \beta_{3} A_{1} A_{2}$$

where now  $\gamma_k$ ,  $\beta_k > 0$ ,  $\gamma_2 \neq \gamma_3$ , and  $A_k(0) > 0$ . It can be seen that the nonlinear term initially makes  $A_1$  more unstable. The condition  $\gamma_2 \neq \gamma_3$  is required for boundedness, since otherwise  $A_2 = (\beta_2/\beta_3)^{\frac{1}{2}} A_3$  yields and unbounded solution. Equation (27) therefore represents the simplest threemode, linearly unstable system which <u>may</u> have only bounded solutions. Clearly if  $A_2 A_3$  does not change sign,  $A_1$  is unbounded. However, from the equation

$$\frac{d}{dt} (A_2 A_3) = - (\gamma_2 + \gamma_3) A_2 A_3 - (\beta_2 A_3^2 + \beta_3 A_2^2) A_1$$

one can conclude that if  $A_2$  and  $A_3$  do not simultaneously go to zero then, since  $A_1$  is assumed to be increasing,  $A_2 A_3$  will change sign. This tends to stabilize  $A_1$ , so that the unbounded nature of the solution is not trivial even if true. Some weight can be given to unbounded solutions by examining the form of the stationary points of (27) around the origin,  $A_k = 0$ , namely

$$A_1^o = \bigoplus (\gamma_2 \gamma_3)^{\frac{1}{2}}$$
,  $A_2^o = \pm \bigoplus (\gamma_1 \gamma_3)^{\frac{1}{2}}$ ,  $A_3^o = \mp (\gamma_1 \gamma_2)^{\frac{1}{2}}$ 

where the signs are correlated in an obvious manner. If one linearizes about these points, setting  $A_k = A_k^0 + B_k$ , and looks for the normal modes  $C = \Sigma \alpha_k B_k$  such that  $\dot{C} = \nu C$ , one finds that for all stationary points.

$$v^{3} + (\gamma_{2} + \gamma_{3} - \gamma_{1})v^{2} + 4\gamma_{1}\gamma_{2}\gamma_{3} = 0$$

Since the roots must satisfy  $v_1 v_2 v_3 = -4\gamma_1 \gamma_2 \gamma_3$  and  $v_1 v_2^+ v_1 v_3^+$  $v_2 v_3 = 0$  one easily establishes that two roots must have positive real parts. Hence <u>all</u> stationary points are unstable. This fact does not establish the unbounded character of the solutions of (27), but it does show that any bounded solution can not be stationary.<sup>(13)</sup> The net result of these considerations is that no proof of the boundedness or unboundedness of solutions of (27) have been obtained.

We now summarize the results of this section:

- 1) The problem of establishing sufficient conditions for which all solutions are bounded is much more difficult than obtaining sufficient conditions for unbounded solutions. The difference arises from the fact that the former problem generally involves all equations of motion (in lieu of a Liaponov-type function), whereas the latter can be established from particular solutions.
- 2) The necessary conditions for a singular solution, obtained from a consideration of the most singular terms, is not

generally sufficient. Linear terms are capable of removing such singular solutions. Moreover the absence of singular solutions does not imply boundedness (as illustrated by (25), with  $\gamma_1 > 0$ ,  $\gamma_2 > 0$  and  $\beta_1 \beta_2 < 0$ ).

3) Singular solutions of the amplitudes  $A_k$  can correspond to two radically different singular solutions for the  $x_k$ , depending on whether the coefficients  $\beta_k$  are real or complex. In the latter case the  $x_k$  must rotate infinitely fast at the singular time (in their complex plane).

#### 4. Coupled Mode Equations

The nonlinear equations (12) and (13) are much more difficult to analyse than those discussed in the last section. Considering the limited success in treating even these simplier equations, one is forced to either greatly simplify (12-13), or else to revert to computer solutions of these equation (again, in a trucated form). Before discussing the results of some of these computer solutions (Section 5), we will consider here the coupled normal mode equations which arise from (12-13) in the hope that they will shed some light on the most effective coupling between different frequency components.

If one introduced the functions

$$M_{\pm}(\Omega,z) = -(i/8)(\Omega^{-1}\sigma_{\pm}(\Omega)N(\Omega,z) + V(\Omega,z))$$
(28)

where  $\sigma_+(\Omega)$  is given by (15), then equations (12-13) reduce to the simple form

$$\frac{\mathrm{d}}{\mathrm{d}z} \, \mathrm{M}_{\pm}(\Omega, z) = \sigma_{\pm}(\Omega) \mathrm{M}_{\pm}(\Omega, z)$$

+ 
$$i \sigma_{\pm}(\Omega) \Sigma' \left\{ \frac{\Omega'}{\sigma_{\pm}(\Omega')} + \frac{\Omega - \Omega'}{\sigma_{\pm}(\Omega - \Omega')} + \frac{\Omega}{\sigma_{\pm}(\Omega)} \right\} M_{\pm}(\Omega') M_{\pm}(\Omega - \Omega')$$
 (29)

where the  $\pm$  signs are the same on all functions with the same frequency argument, and the sum is on both  $\Omega' (\neq \Omega)$  and the two independent sets of  $\pm$  signs.

Since  $\sigma(\Omega)$  is relatively small outside the unstable frequency range, it is clear from (29) that an unstable mode is most influenced by modes outside of this range. For large  $\Omega$  the coupling coefficient  $(\Omega/\sigma)$  approaches the value  $(\Omega/i\mu^{\frac{1}{2}})$  - a large imaginary value. For  $1 \gg \Omega$ , this coefficient obtains a maximum value of  $\mu^{-\frac{1}{2}}$  for  $\Omega=0(\mu^{\frac{1}{2}})$  that is, a large real value. To determine the location of this maximum, assume that  $1-\mu \gg \Omega \gg \mu$ , and obtain for the real part of  $(\Omega/\sigma)$ 

$$\operatorname{Re}(\Omega/\sigma) \simeq (2\mu)^{\frac{1}{2}} \left[ \frac{2\Omega^{2}(1-3\Omega^{2}) + \frac{1}{2\mu^{2}}}{\Omega^{2}(1-2\Omega^{2}) + \mu^{2}} \right]^{\frac{1}{2}} \simeq \mu^{-\frac{1}{2}} \left[ 1-\Omega^{2} - \frac{3}{4} \frac{\mu^{2}}{\Omega^{2}} \right]^{\frac{1}{2}}$$
(30)

This has its maximum value at

$$\Omega^2 = \frac{\sqrt{3}}{2} \mu \quad \text{or} \quad \Omega = .931 \ \mu^2$$
 (31)

It has been assumed in this derivation that  $\mu^{\frac{1}{2}} \gg \mu$ . In this case the coupling of an unstable mode  $(\Omega \simeq 1)$  to the mode (31) can only be done by a third mode whose frequency,  $\Omega' \sim 1 - \sqrt{\mu}$ , lies outside the most unstable frequency range  $1 + \frac{1}{2}\mu \gtrsim \Omega \gtrsim 1 - 2\mu$ . This implies that two unstable modes do not couple to the low frequency mode (31). Instead they couple to a

mode of frequency  $\Omega = O(\mu)$ . If, however, one sets  $\Omega = s\mu$ ,  $(s \gg \mu^{-\frac{1}{2}})$  then one finds for the coupling constant

$$\frac{\Omega}{\sigma_{+}} \simeq \left(\frac{s}{2\mu(s^{2}+1)}\right)^{\frac{1}{2}} \left\{ \left[s + (s^{2}+1)^{\frac{1}{2}}\right]^{\frac{1}{2}} - i\left[-s + (s^{2}+1)^{\frac{1}{2}}\right]^{\frac{1}{2}} \right\}$$
(32)

which can still be comparable with the maximum value of  $\mu^{-\frac{1}{2}}$  (e.g., if  $\Omega = \mu$ ,  $\operatorname{Re}(\Omega/\sigma) \simeq .77 \ \mu^{-\frac{1}{2}}$ ). Thus, while the coupling of two unstable modes to a low frequency mode is not as efficient as the coupling to a high frequency mode, it might play a role in stabilizing the unstable modes. We might finally note that for  $\Omega^2 = 1-s\mu$  (s  $\ll \mu^{-\frac{1}{2}}$ ), the coupling constant equals

$$\frac{\Omega}{\sigma_{+}} = 2^{-\frac{1}{2}} \left\{ \left[ s + (s^{2}+1)^{\frac{1}{2}} \right]^{\frac{1}{2}} - i \left[ -s + (s^{2}+1)^{\frac{1}{2}} \right]^{\frac{1}{2}} \right\}$$

which is relatively small.

1

Since the harmonic coupling is relatively strong, we next consider the probable influence of such coupling on an unstable mode. From (29) we obtain the simplified equations

$$\frac{d}{dz} M(\Omega) \simeq \sigma(\Omega) M(\Omega) + i \frac{4\Omega\sigma(\Omega)}{\sigma(2\Omega)} M(2\Omega) M^{*}(\Omega)$$

$$\frac{d}{dz} M(2\Omega) \simeq \sigma(2\Omega) M(2\Omega) + 2i \Omega M^{2}(\Omega)$$
(33)

where now  $\Omega \simeq 1$  (an unstable mode). For nonlinear equations of this form, it is not difficult to show that there is always a singular solution, regardless of the values of the (complex) nonlinear coefficients. Whether or not an initial state  $M(n\Omega, z=0) \simeq 0$  becomes singular apparently depends on the influence of the linear terms (as in (23) and the first example in footnote (13)). Despite the apparent simplicity of the four equations (33), no conditions for bounded solutions have been found to date.

#### 5. Computer Solutions

In order to obtain information concerning the dynamics of more than three coupled modes, a number of computer calculations were performed. The basic equations used were (12,13), except that the terms

$$-\Omega\Gamma N(\Omega)$$
,  $-\Omega\Gamma V(\Omega)$  (34)

were appended to the right side of (12) and (13) respectively. The introduction of the function  $\Gamma$  is to simulate the damping of the harmonic modes (e.e.,  $\Omega \gg 1$ ) due to their resonant interaction with the beam particles. This modification of the equations (which, of course, is not unique), yields the linear result (17) provided that

$$\Gamma = (\mu/\alpha)^{\frac{1}{2}} (\Delta v_{b}/u_{o})$$

For these computations the value  $\mu = 0.1$  was used, and values of  $\Gamma$  from zero to 2.5 were considered. Since distances are described by z, equation (11), the values of  $\alpha$  and  $(\Delta v_b/u_o)$  do not have to be specified. For  $\mu = 0.1$ , the most unstable mode occurs for  $\Omega \simeq 1 - \frac{1}{2}(\mu/3^{\frac{1}{2}}) \simeq .97$ , which has a growth rate  $\sigma = 3^{3/4}/8^{\frac{1}{2}} = .806$ . Equations (12-13) are solved, and the amplitudes

 $A(z,\Omega) \equiv |N(z,\Omega)|^2$ 

are obtained and plotted in the following figures. It should be emphasized at the outset, that much of what is shown in these figures has nothing to do with physics, but only with mathematics. This is the case when any of the  $A(z,\Omega)$  have a value larger than unity, since this may correspond to negative densities.

Figures (2-4) illustrates the influence of the linear damping of the harmonics on the instability in the case where only five modes are considered:

> $\Omega_1 = .94$  ,  $\Omega_2 = .97$  (two unstable modes)  $\Omega_3 = 2\Omega_1$  ,  $\Omega_4 = 2\Omega_2$ ,  $\Omega_5 = \Omega_1 + \Omega_2$

In Figure 2, the harmonic damping is zero ( $\Gamma$ =0), and one clearly sees that the harmonic generation enhances the instability leading (probably) to an explosive instability. In Figure 3, the damping is taken to be  $\Gamma$ =1.5, and the harmonic waves grow more slowly. The less unstable mode ( $A_2$ ) saturates, and its harmonic and the sum mode ( $A_5$ ) saturate and decay. While the explosive nature of the instability is apparently removed, the unstable behavior of  $A_1$  and its harmonic,  $A_3$ , is not controlled. If the damping is further increased to  $\Gamma$ =2.5, as in Figure 4, the quantitative features are changed, but the instability is still not controlled. In particular, the linearly damped harmonic of  $A_1$  is still unstable.

From results such as shown in Figures (2-4) one can draw only limited conclusions. Namely one can <u>not</u> conclude that mode coupling does not control instabilities, but only that the present five mode system is unstable. The natural question then is, does the inclusion of many modes help to produce stability? This has been examined with many examples, and the apparent answer is no. Thus, Figure 2 has been essentially reproduced in the case of five unstable modes

$$(\Omega_1, \ldots, \Omega_5) = .88, .91, .94, .97, and 1.0$$

coupled with all the sum frequencies (six more modes), which includes the harmonics of the most unstable modes.

The next case to be studied is when higher order modes are included, together with damping (which increases linearly with  $\Omega$ , according to (17)). An example of such a computation is shown in Figure 5. In this case two unstable modes are coupled to the harmonic and sum modes and also the second harmonic and sum modes - nine modes in all. Note that only the nonlinear region of z has been plotted, starting at z=3. In this case, even though  $\Gamma$ =2 (so that the second harmonics have a strong linear damping, e.g.,  $A_{g} \sim e^{-11.6z}$ ), the first ( $A_{5}$ ) and second ( $A_{g}$ ) harmonics of the most unstable mode ( $A_{2}$ ) do not saturate for z < 10. Moreover the second harmonic becomes larger than the first harmonic. This suggests that the possible shortcoming of these calculations is that a sufficient number of harmonics have not been included (to act as an energy sink).

To examine this point, a single unstable mode and five of its harmonics were considered. The result is shown in Figure 6. Since  $\Gamma$ =2 again,  $A_6$  is linearly damped as  $e^{-23.5z}$ . Despite this fact one can see that, although the amplitudes of the first four harmonics are successively smaller, the last harmonic becomes abnormally large. While the system appears to be bounded ( a point which can not be assured until larger distances are computed), the results appear to have little physical significance because of the large amplitudes (as noted above). Moreover the abnormal amplitude of the last harmonic is clearly not physically acceptable.

As a final exploratory example, the damping of the harmonics was changed to be  $\frac{1}{2} \Omega^3$  rather than  $\Gamma\Omega$ . The question was to see whether this increased damping would control the amplitude of the higher harmonic. Figure 7 illustrates the result of such a computation. In this case the same nine modes were considered as those in Figure 5 (the initial conditions, however, differed slightly). It can be seen that the highest harmonic is still driven to large amplitudes despite the increased damping.

While the results of computations of the present type cannot prove that mode coupling is ineffective in stabilizing the linear instability. All examples which have been examined indicate that this is the case. Obviously it would be of great interest to obtain some analytic method to substantiate this conclusion. None has been found to date.

23

#### REFERENCES AND FOOTNOTES

- 1) C. B. Wharton and J. H. Malmberg, Phys. Fluids 11, 2655 (1968).
- 2) J. R. Apel, Phys. Fluids <u>12</u>, 291 (1969).
- 3) H. Böhmer, J. Chang and M. Raether, Phys. Fluids 14, 150 (1971).
- 4) In order for the beam growth rate to be adrabatically influenced by stochastic heating, it would appear that the correlation distance of the waves, L  $\sim (\Delta k)^{-1}$ , should be small compared to the shortest e-folding distance,  $k_i^{-1}$ . This requires that  $(8/3^{3/2})^{\frac{1}{2}} \sqrt{\mu/\alpha} u_0/\omega_p$   $\gg (\Delta k)^{-1}$  (equations (15-16)). Since  $\Delta k u_0 \simeq \Delta \omega$  and  $\Delta \omega \sim 2\nu$  (for the most unstable waves) one obtains the criterion  $(8/3^{3/2})^{\frac{1}{2}} \sqrt{\mu/\alpha} \gg \frac{1}{2\mu}^{-1}$ , or  $\mu^3 \gg .16 \alpha$ . Whether or not this is satisfied depends critically on the collision frequency.
- 5) Examples of theories involving stochastic heating are:
  - D. B. Chang, Phys. Fluids 7, 1980 (1964).
  - R. W. Fredricks, J. Plasma Phys. 1, 241 (1967).
  - G. Knorr, Plasma Phys. <u>11</u>, 917 (1969).
- A great deal of literature, concerning mode coupling, has been published see, e.g.,

Nonlinear Effects in Plasma, by V. N. Tsytovich (Plenum Press, 1970). Nonlinear Plasma Theory, by R. Z. Sagdeev and A. A. Galeev.

(W. A. Benjamin, 1969).

- 7) Instabilities which are induced by nonlinear mode coupling, assuming random phases, have also been extensively studied:
  - B. B. Kadomtsev, A. B. Mikhailovskii and A. V. Timofeev, Soviet Phys. JETP <u>20</u>, 1517 (1965).

- V. M. Dikasov L. I. Rudakov and D. D. Ryutov, Soviet Phys. JETP <u>21</u>, 608 (1965).
- V. N. Tsytovich, Soviet Phys. Uspekhi 9, 805 (1967).
- R. E. Aamodt and M. L. Sloan, Phys. Letters <u>19</u>, 1227 (1967); Phys.
   Fluids <u>11</u>, 2218 (1968).
- M. N. Rosenbluth, B. Coppi and R. N. Sudan, Plasma Physics and Controlled Nuclear Fusion Research <u>1</u>, 771 (1968); Ann. Physics <u>55</u>, 207, 248 (1969).
- Instabilities produced by the nonlinear interaction between modes of definite phases have been studied by:

F. Englemann and H. Wilhelmsson, Z. Naturforch. 24a, 206 (1969).

R. C. Davidson and A. N. Kaufman, J. Plasma Phys. 3, 97 (1968).

A. Sjolund and L. Stenflo, Physica 35, 499 (1967).

A. Jarmen, L. Stenflo and H. Wilhelmsson, Phys. Letters <u>28A</u>, 748 (1969).
L. Stenflo and H. Wilhelmsson, Phys. Letters <u>29A</u>, 217 (1969).

 9) Recent theories of trapping, applied to the present situation are:
 W. E. Drummond, J. H. Malmberg, T. M. O'Neil and J. R. Thompson, Phys. Fluids <u>13</u>, 2422 (1970).

W. M. Manheimer, Phys. Fluids 14, 579 (1970).

10) This approximation clearly fails in two cases. First, for very low frequencies, the wave number  $\omega/u_0$  becomes smaller that the linear mismatch  $(\alpha/\mu)^{\frac{1}{2}} (\omega_p \sigma/u_0)$ , which approaches  $(\frac{1}{2} \alpha \mu \omega_p)^{\frac{1}{2}} u_0^{-1}$  as  $\omega$  goes to zero. Thus, if  $\omega \ll \frac{1}{2} \alpha \mu \omega_p$ , the present theory does not apply. In most cases of practical interest, this is not a significant restriction. Secondly, if the resulting equations yield a solution in which the

instability grows sufficiently rapidly (e.g., an "explosive" instability), the spatial variation of nonlinear terms will become of dominant importance in this spatial region.

- 11) For example see: "Boundedness and Stability", by H. A. Antosiewicz, in Nonlinear Differential Equations and Nonlinear Mechanics, Edited by J. P. LaSalle and S. Lefschetz (Academic Press, 1963), p. 259.
- H. Wilhelmsson, L. Stenflo and F. Engelmann, J. Math. Phys. <u>11</u>, 1738 (1970).
- 13) An example of a system with no stable stationary point, but only bounded solutions, is

$$\dot{x}_1 = x_1(1-x_2^2) - x_2$$
;  $\dot{x}_2 = x_2(1-x_2^2) + x_1$ 

which is easily solved using the variables  $x_1 = r \cos\theta$ ,  $x_2 = r \sin\theta$ . Note that in the region  $|x_2| < 1$  the motion is "unstable", i.e. r > 0, but the stabilizing region  $|x_2| > 1$  always controls this instability. This boundedness is caused by an interplay between the nonlinear terms and the linear terms (which cause  $\theta = 1$ , hence forcing the trajectory to periodically enter the stabilizing region).

Solvable examples in more than two variables are more difficult to concoct. One example is

$$\dot{x}_{1} = x_{1} - x_{2} - \beta x_{1} x_{3} ; \quad \dot{x}_{2} = x_{2} - x_{1} - \beta x_{2} x_{3}$$
$$x_{3} = x_{3} + \beta(x_{1}^{2} + x_{2}^{2}) - c \beta x_{3}^{2}$$

If one introduces the variables

$$x_1 = r \cos\theta \cos\phi$$
,  $x_2 = r \sin\theta \cos\phi$ ,  $x_3 = r \sin\phi$ 

(note  $\pi/2 \ge \phi \ge - \pi/2$ ) then

1

1

$$\dot{\mathbf{r}} = \mathbf{r}(1-c\beta\mathbf{r}\sin^3\phi)$$
,  $\dot{\phi} = \beta\mathbf{r}\cos\phi(1-c\sin^2\phi)$ ,  $\dot{\theta} = 1$ 

These equations are, readily integrable. It is clear that, if c>0, all solutions are bounded regardless of the sign of  $\beta$ , and if c>1 there are no stable stationary points (Note: if 1>c>0,  $\phi \rightarrow \text{sign}(\beta) \ ^{\Pi}/2$  whereas, if c>1,  $\phi \rightarrow \text{sign}(\beta) \ \sin^{-1}(c^{-\frac{1}{2}})$ ).



PP-780





Figure 2. A solution of  $A(\Omega,z) = |N(\Omega,z)|^2$ , from equations (12-13, for the frequency components  $\Omega_1 = .94$ ,  $\Omega_2 = .97$ ,  $\Omega_3 = 2\Omega_1$ ,  $\Omega_4 = 2\Omega_2$ ,  $\Omega_5 = \Omega_1 + \Omega_2$ . The solution has the character of an "explosive instability" (singular solution).



Figure 3. The same case as in Figure 1, except that the harmonics are damped according to (34), with  $\Gamma$  = 1.5. The singular character is apparently removed, but the most unstable mode and its harmonic are still essentially unbounded.



Figure 4. The same as in Figure 2, except that  $\Gamma$  = 2.5. The unbounded nature of the solution persists even with this increased damping.



Figure 5. A solution of (12,13,34) with  $\Gamma = 2$ , for the case of nine frequency components:  $\Omega_1 = .94$ ,  $\Omega_2 = .97$ ,  $\Omega_3 = 2\Omega_1$ ,  $\Omega_4 = \Omega_1 + \Omega_2$ ,  $\Omega_5 = 2\Omega_2$ ,  $\Omega_6 = 3\Omega_1$ ,  $\Omega_7 = 2\Omega_1 + \Omega_2$ ,  $\Omega_8 = \Omega_1 + \Omega_2$ ,  $\Omega_9 = 3\Omega_2$ . The inclusion of the second harmonics does not produce a bounded solution.



PP-779

Figure 6. An unstable mode coupled to five of its harmonics  $(\Omega_1 = 97, \Omega_k = k\Omega_1, k = 2, ..., 6)$  with  $\Gamma = 2$ . The last harmonic becomes abnormally large despite the strong linear damping.



PP-777

Figure 7. The same components as in Figure 5, but with  $\Gamma = \frac{1}{2} \Omega^2$ , producing a stronger damping of the higher harmonics. The second harmonic (Ag) still obtains a large amplitude.

| Security Classification                             | ENT CONTROL DATA                     | R & D                                                                       | and and a state of the state of |  |  |  |
|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (Security classification of title, body of abstract | and indexing annotation must b       | e entered when the                                                          | overall report is classified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Coordinated Science Laboratory                      | CONTRING ACTIVITY (Comporate author) |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| University of Illinois                              | rsity of Illinois                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Urbana, Illinois 61801                              | 2b. GROUP                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| REPORT TITLE<br>ON THE SPATIAL STABILIZATION OF     | THE BEAM-PLASMA IN                   | STABILITY                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| DESCRIPTIVE NOTES (Type of report and inclusive dat | tesj                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| AUTHOR(S) (First name, middle initial, last name)   |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| E. Atlee Jackson                                    |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| June, 1971                                          | 78. TOTAL NO<br>34                   | OF PAGES                                                                    | 76. NO. OF REFS<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| DAAB-07-67-C-0199                                   | 98. ORIGINATO                        | R-518                                                                       | BER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| PROJECT NO.                                         |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     | 9b. OTHER RE<br>this report)         | 9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      | UILU-ENG /I-2221                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     | through<br>Fort Me                   | through U. S. Army Electronics Comman<br>Fort Monmouth, New Jersey          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ABSTRACT                                            |                                      |                                                                             | A Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| D FORM 4 4 TO                                       |                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

| Security Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|--------|--|
| KEY WORDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | LINK A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LINK B         |           | LINK C |  |
| <ul> <li>Control of the second state of the se<br/>second state of the second state o</li></ul> | ROLE       | .WT    | ROLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WТ             | ROLE      | ₩т     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1. 19. 19 |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a top is a     | and and   |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and core       | 111-11    | 1.11   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
| Beam-Plasma Instability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        | See. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 1997      |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17-3-1         |           |        |  |
| Bounded Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1         |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1000   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        | Store -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |           | 104    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        | 1994 - V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111           | - 5271    |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALLS!         |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1      | 5.29 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.1       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1. 1. 1. 1. |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1.1.1    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 200         |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.00      | 1.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.10           |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00       |        | N. S. CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sec.3      | 1.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 0.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1000      |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.             |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200            |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19. 14     | 1.00   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 1.24      |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           | 2.44   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           | aline. |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an - warne |        | The state of the s | and the second | all have  | 1. 2.  |  |