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1 Introduction

Numerous checkpointing and rollback recovery techniques have been proposed in the 

literature for parallel and distributed systems. They can be classified into three primary 

categories. Coordinated checkpointing schemes [1-5] synchronize computation with check

pointing by coordinating processors during a checkpointing session in order to maintain a 

consistent set of checkpoints. Each processor only keeps the most recent successful check

point and rollback propagation is avoided at the cost of potentially significant performance 

degradation during normal execution. Loosely-synchronized checkpointing schemes [6-8] re

duce the coordination overhead by taking advantage of loosely-synchronized checkpointing 

clocks and by bounding the message transmission delay. Independent checkpointing schemes 

[9-19] replace the checkpoint synchronization by dependency tracking and possibly message 

logging in order to allow maximum process autonomy. Rollback propagation is managed by 

searching for a consistent system state based on the dependency information. Process au

tonomy during normal execution is preserved by either allowing slower recovery or assuming 

a piecewise deterministic execution model [15]. Typically, each processor has to maintain 

multiple checkpoints and message logs to ensure successful recovery.

This paper considers independent checkpointing schemes for nondeterministic execution 

[10]. Most research on this subject has concentrated on algorithms for finding the latest 

consistent set of checkpoints, i.e., the recovery line, during rollback recovery. The same 

algorithms can be applied to the set of existing checkpoints during normal execution to 

determine the global recovery line2. All the checkpoints and message logs older than the 

global recovery line then become obsolete and can therefore be discarded. Based on the 

observation that some of the non-obsolete checkpoints can also be discarded, we previously 

derived the necessary and sufficient conditions for a checkpoint to be non-discardable [20]. 

Let N be the number of processors, it was shown that there exists a set of N  recovery lines 

which contains all the checkpoints possibly useful for any future recovery. We will show in

2The global recovery line can be used for recovery when the entire system crashes. A local recovery line 
is used when a subset of processors needs to roll back [9].
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this paper how to identify all discardable message logs in order to further reduce the space 

overhead3 for systems with message logging in addition to checkpointing [12].

The outline of the paper is as follows. Section 2 describes the checkpointing and recovery 

protocol and the technique of recovery line transformation and decomposition. Section 3 

derives the necessary and sufficient conditions for identifying all discardable message logs 

and the experimental evaluation is described in Section 4.

2 Checkpointing Protocol and Recovery Lines

2.1 Checkpointing and Recovery Protocol

The system model considered in this paper consists of a number of concurrent processes 

for which all process communication is through message passing. Processes are assumed to 

run on fail-stop processors [21] and each processor is considered as an individual recovery 

unit [13]. We do not assume deterministic execution or the existence of any mechanism for 

detecting and recording internal nondeterministic events [19,22]. Consequently, if the sender 

of a message is rolled back, the corresponding message log will be invalid during reexecution, 

which means the receiver also has to be rolled back in order to undo the effect of the message.

During normal execution, the state of each processor is periodically saved as a checkpoint 

on stable storage. Let CPi,k denote the kth checkpoint of processor pi with k >  0 and 

0 < i < N — l, where N  is the number of processors. A checkpoint interval is defined to 

be the time between two consecutive checkpoints on the same processor and the interval 

between CPi,k and CPi^+i is called the kth. checkpoint interval. Each message is tagged 

with the current checkpoint ordinal number and the processor number of the sender. Each 

processor takes its checkpoint independently and updates the direct dependency information

3 A simple sufficient condition based on local information exists for identifying some discardable messages 
before they are logged [12]. This paper considers the necessary and sufficient conditions based on global 
information for identifying all discardable logged messages.
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table (or input table [10]) as follows: if at least one message from the mth checkpoint interval 

of processor pj had been processed during the previous checkpoint interval, the pair (j, m) 

is added to the table entry for the new checkpoint.

A centralized garbage collection algorithm can be invoked by any processor periodically to 

reduce the space overhead. First, the dependency information for all existing checkpoints is 

collected to construct the checkpoint graph [9] (Fig. 1(b)). The rollback propagation algorithm 

[9] shown in Fig. 2 is executed on the checkpoint graph to determine the global recovery line 

according to the definition of consistency described later. All the checkpoints and message 

logs before the global recovery line then become obsolete and their space can therefore be 

reclaimed. The same procedure can also be invoked by any processor which initiates a 

rollback to determine the local recovery line. The only differences are each surviving processor 

takes an additional virtual checkpoint [10] so that the dependency information during the 

current checkpoint interval is also included in the checkpoint graph (called the extended 

checkpoint graph [9]), and each processor will roll back to the appropriate checkpoint when 

it is informed of the local recovery line.

Two situations need to be considered for checkpoint consistency. In Fig. 3(a), CPi7k and 

CPj,m are inconsistent because of the orphan message [8] Ma, or equivalently because CPjiTn 

happened before [24] C P { In Fig. 3(b), the message Mb is an in-transit message, i.e., 

recorded as “sent but not yet received” , with respect to the system state containing CPi^ 

and CPj,m • It has been shown [1,7] that checkpoints like CP^k and CPj)m can be considered 

consistent if Mb is logged. Pessimistic (synchronous) message logging protocols [25-27] can 

ensure such a message is always properly recorded at the receiving end. This is also true for 

an optimistic logging protocol if the inclusion of a new checkpoint in the checkpoint graph 

is properly delayed based on the message logging progress [12]. As a result, we consider the 

situation in Fig. 3(b) as consistent.
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(a)

—̂ Obsolete checkpoints

t
Global recovery line

(b)

Figure 1: Example checkpoint graph (a) the checkpoint and communication pattern; (b) 
the corresponding checkpoint graph with each directed edge representing a happened before 
relation.

/ *  CP stands for checkpoint. Initially, all the CPs are unmarked */ 
include the latest CP of each processor in the root set; 
mark all CPs strictly reachable [23] from any CP in the root set; 
while (at least one CP in the root set is marked) {

replace each marked CP in the root set by the latest unmarked CP on the 
same processor;
mark all CPs strictly reachable from any CP in the root set;

}
the root set is the recovery line.

Figure 2: The rollback propagation algorithm.

Figure 3: Checkpoint consistency (a) orphan message Ma; (b) in-transit message M&.
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2.2 Recovery Line Transformation and Decomposition

We define a global checkpoint as a set of N  checkpoints, one from each processor. Based on 

the previous description of checkpoint consistency, a consistent global checkpoint is a set of N  

checkpoints, one from each processor and no two of which are related through the happened 

before relation. A recovery line refers to the latest available consistent global checkpoint.

Note that being obsolete is simply a sufficient condition for being discardable. Our goal 

is to derive the necessary and sufficient conditions for identifying all discardable checkpoints 

and message logs. A checkpoint is non-discardable if and only if it can possibly belong to a 

future recovery line, and a message log is non-discardable if and only if it can possibly become 

an in-transit message with respect to a future recovery line. (For the ease of presentation, 

if a message M  is an in-transit message with respect to a recovery line L , we will say M  

intersects L or the dependency edge corresponding to M intersects L.) The difficulty comes 

from the fact that there are an infinite number of possible future recovery lines. Therefore, 

our first step is to find a finite set of recovery lines, which suffices for the purpose of optimal 

garbage collection.

An operational session [10] is the interval between the start of normal execution and the 

instance of error recovery. Between two consecutive operational sessions is a recovery session. 

The entire program execution can be viewed as consisting of several operational sessions and 

recovery sessions. Within an operational session, new vertices are added to the checkpoint 

graph and can not have any outgoing edges to any existing vertices4. (If a graph G' can 

be obtained by adding new vertices to another graph G in this way, G' is called a potential 

supergraph of G.) Within a recovery session, existing vertices after the local recovery line are 

removed from the checkpoint graph. The above rules for checkpoint graph evolution then 

determine the possible future checkpoint graphs, and therefore the future recovery lines.

We first define a set of 2N immediate potential supergraphs which are the supergraphs 

of G and the subgraphs of G as shown in Fig. 4. G is constructed by adding an n-node n{

4Vertices with incoming edges from not-yet-collected vertices are temporarily excluded from the check
point graph.
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Figure 4: The immediate potential supergraphs.

with single incoming edge at the end for each process pi. Let U denote the set of all such 

n-nodes and 'JZjC(G) denote the recovery line of a checkpoint graph G. The recovery line 

transformation procedure first transforms every possible future recovery line of G backwards 

in time into the recovery line of one of G 's 2N immediate potential supergraphs. The recovery 

line decomposition procedure then further reduces this set of 2N recovery lines {TZjC ( G - W )  : 

W  C U} to the set of N  recovery lines {7ZC(G — nf) : 6 U}. We will describe the

transformation and decomposition procedures by using the example in Fig. 5. Formal proofs 

can be found in [20].

Suppose G in Fig. 5(a) is the current checkpoint graph considered for garbage collection. 

Fig. 5(b) shows the extended checkpoint graph when pz later initiates the first rollback and 

Gc is the checkpoint graph immediately after the recovery. Fig. 5(d) shows another possible 

extended checkpoint graph when po initiates a second rollback. We now describe how to 

transform and decompose RC(Gd), a typical future recovery line of G.

Transformation within an operational session: First we consider Gc and Gd where Gc 

is the starting checkpoint graph of a new operational session and Gd is a potential supergraph 

of Gc• For checkpoints X , Y  and Z which belong to 1Z£(Gd) but are not in graph Gc, we 

replace them by their corresponding n-nodes P, Q and R for Gc as shown in Fig. 5(g). 

1ZC(Gd) =  {A , P , X, Y, Z } is then transformed into 1Z£(Gg) =  {A ,P ,P , Q ,R }  where Gg is

6



Figure 5: Example recovery line transformation.
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an immediate potential supergraph of Gc.

Transformation across consecutive operational sessions: Now we consider Gg and 

Gb, the last checkpoint graph of the first operational session. Of the three n-nodes P , Q and 

R in 7ZC(Gg), only Q and R come from the processors which were rolled back during the 

first recovery. We replace them by C and D, the corresponding checkpoints which were on 

the local recovery line. 7ZC(Gg) is then transformed into 7ZC(Gf) =  {A , B , P, C , D}.  Notice 

that Gf  is an immediate potential supergraph of G& and is therefore a potential supergraph 

of G. By repeatedly and alternately applying the above two transformation procedures, 

every future recovery line can be transformed into another recovery line in the following set: 

{ 1 Z C { G - W ) :  W C U ) .

Recovery line decomposition: Let min(S) denote the set of minimal elements, i.e., 

vertices with no incoming edges, of S. By utilizing the lattice properties of the maximum

sized antichains on a partially ordered set [24,28], each of the 2N recovery lines can be 

decomposed as:

TIC(G -  W)  =  mm( (J 7 ^ £ (G -n ■̂)). (1)

For example, the recovery line of Ge =  G — {n0, rai, n3, n4} in Fig. 5(e) has the following 

decomposition (refer to Fig. 6)

7ZC(Ge) =  min(7^£(G — n0) U R.C(G — n\) U 1Z£(G — n^) U 'R,L{G — n4))

=  min({A , B, n2, n3, n4, n0, / ,  ni, J, C, D})  =  { A , B , n2, C, D}.

3 Message Log Reclamation

By using the techniques described in the previous section, it has been shown that the set 

of all non-discardable checkpoints is equal to the union of the N  recovery lines 7ZC{G — nt), 

6 U (except for the nds) [20]. For the example shown in Fig. 6, while all the checkpoints in
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G are non-obsolete, only those checkpoints corresponding to the shaded vertices in Fig. 6(f) 

are non-discardable.

In addition to the checkpoints, message logs5 constitute another storage space overhead 

[12]. By following the transformation and decomposition procedures, we will show in the 

following that a message log is non-discardable, i.e., can possibly intersect a future recovery 

line, if and only if it intersects one of 1ZC(G — n*)’s.

3.1 Recovery Line Transformation and Decomposition

Instead of considering each individual message, we use its corresponding edge in the check

point graph for our discussion. Let (a, 6) represent the directed edge starting at vertex a 

and pointing to vertex b. Clearly, (a, b) intersects a recovery line 1Z£(G) if a is on the left 

hand side of 'JZC(G) and b is on the right hand side of 7ZC(G).

LEM M A 1 If (a, b) can possibly intersect a future recovery line, (a, 6) must intersect 7ZC(G— 

W) for some W  C U.

Sketch of the proof. Again, we use the example in Fig. 5. The edge (E, F ) in G can 

intersect a possible future recovery line 7ZC(Gd)- We will show that (E, E) must also intersect

n c ( G e).

Transformation within an operational session: First consider Gc, 7ZC(Gg) and 7ZC(Gd)- 

Any vertex of Gc which is on the left (right) hand side of 'RC(Gd) must remain on the left 

(right) hand side of 1Z£(Gg). Therefore, any edge of Gc intersecting 7Z£(Gd), for example 

(E ,F ) ,  must also intersect 7Z£(Gg) after the recovery line transformation.

Transformation across consecutive operational sessions: Now consider Gc, 7Z£(Gg) 

and 1Z£(Gf). All vertices of Gc which are on the right hand side of 7Z£(Gg) must remain on 

the right hand side of 7Z£(Gf) because the transformation can only push the recovery line 

to the left. Those on the left hand side of IZ£(Gg) remain on the left hand side of 'RC(Gf)

5The message logs considered in this paper are used for recording the state of the channels [1] instead of 
replaying for deterministic state reconstruction [13].

9



Figure 6: Example execution of our algorithm.
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except for C  and D. However, C and D can not have any outgoing edges in Gc because they 

were part of the local recovery line and therefore all such edges must have been removed 

during the recovery. Hence, any edge of Gc intersecting 1Z£(Gg), for example (E , F ), must 

also intersect E,£(Gf) after the transformation.

Finally, we can show that (E, F)  also intersects /R £(G e) by again applying the transfor

mation within an operational session. □

L E M M A  2 min({jn.eW IZ£(G — n^)) in Eq. (1) is equivalent to the set of the N leftmost 

checkpoints, one from each processor, among the checkpoints in the union.

Proof. If a checkpoint v of pi is not the leftmost checkpoint of pi in the union, then v can 

not be a minimal element because there exists at least one checkpoint on its left. Conversely, 

if v is the leftmost checkpoint of pi, v must be in mm((Jn.evv E,£(G  — n,-)) because there
A A

are only N  such checkpoints and 7Z£(G — W)  =  rnin{\Jmew E,£(G  — n*)) must consist of N 

checkpoints. a

L E M M A  3 If (a, b) intersects 7Z£(G —W) for some W  C U, (a, b) must intersect 7Z£(G — 

ni) for some n,- € U.

Proof. Suppose (a, 6) does not intersect any of the N  recovery lines 7Z£(G — nt), ni € U. 

Then each of the N recovery lines must lie either entirely on the right hand side of (a, b) or 

entirely on the left hand side of it.

Recovery line decomposition: Given any of the 2N recovery lines 7Z£(G — W), W  C U, 

if all 7Z£(G — nt) ’s, ni 6 W,  are entirely on the right hand side of (a, 6), 1Z£(G — W ) must 

also lie on the right hand side of (a, 6) by Eq. (1) and Lemma 2; if at least one 7Z£(G — n,-), 

ni £ W,  lies entirely on the left hand side of (u,6), 1Z£(G — W ) will be on the left hand 

side of (a, 6) again by Lemma 2. Therefore, we have shown that (a, 6) can not intersect 

any 7Z£(G — W)  if it does not intersect any 7Z£(G — n{). Conversely, if (a, 6) intersects 

1Z£(G — W ) for some W  C U, (a, b) must intersect 1Z£(G — nt) for some n; £ U. □

11



3.2 The Algorithm

We now state the necessary and sufficient conditions for a message log to be non-discardable.

T H E O R E M  1 A message log is non-discardable if and only if its corresponding edge in the 

checkpoint graph intersects 7ZC[G — nf) for some n{ € U.

Proof. The only if part follows immediately from Lemmas 1 and 3. The ¿/part comes 

from the fact that every 7ZC(G — nf) is also a possible future recovery line. □

Theorem 1 also gives the algorithm for finding all non-discardable message logs: first 

compute the N  recovery lines 7ZC(G — nt), nt- € U\ only those message logs with their 

corresponding edges intersecting any of the N  recovery lines are non-discardable. In Fig. 6,
A A

the edge (E, F) intersects 1ZC(G — n0), (G, H ) intersects 1Z£(G — n4) and none of the edges
A A A

intersects /RC{G — ni), 7ZC(G — n2) or 'R,£{G — n3). Therefore, although all the edges in 

Fig. 6(f) are non-obsolete, only those message logs corresponding to (E, F ) and (G, H) need 

to be retained.

There is an interesting difference between checkpoint reclamation and message log recla

mation. While the set of non-discardable checkpoints is determined by the union of the 

N recovery lines 7ZC(G — nt), n{ £ U, the set of non-discardable message logs is affected 

by the position of each individual recovery line. Fig. 7 illustrates such a difference. The 

non-discardable checkpoints a, 6, c and d in Fig. 7(a) remain non-discardable in Fig. 7(b) 

when e is added to the graph. However, the non-discardable message logs corresponding to 

the edges (6, d) and (c, d) in Fig. 7(a) become discardable as the addition of e changes the 

positions of 7Z£(G — n\) and 7Z£(G — n2).

4 Experimental Results

Three hypercube programs are used to illustrate the message log reclamation capabilities 

and benefits of our algorithm. They are Cell placement, Channel router and QR decomposi

tion, running on an 8-node Intel iPSC/2 hypercube. Communication traces are collected by

12



/N

Figure 7: The difference between the reclamation of checkpoints and message logs.

intercepting the “send” and “receive” system calls. Communication trace-driven simulation 

is then performed to obtain the results. The execution time for each program is listed in 

Table 1. The checkpoint interval is arbitrarily chosen to be approximately one tenth of the 

execution time.

Table 1: Execution time and checkpoint interval.

Programs Cell placement Channel router QR decomposition
Execution time (sec) 324 469 370
Checkpoint interval (sec) 35 40 35

Figs. 8-10 compare our algorithm with the traditional garbage collection algorithm for 

the three programs in terms of the number and size of the retained message logs. Each curve 

shows the remaining space overhead after garbage collection if the algorithm is invoked after 

a certain number of checkpoints have been taken. Since the checkpointing clocks on all nodes 

are approximately synchronized, checkpoints #8n through # 8 (n + l)- l  are taken at about 

the same time, which explains the fact that the number of messages is almost constant within 

that interval.

The domino effect is illustrated by the constant increase in the number of non-obsolete 

message logs as the total number of checkpoints increases, for example, between checkpoints

13



#40 and #64 in Fig. 8(a) and between checkpoints #48 and #88 in Fig. 9(a). The figures 

show that our algorithm performs consistently better than the traditional algorithm and is 

particularly effective when the domino effect persists.

5 Concluding Remarks

We have shown that some of the non-obsolete message logs in an independent check

pointing protocol can be discarded because they can never be useful for any possible future 

recovery. An algorithm was developed for finding all discardable message logs in order to 

minimize the space overhead. Communication trace-driven simulation results for three hy

percube programs showed that the algorithm can be effective in reducing the message log 

space overhead for real applications.
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