
July 1993 UILU-ENG-93-2229
CRHC-93-16

Center for Reliable and High-Performance Computing

APPLICATION OF
COMPILER-ASSISTED
MULTIPLE INSTRUCTION
ROLLBACK RECOVERY TO
SPECULATIVE EXECUTION

N.J. Alewine
W. K. Fuchs
W.-M. Hwu

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED J a xj_
{EduRifv Classification of this page

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

Unclassified _________
1b. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93-2229 CRHC-93-16

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

National Aeronautics and Space Administration
6c ADDRESS (G'ty, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)

Moffitt Field, CA

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK

7b
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)
Application of Compiler-Assisted Multiple Instruction Rollback Recovery to Speculative

Execution
12. PERSONAL AUTHOR(S) ALEWINE, N. J, W. K. Fuchs, and W.-M. Hwu
13a. TYPE OF REPORT

Technical__
13b. TIME COVERED

FROM_________ _ TO
14. DATE OF REPORT (fear, Month, Day)

1QQ3 Tnlv 19---------------
15. PAGE COUNT

18
16. SUPPLEMENTARY NOTATION

I 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP r o l l b a c k r e c o v e r y , c o m p i l e r - a s s i s t e d m u l t i p l e i n s t r u c t i o n ,
t r a n s i e n t p r o c e s s o r f a i l u r e s , i n s t r u c t i o n a l l e v e l p a r a i -

J j3 .1 ÌS 2 L _
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Speculative execution is a method to increase instruction level parallelism which can be exploited by both
super-scalar and VLIW architectures. The key to a successful general speculation strategy is a repair
mechanism to handle mispredicted branches and accurate reporting of exceptions for speculated instrucitons.
Multiple instruction rollback is a technique developed for recovery from transient processor failure. Many
of the difficulties encountered during recovery from branch misprediction or from instruction re-execution
due to exception in a speculative execution arChitecute are similar to those encountered during multiple
instruction rollback.

This paper investigates the applicability of a recently developed compiler-assisted multiple instruciton
rollback scheme to aid in speculative exectuion repair. Extensions to the ocmpiler-assisted scheme to support
branch and exception repair are presented along with performance measurements across ten application
programs.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
| 0UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICAI
U n c l a s s i f i e d

ION

I 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED____________
ICCUWITY CLAMI FI CATION O F THII f»AOE

UNCLASSIFIED

TO APPEAR: WORKSHOP OH HARDWARE AND SOFTWARE ARCHITECTURES FOR FAULT
TOLERANCE: PERSPECTIVES AND TOWARDS A SYNTHESIS JUNE 14-16, 1993
LE MONT SAINT-MICHEL, FRANCE

APPLICATION OF COMPILER-ASSISTED MULTIPLE
INSTRUCTION ROLLBACK RECOVERY TO

SPECULATIVE EXECUTION

N. J. Alewine* W. K. Fuchs, W.-M. Hwu

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urban a-Champaign

Abstract
Speculative execution is a method to increase in­

struction level parallelism which can be exploited by
both super-scalar and VLIW architectures. The key
to a successful general speculation strategy is a repair
mechanism to handle mispredicted branches and ac­
curate reporting of exceptions for speculated instruc­
tions. Multiple instruction rollback is a technique
developed for recovery from transient processor fail­
ures. Many of the difficulties encountered during re­
covery from branch misprediction or from instruction
re-execution due to exceptions in a speculative exe­
cution architecture are similar to those encountered
during multiple instruction rollback.

This paper investigates the applicability of a re­
cently developed compiler-assisted multiple instruc­
tion rollback scheme to aid in speculative execution
repair. Extensions to the compiler-assisted scheme
to support branch and exception repair are presented
along with performance measurements across ten ap­
plication programs.

1 Introduction

Super-scalar and VLIW architectures have been
shown effective in exploiting instruction level paral­
lelism (ILP) present in a given application [1-3]. Cre­
ating additional ILP in applications has been the sub­
ject of study in recent years [4-6]. Code motion within
a basic block is insufficient to unlock the full potential
of super-scalar and VLIW processors with issue rates

* International Business Machines Corporation, Boca Raton,
FI.

1 This research was supported in part by the National Aero­
nautics and Space Administration (NASA) under grant NASA
NAG 1-613, in cooperation with the Illinois Computer Labora­
tory for Aerospace Systems and Software (ICLASS), and in part
by the Department o f the Navy and managed by the Office of
the Chief o f Naval Research under Contract N00014-91-J-1283.

greater than two [3]. Given a trace of the most fre­
quently executed basic blocks, limited code movement
across block boundaries can create additional ILP at
the expense of requiring complex compensation code
to ensure program correctness [7]. Combining multiple
basic blocks into superblocks permits code movement
within the superblock without the compensation code
required in standard trace scheduling [3].

General upward and downward code movement
across trace entry points (joins) and general down­
ward code motion across trace exit points (branches,
or forks) is permitted without the need for special
hardware support [7]. Sophisticated hardware support
is required, however, for unrestricted upward code mo­
tion across a branch boundary. Such code motion
is referred to as speculative execution and has been
shown to substantially enhance performance over non-
speculated architectures [8-10]. This paper focuses on
the support hardware for speculative execution, which
ensures correct operation in the presence of except­
ing speculated instructions (referred to as exception
repair) and of mispredicted branches (referred to as
branch repair). It is shown that data hazards which re­
sult from exception and branch repair are very similar
to data hazards that result from multiple instruction
rollback, and that techniques used to resolve rollback
data hazards are applicable to exception and branch
repair.

The remainder of the paper is organized as follows.
Section 2 gives a brief overview of a compiler-assisted
multiple instruction rollback (MIR) scheme to be used
as a base for application to speculative execution re­
pair (SER). Section 3 describes speculative execution
and the requirements for exception repair and branch
repaur. Section 4 introduces a schedule reconstruc­
tion scheme and extends the compiler-assisted rollback
scheme. Section 5 describes read buffer flush costs auad
Section 6 presents performance impacts which result

from read buffer flushes.

2 Compiler-Assisted M ultiple Instruc­
tion Rollback Recovery

2.1 Hazard Classification

Within a general error model, data hazards result­
ing from instruction retry are o f two types [11-13].
On-path hazards are those encountered when the in­
struction path after rollback is the same as the initial
path and branch hazards are those encountered when
the instruction path after rollback is different than the
initial path. As shown in Figure 1, rx represents an
on-path hazard where during the initial instruction se-

Figure 1: On-path data hazard.

quence rx is written and after rollback is read prior to
being re-written. As shown in Figure 2, ry represents
a branch hazard where the initial instruction sequence
writes ry and after rollback ry is read prior to being re­
written however this time not along the original path.

2.2 On-path Hazard Resolution Using a
Read Buffer

Hardware support consisting of a read buffer of size
2N, as shown in Figure 3, has been shown to be ef­
fective in resolving on-path hazards [11-13]. The read
buffer maintains a window of register read history. If
am on-path hazard is present, then prior to writing
over the old value of the hazard register, a read of
that value must have taken place within the last N
instructions (else after rollback of < N, a read of the
hazard register would not occur before a redefinition).
Key to this scenario is the fact that the original path
is repeated. Branch hazard resolution is left to the

Figure 2: Branch data hazard.

Figure 3: Read buffer.

compiler. At rollback, the reawl buffer is flushed back
to the general purpose register file (GPRF), restoring
the register file to a restartable state. The primary
advantage of the read buffer is that it does not require
an additional reawl port as with a history buffer, repli­
cation of the GPRF as with the future file, or bypass
logic as with the reorder buffer or delayed write buffer
[14,15].

2.3 Branch Hazard Removal Compiler
Transformations

Compiler transformations have been shown to be
effective in resolving branch hazards [11,12]. Branch
hazard resolution occurs at three levels; 1) pseudo
code, 2) machine code, and 3) post-pass. Resolution
at the pseudo code level would be accomplished by
renaming the pseudo register ry of instruction /,• (Fig-

ure 2) to rz. Node splitting, loop expansion and loop
protection transformations aid in breaking pseudo reg­
ister equivalence relationships so that renaming can
be performed. After the pseudo registers are mapped
to physical registers, some branch hazards could re­
appear. This is prevented at the machine code level
by adding hazard constraints to live range constraints
prior to register allocation. Branch hazards that re­
main after the first two levels can be resolved by either
creating a ‘‘covering’’ on-path hazard or by inserting
nop (no operation) instructions ahead of the hazard
instruction until the rollback is guaranteed to be un­
der the branch. Given the branch hazard of Figure
2, a covering on-path hazard is created by inserting
an MOV ry, ry instruction immediately before the in­
struction in which ry is defined. This guarantees that
the old value o f ry is loaded into the read buffer and
is available to restore the register file during rollback.

• •

Figure 5: Speculated instruction traps.

3.1 Branch Repair

3 Speculative Execution

Figures 4 and 5 illustrate the two basic problems
which are encountered when attempting upward code
motion across a branch. As shown in Figure 4, if the

'* - r*

o
v

branch taken
--------------1

rI - r2 * 3 2

Figure 4: r\ in live_out of taken path.

speculated instruction (i.e., an instruction moved up­
ward past one or more branches) modifies the system
state, and due to the branch outcome the speculated
instruction should not have been executed, program
correctness could be affected. Figure 5 illustrates that
if the speculated instruction causes an exception, and
again due to the branch outcome, the excepting in­
struction should not have been executed, program per­
formance or even program correctness could be af­
fected.

Figure 6 shows an original instruction schedule and
a new schedule after speculation. Instructions d, *,
and / have been speculated above branches c and
g from their respective fall-through paths.2 Specu­
lated instructions Me marked “ (s).” The motivation
for such a schedule might be to hide the load delay
of the speculated instructions or to allow more time
for the operands of the branch instructions to become
available. If c commits to the taken path (i.e., it is
mispredicted by the static scheduler), some changes
to the system state that have resulted from the execu­
tion o f d, *, and / , may have to be undone. No update
is required for the PC; execution simply begins at j .
If instead, c commits to the fall-through path but g
commits to the taken path, then only i ’s changes to
the system state may have to be undone.

Not all changes to the system state are equally im­
portant. If for example, d writes to register rx and
rx £ live.in(j) (i.e., along the path starting at j , a
redefinition of rx will be encountered prior to a use of
rx [16]), then the original value of rx does not have
to be restored. Inconsistencies to the system state
as a result of mispredicted branches exhibit similari­
ties to branch hazards in multiple instruction rollback
[11,12]. Given this similarity between branch haz­
ards due to instruction rollback and branch hazards
due to speculative execution, compiler-driven data­
flow manipulations, similar to those developed to elim­
inate branch hazards for MIR [11,12], cam be used to
resolve branch hazards that result from speculation.
Such compiler transformations have been proposed for

3For this example it is assumed that the fall-through paths
are the most likely outcom e o f the branch decisions at c and g.

a a RB_c: d
b « d e

0 - * - j « i f
d b i
e («)f jumpLl

f 0 — j
■ 1 : 0 * k e RB_g: h

h L 1 :[? J -^ k i
i h jump L2

2: L2:

Original Speculated Recovery
Schedule Schedule

ma ̂̂-- m

Blocks

Figure 6: Branch repair.

branch misprediction handling [9]. Since re-execution
of speculated instructions is not required for branch
misprediction, compiler resolution of branch hazards
becomes a sufficient branch repair technique.

3.2 Exception Repair

Figure 6 also demonstrates the handling of spec­
ulated trapping instructions. If d is a trapping in­
struction and an exception occurred during its execu­
tion, handling o f the exception must be delayed until c
commits so that changes to the system state are mini­
mized, and in some cases to ensure that repair is pos­
sible in the event that c is mispredicted. If c commits
to the taken path, the exception is ignored and d is
haul died like any other speculated instruction given a
branch mispredict. If c was correctly predicted, three
exception repair strategies are possible. The first is to
undo the effects of only those instructions speculated
above c (i.e., d, i, and /) and then branch to a recov­
ery block RB.c [10] as shown in Figure 6. The address
of the recovery block can be obtained by using the PC
value of the excepting instruction as am index into a
hash table. This strategy ensures precise interrupts
[14,17] relative to the nonspeculated schedule but not
relative to the original schedule. Recovery blocks can
cause significamt code growth [10]. The second strat­
egy undoes the effects o f all instructions subsequent to
d (i.e., i, 6, and /) , handles the exception, amd resumes
execution at instruction i [9]. This latter strategy pro­
vides restartable states and does not require recovery
blocks. A third exception repair strategy undoes the
effects of only those subsequent instructions that are
speculated above c (i.e., only i amd /) , handles the ex­

ception, and resumes execution at instruction «, how­
ever, this time only executing speculated instructions
until c is reaudied. The improved efficiency of strategy
3 over that o f strategy 2 comes at the cost o f slightly
more complex exception repair hardware.

When a branch commits and is mispredicted, the
exception repair hardware must perform three func­
tions: 1) determine whether am exception has occurred
during the execution o f a speculated instruction, 2) if
an exception has occurred, determine the PC value
of the excepting instruction, amd 3) determine which
changes to the system state must be undone. Func­
tions 1 and 2 aure similar to error detection amd location
in multiple instruction rollback. Function 3 is similar
to on-path hazard resolution in multiple instruction
rollback [11,12,18]. On-path hazards assume that af­
ter rollback the initiad instruction sequence from the
faulty instruction to the instruction where the error
was detected is repeated.

Figure 7 illustrates the speculation of a group of

:

Figure 7: Exception repadr.

instructions amd re-execution strategy 3. The load in­
struction traps, but the exception is not hamdled un­
til the bramch instruction commits to the fall-through
path. Control is then returned to the trapping instruc­
tion. This scenario is identicad to multiple instruction
rollbaudc where am error occurs during the loaui instruc­
tion and is detected during the bramch instruction. For
this examiple, only r*i must be restored during rollback
since amd r5 will be rewritten prior to use during
re-execution. Figure 7 shows that exception repair

hazards in speculative execution are the same as on-
path hazards in multiple instruction rollback, and a
read buffer as described in Section 2 can be used to
resolve these hazards. The depth of the read buffer is
the maximum distance from h to In along any back­
wards walk3, where Jn is a trapping instruction that
was speculated above branch instruction h-

3.3 Schedule Reconstruction

Assumed in Figures 6 and 7 are mechanisms to
identify speculative instructions, determine the PC
value o f excepting speculated instructions, and deter­
mine how many branches a given instruction has been
speculated above. An example of the latter case is
shown in Figure 6 where instructions d, t, and / , are
undone if c is mispredicted; however, only i must be
undone if g is mispredicted.

If the hardware had access to the original code
schedule, the design of these mechanisms would be
straightforward. Unfortunately, static scheduling re­
orders instructions at compile-time and information as
to the original code schedule is lost. To enable recov­
ery from mispredicted branches and proper handling
of speculated exceptions, some information relative to
the original instruction order must be present in the
compiler-emitted instructions. This will be referred to
as schedule reconstruction.

By limiting the flexibility of the scheduler, less in­
formation about the original schedule is required. For
example, if speculation is limited to one level only
(i.e., above a single branch), a single bit in the opcode
fleld is sufficient to indicate that the instruction has
been moved above the next branch [8]. The hardware
would then know exactly which instruction effects to
undo (i.e., the ones with this bit set). Also, remov­
ing branch hazards directly with the compiler permits
general speculation with no schedule reconstruction
for branch repair [9].

4 Implicit Index Schedule Reconstruc­
tion

Implicit index scheduling supports general specula­
tion o f regular and trapping instructions. The scheme
was inspired by the handling of stores in the sentinel
scheduling scheme [9] and was designed to exploit the
unique properties of the read buffer hardware design
described in Section 2. Schedule reconstruction is ac­
complished by marking each instruction speculated or

3 A walk is a sequence o f edge traversals in a graph where the
edges visited can be repeated [19].

nonspeculated by including a bit in the opcode field,
and using this encoding to maintain an operand his­
tory of speculated instructions in a FIFO queue called
a speculation read buffer (SRB). The SRB operates
similar to a read buffer with additional provisions for
exception handling.

4.1 Exception Repair Using a Speculation
Read Buffer

Figure 8 shows an original code schedule and two
speculative schedules, along with the contents of the
SRB at the time branches Ie and Ig commit. Instruc­
tions Id and If have been speculated above branch
instruction / c, and has been speculated above both
Ig and Ic. The encoding of speculated instructions in­
forms the hardware that the source operands are to
be saved in the SRB, along with the source operand
values, corresponding register addresses, and the PC
of the speculated instruction.

Speculated instructions execute normally unless
they trap. If a speculated instruction traps, the ex­
ception bit in the SRB which corresponds to the trap­
ping instruction is set and program execution contin­
ues. Subsequent instructions that use the result of the
trapping instruction are allowed to execute normally.

A chk^except(k) instruction is placed in the home
block of each speculated instruction. Only one
chk-except(k) instruction is required for a home block.
As the name implies, chL.except(k) checks for pend­
ing exceptions. The command cam simultaneously in­
terrogate each location in the SRB by utilizing the
bit field k. As shown in schedule 1 of Figure 8,
chk.except(0011U) in J' checks exceptions for instruc­
tions Id and Id. If a checked exception bit is set, the
SRB is flushed in reverse order, restoring the appropri­
ate register and PC values. Execution can then begin
with the excepting instruction.

Figure 8 illustrates several on-path hazards which
are resolved by the SRB. In schedule 1, if /,• traps and
the branch /<• commits to the taken path, U has cor­
rupted ri and If has corrupted r7. Flushing the SRB
up through /, restores both registers to their values
prior to the initial execution of Ii. Note that register
re is also corrupted but not restored by the SRB, since
after rollback re will be rewritten with a correct value
before the corrupted value is used.

As an alternative to checking for exceptions in each
home block, the exception could be handled when the
exception bit reaches the bottom of the SRB. This is
similar to the reorder buffer used in dynamic schedul­
ing [14] and eliminates the cost of the chk-except(k)
command, however, increases the exception handling

Original Schedule Speculated Schedule 1 Speculated Schecule 2

rl = r2 * r3 V rL l r2* 'L
r3 = r4 + r5 h-
bne rJt r3, I . V r8

ri a r 7 * r8 VI
rs “ r> * 4 ¥

V 0 “ r2 * r3

r7 = r7 + 4

bne r8, v7, 1̂

rt - r6 * 4
r , = M EM (r,)

1 c
U o
s r
h d

2N

Ic: bne rJt r3, Ij

I’ : chk_except(001 111)

V r8 rs + 4

V bne V r7>

I*: chk_except(l 10000)

lk- r6 r6 + 4

Except bit — 1

I Reg. No.

i t . - 0

ic . valuti r?) 7

V value(rg) 8

V valuer7) 7

I.- - 0

1/ valuer2) 2

} -

} -

} -

I’ : chk_except(l 10011)

ri + 4

lg: bne rg , r? , lk

I*: chk_except(001100)

V r6 = r6 * 4

Except bit— I
j R eg.N o.-i I

f e1 c
“ o
S r
h d

2N

i t . - 0

i t . value(r7) 7

I,- - 0

I,- valuer2) 2

V valuerg) 8

V valuefr7) 7

h

}J
} -

SRB Contents SRB Contents

Figure 8: Exception repair using a speculation read buffer (SRB).

latency which can impact performance depending on
the frequency o f exceptions.

Implicit index scheduling derives its name from the
ability of the compiler to locate a particular register
value within the SRB. This is possible only if the dy­
namically occurring history of speculated instructions
is deterministic at branch boundaries. Superblocks
guarantee this by ensuring that the sole entry into the
superblock is at the header and by limiting specula­
tion to within the superblock. For standard blocks,
bookkeeping code [7] can be used to ensure this deter­
ministic behavior.

4.2 Branch Repair Using a Speculation
Read Buffer

As described in Section 2, branch repair can be han­
dled by resolving branch hazards with the compiler.
Branch hazard resolution in multiple instruction roll­
back can be assisted by the read buffer when cover­
ing on-path hazards are present, reducing the perfor­
mance cost of variable renaming [11,12]. In a similar
fashion, the SRB can assist in branch repair. Figure
9 shows the original code schedule and the two spec­
ulative schedules of Figure 8. For this example, it is
assumed that r j, r3, r6, and 7*7 are elements in both
live.in(Ij) and livc.in(Ik).

As shown in schedule 1, if branch instruction Ic
commits to the taken path, 7*3, re, and rr, which were
modified in Ii, Id, and / / , respectively, must be re­
stored. If instead, Ic commits to the fall-through path
and Ig commits to the taken path, only 7*2 must be re­
stored. Registers t*2 and 7*7 are rollback hazards that
result from exception repair; therefore, the SRB con­
tains their unmodified values. By including a flush(k)
command at the target o f Ie and Ig, the SRB can be
used to restore r2 and/or rr given a misprediction of
Ie or Ig.

The flush(k) command selectively flushes the ap­
propriate register values given a branch misprediction.
For example, in schedule 2 of Figure 9, if Ic is predicted
correctly and Ig is mispredicted, the SRB is flushed in
reverse order up through /«, restoring vaiue(r2) from
Ii but not restoring value(rj) from If. Since specu­
lation is always from the most probable branch path,
the flush(k) command is always placed on the most
improbable branch path, minimizing the performance
penalty. Not all branch hazards are resolved by the
presence of on-path hazards. These remaining haz­
ards can be resolved with compiler transformations.

5 SRB Flush Penalty

The examples o f Section 4 demonstrate that
compiler-assisted multiple instruction rollback cam be
applied to both bramch repair amd exception repair in a
speculative execution architecture. The flush penadty
of the read buffer is not a key concern in multiple in­
struction rollback applications since instruction faults
are typicadly very rare. In application to exception re-
pair in speculative execution, the SRB flush penalty is
also not a major concern due to the infrequency of ex­
ceptions involving speculated instructions. However,
in application to bramch repadr, the SRB flush penadty
could produce significamt performance impacts. Stud­
ies of bramch behavior show a conditioned branch fre­
quency o f 11% to 17% [20]. Static bramch prediction
methods result in bramch mispredictions in the ramge
of 5% to 15%. This results in a branch repadr fre­
quency as high as 2.5%. Assuming a CPI (clock cycles
per instruction) rate of one amd am average SRB flush
penadty of ten cycles, the performance overhead of the
flush mechanism would reach 22.5%. This indicates
the importamce of minimizing the amount of redun-
damt data stored in the SRB so that the flush penadty
is reduced.

Recently, a technique was proposed to reduce the
amount of redundamt data in a read buffer so that the
read buffer size could be reduced [12,13]. A similar
technique cam be used to assure that only the data
required for bramch amd exception repadr is stored in
the SRB. In the implicit index scheme of Section 4, a
bit indicating whether am instruction is speculated is
added to the opcode field. By expanded this field to
two bits, operamd storage requirements cam be spec­
ified. Figure 10 shows the reduced contents of the
SRB given schedule 1 of Figure 9. In the modified
scheme, only the first reaui of 7*7 must be maintained.
Register r% is not required since it was not modified.
The improved scheme adso eliminates blamk spaces in
the SRB. For this exauuple, the misprediction of Ie in
schedule 1 of Figure 9 results in four less variables to
flush.

The coding of the two speculation bits would be as
follows: 00) no save required, 01) save operamd 1, 10)
save operamd 2, amd 11) save both operamds. If neither
operamd of a speculated instruction has be saved in
the SRB, the instruction is not marked as speculated.
This is not a problem for bramch repair: however, if
such am instruction traps, the hardware would have no
way of knowing not to hamdle the exception immedi­
ately. There would adso be no entry in the SRB for the
exception bit or for the corresponding PC vadue. One
solution to the problem would be to auid another bit to

Original Schedule Speculated Schedule 1 Speculated Schedule 2

V <i - r2 * r3

V r3 mr4 + rS
Ie: bne rJf Tj. Iy

V r< ” r7 • rS

I .: ri “ r» + 4

y r7 = r7 + 4

Î i bne / j , ry, 1̂

I»: r6 mri * 4

I.: r2 = MEM(r2)

Ir 0 r2 * rJ V 0 r2 * rJ

Except bit— ,
I Reg. No.

2N
l:

valuer?)

valuefrj

valueffj)

Î i bne 7̂ » I ̂

V r6 mr6 + 4

Iy. flush (lO lllO)

1^ flush(lOOOOO) —

2N

r8 r8 + 4

I£ bne fg I Tjt I ̂

lK r6 = ri + 4

L : flush (lllO lO) .
1 •

I*: flush(OOlOOO) — ,

V - 0

v valuer7) 7

I. - 0

I; valuer2) 2

h valuerg) 8

h valuer?) 7

SRB Contents SRB Contents

Figure 9: Branch repair using a speculation read buffer (SRB).

„ Except bit— »
Reg. No.

a a

f é
1 c 2N
u o
s r
h d

a]f

h value(r?) 7

i, vaiue(r2) 2

SRB Contents

Figure 10: SRB with reduced content.

Figure 11: Instrumentation code placement.

the opcode field which marks speculated trapping in­
structions. A better solution is to code all speculated
trapping instructions which have no operands to save
as 01. This will indicate that exception handling is to
be delayed and cause a reservation of an entry in the
SRB, and also will slightly increase the flush penalty
during branch repairs.

6 Performance Evaluation

6.1 Evaluation Methodology

In this section, results of a read buffer flush penalty
evaluation are presented. The instrumentation code
segments of Figure 11 call a branch error procedure
which performs the following functions:

1. Update the read buffer model.

2. Force actual branch errors during program exe­
cution, allowing execution to proceed along an
incorrect path for a controlled number o f instruc­
tions.

3. Terminate execution along the incorrect path and
restore the required system state from the simu­
lated read buffer.

4. Measure the resulting flush cycles during the
branch repair.

5. Begin execution along the correct path until the
next branch is encountered.

An example instrumentation code segment is shown
in Figure 12. Parameters, such as operand saving in­
formation, current PC, branch fall-though PC, and
branch target PC values, are passed by the instru­
mentation code to the branch error procedure. An
additional miscellaneous parameter contains instruc­
tion type and information used for debugging.

Figure 13 gives a high level flow of operation for the
branch error procedure. When a branch instruction
in the original application program is encountered, an
arm-branch flag is set. Prior to the execution of the
next application instruction, the arm-branch flag is
checked, and if set, the branch decision made by the
application program is set aside. The branch is then
predicted by the branch prediction model. Four mod­
els are used in the evaluation: 1) predict taken, 2) pre­
dict not taken, 3) dynamic prediction, and 4) static
prediction from profiling information. The dynamic
prediction model is derived from a two bit counter
branch target buffer (BTB) design [21] and is the
only model that requires updating with each predic­
tion outcome.

After the branch is predicted, the prediction is
checked against the actual branch path taken by the
application program. If the prediction was correct, ex­
ecution proceeds normally. If the prediction was incor­
rect, the correct branch path is loaded into the recov­
ery queue along with a branch error detection (BED)
latency, and the predicted path is loaded into the PC.
The BED latency indicates how long the execution of
instructions is to continue along the incorrect path.
The branch error time-out flag is set when the BED
latency is reached. When a branch error is detected,
the register file state is repaired using the read buffer
contents. The PC value of the correct branch path is
obtained from the recovery queue. During branch er­
ror rollback recovery, the number of cycles required to
flush the read buffer during branch repair is recorded.

$_3 im lb_2_2 4_0 :
in s t r u c t io n 24
Begin brsim _sim hook: s i

subu
la
sw
la
sw
la
sw
l i
sw
l i
sw
move
j

$sp,
$ a t,
$ a t,
$ a t ,
$ a t,
$ a t,
$at t
$ at,
$ a t ,
$ at,
$ a t,
$ a t,

44
$

16, s2 - 0 : normal

— hook address

— instruction adress

— next hook address

— miscellaneous

_s im lb_2_2 4_0
2 0 ($sp)
$_s im lb_2_2 4_1
2 4 ($sp)
$_3 im lb_2_2 5_0
2 8 ($sp)
8216 ------------------
3 2 ($sp)
16 «

brsim save

4 0 ($sp)
$sp

End brsim _sim hook.
$_sim lb_2_2 4_1 :

addu $16, $16,

directs read buffer to save
register 16

original instruction

$_s im lb_2_2 5_0 :
in s t r u c t io n 25
Begin brsim__sim hook: s i - 16, s2 - 9: branch

subu $spr 44
la $ at, $ sim lb 2 25 0 — hook address
sw $ at, 2 0 ($sp)
la $ a t , $ sim lb 2 25 1 -e -—— instruction adress
sw $ at, 2 4 ($sp)
la $ a t,
sw $ at, 2 8 ($sp)
l i $ a t, 532505 «
sw $at, 3 2 ($sp)
la $ a t,
sw $ at, 3 6 ($sp)
l i $ a t, 304 e—
sw $ at, 4 0 ($sp) registers 16 and 9
move $ a t, $sp
j brsim__save

End brsim__sim hook.
$ sim lb 2 25 1:

bne $16, $9, $_main__5 original instruction

$ main 6:

Figure 12: Instrumentation code sequences.

Y

w
update
RB model

update
recovery
Queue

return

i

• restore GPRF from
RB model, record
flush cycles

• load PC from
recovery queue

PC - program counter

GPRF - general purpose register file

RB - read buffer

BPM - branch prediction model

Figure 13: Branch error procedure operation.

Table 1: Application programs.

Program Static Size Description
QUEEN 148 eight-queen program
WC 181 UNIX utility
QSORT 252 quick sort algorithm
CMP 262 UNIX utility
GREP 907 UNIX utility
PUZZLE 932 simple game
COMPRESS 1826 UNIX utility
LEX 6856 lexical analyzer
YACC 8099 parser-generator
CCCP 8775 preprocessor for

gnu C compiler

It is assumed for this evaluation that two read
buffer entries can be flushed in a single cycle. This cor­
responds to a split-cycle-save assumption of the gen­
eral purpose register file [12]. Performance overhead
due to read buffer flushes (% increase) is computed as

Flush-OH = 100 .
total-cycles

All instructions are assumed to require one cycle for
execution. This assumption is conservative since the
MIPS processor used for the evaluation requires two
cycles for a load. The additional cycles would increase
the total-cycles and thereby reduce the observed per­
formance overhead. In addition to accurately measur­
ing flush costs, the evaluation verifies the operation of
the read buffer and its ability to restore the appropri­
ate system state over a wide range of applications.

The instrumentation insertion transformation oper­
ates on the s-code emitted by the MIPS code generator
of the IMPACT C compiler [3]. The transformation
determines which operands require saving in the read
buffer and inserts calls to the initialization, branch er­
ror, and summary procedures. The resulting s-code
modules are then compiled and ran on a DECstation
3100. For the evaluation, BED latencies from 1 to 10
were used. Table 1 lists the ten application programs
evaluated. Static Size is the number of assembly in­
structions emitted by the code generator, not includ­
ing the library routines and other fixed overhead.

6.2 Evaluation Results

Experimental measurements of read buffer flush
overhead (Flush Off) for various BED latencies are
shown in Figures 14 through 23. The four branch

Flush OH
<%)

P_Taken: -o -
P_N_Taken:--o-
Dyn_Pred:
Prof_Pred: - a-

t— I— I— I— I— I— i— I— r
1 2 3 4 5 6 7 8 9 10

BED Latency

Figure 14: Flush penalty: QUEEN.

Flush OH
<%)

50H P Taken: - o -P N Taken:--o-
40- Dyn_Pred: •••»•••Prof_Pred: - a -

30-
20-
10- _ „ s & ïS ïz l
0-

1" **Ta * ^
l i i l i 1— I— I— r

1 2 3 4 5 6 7 8 9 10
BED Latency

Figure 15: Flush penalty: WC.

prediction strategies used for the evaluation are:
1) predict taken (P-Taken), 2) predict not taken
(P-N-Taken), 3) dynamic prediction based on a
branch target buffer (Dyn-Pred), and 4) static branch
prediction using profiling data (Prof-Prtd).

Flush costs were closely related to branch predic­
tion accuracies, i.e., the more often a branch was mis­
predicted, the more often flush costs were incurred.
In a speculative execution architecture, branch predic­
tion inaccuracies result in performance impacts in ad­
dition to the impacts from the branch repair scheme.
Branch misprediction increases the base run time of
an application by permitting speculative execution of
unproductive instructions. Increased levels o f specular
tion increase the performance impacts associated with
branch prediction inaccuracies. Only the performance
impacts associated read buffer flushes are shown in
Figures 14 through 23.

Flush OH
(%)

50-

40-

30-

P_Taken: -o -
P_N_Taken:--o-
Dyn_Pred: •••*••
ProfJPred: - a-

i— i— i— i— i— i— r
2 3 4 5 6 7 8 9 10

BED Latency

Figure 16: Flush penalty: COMPRESS.

Flush OH
(%)

50-

40-

30-

20-

P Taken: -o -
PlN_Taken:--o-
Dyn_Pred:
ProfPred:

o f » f ■ 't f f f
2 3 4 5 6 7 8 9 10

BED Latency

Figure 17: Flush penalty: CMP.

Flush OH
(* >

50H

40-

30-

20-

P_Taken: -o -
P_N_Taken:--o-
Dyn_Pred: •••*■■
Prof_Pred: - a-

2 3 4 5 6 7 8
BED Latency

9 10

Figure 18: Flush penalty: PUZZLE.

Hush OH
<%)

50-

40-

30-

20-

110-

P_Taken: -o -
P_N_Taken:-o-
Dyn_Pred: •••»..
ProfPred: - a-

II--o—a

" i — i— i— i— i— i— i— r
1 2 3 4 5 6 7 8 9 10

BED Latency

Figure 19: Flush penalty: QSORT.

For nine of the ten applications, P-N.Taken was
significantly more accurate or marginally more ac­
curate in predicting branch outcomes than P- Taken.
For QSORT, P-Taken was significantly more accurate
than P-N-Taken. This result demonstrates that in
a speculative execution architecture, it is difficult to
guarantee optimal performance across a range of ap­
plications given a choice between predict-taken and
predict-not-taken branch prediction strategies.

For all but one application, Prof-Pred was more ac­
curate than either P-Taken or P-N-Taken. For CMP,
Prof-Pred, P-N-Taken, and Dyn-Pred were nearly per­
fect in their prediction of branch outcomes. Prof-Pred
marginally outperformed Dyn-Pred in all applications
except LEX.

The purpose of measuring read buffer flush costs
given the recovery from injected branch errors is to
establish the viability of using a read buffer design

for branch repair for speculative execution. Although
in such a speculative schedule only static prediction
strategies would be applicable, the Dyn-Pred model
was included to better assess how varying branch pre­
diction strategies impact flush costs. Overall, the ac­
curacy of Dyn-Pred fell between P-Taken/P-N-Taken
and Prof-Pred.

Over the ten applications studied, read buffer flush
overhead ranged from 49.91% for the PJTaken strat­
egy in CCCP to .01% for the P-N-Taken strategy for
CMP given a BED of ten. It can be seen from Figures
14 through 23 that a good branch prediction strat­
egy is key to a low read buffer flush cost. The results
show that given a static branch prediction strategy
using profiling data, an average BED of ten produces
flush costs no greater than 14.8% an d an average flush
cost of 8.1% across the ten applications studied. This
performance overhead is comparable to the overhead

Hush OH
(%)

Figure 20: Flush penalty: GREP.

Flush OH
<%)

50H p_Taken:
H P N Taken:--o-

OH— i— i— i— i— i— i— i— i— r
1 2 3 4 5 6 7 8 9 10

BED Latency

Figure 22: Flush penalty: YACC.

Flush OH
(%)

expected from a delayed write buffer scheme with a
maximum allowable BED o f ten [15]. Given a max­
imum BED of ten and an average BED of less than
ten, the flush costs of the read buffer would be less
than that of a delayed write buffer, since a delayed
write buffer is designed for a worst-case BED and the
flush penalty of a read buffer is based on the average
BED. The observed flush costs are small in compari­
son to the substantial performance gain of speculated
architectures over that o f nonspeculated architectures
[8- 10].

The BED for a given branch in this evaluation cor­
responds to the number of instructions moved above
a branch in a speculative schedule. The results of the
evaluation indicate that if the average number of in­
structions speculated above a given branch is < 10,
then the read buffer becomes a viable approach to
handling branch repair.

Flush OH
<%)

2 3 4 5 6 7 8 9 10
BED Latency

Figure 23: Flush penalty: CCCP.

7 Summary

Speculative execution has been shown to be an ef­
fective method to create additional instruction level
parallelism in general applications. Speculating in­
structions above branches requires schemes to han­
dle mispredicted branches and speculated instructions
that trap.

This paper showed that branch hazards resulting
from branch mispredictions in speculative execution
are similar to branch hazards in multiple instruction
rollback developed for processor error recovery. It was
shown that compiler techniques previously developed
for error recovery can be used as an effective branch
repair scheme in a speculative execution architecture.
It was also shown that data hazards that result in
rollback due to exception repair are similar to on-path
hazards suggesting a read buffer approach to exception

repair.
Implicit index scheduling was introduced to exploit

the unique characteristics of rollback recovery using
a read buffer approach. The read buffer design was
extended to include PC values to aid in rollback from
excepting speculated instructions.

Read buffer flush penalties were measured by in­
jecting branch errors into ten target applications and
measuring the flush cycles required to recover from
the branch errors using a simulated read buffer. It
was shown that with a static branch prediction strat­
egy using profiling data, flush costs under 15% are
achievable. The results of these evaluations indicate
that compiler-assisted multiple instruction rollback is
viable for branch and exception repair in a speculative
execution architecture.

8 Acknowledgements

The authors wish to thank Shyh-Kwei Chen and
C.-C. Jim Li for their help with the compiler aspects
of this paper. We would like to thank Scott Mahlke,
William Chen, and John Christopher Gyllenhaal for
their excellent technical suggestions and assistance
with the IMPACT C compiler. Finally, we express
our thanks to Janak Patel for his contributions to this
research.

References

[1] R. P. Colwell, R. P. Nix, J. O’Donnell, D. B. Par
pworth, and P. K. Rodman, “A VLIW Architec­
ture for a Trace Scheduling Compiler,” in Proc.
2nd Int. Conf. Architecture Support Programming
Languages and Operating Syst., pp. 105-111, Oct.
1987.

[2] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, “Over­
lapped Loop Support in the Cydra 5,” in Proc.
3rd Int. Conf. Architecture Support Programming
Languages and Operating Syst., pp. 25-38, April
1989.

[3] P. Chang, W. Chen, N. Warter, and W.-
M. W. Hwu, “IMPACT: An Architecture Frame­
work for Multiple-Instruction-Issue Processors,”
in Proc. 18th Annu. Symp. Comput. Architecture,
pp. 266-275, May 1991.

[4] B. R. Rau and C. D. Glaeser, “Some Scheduling
Techniques and an Easily Schedulable Horizon-
tad Architecture for High Performance Scientific

Computing,” in Proc. 20th Annu. Workshop Mi­
croprogramming Microarchitecture, pp. 183-198,
Oct. 1981.

[5] M. S. Lam, “Software Pipelining: An Effective
Scheduling Technique for VLIW Machines,” in
Proc. ACM SIGPLAN 1988 Conf. Programming
Language Design Implementation, pp. 318-328,
June 1988.

[6] A. Aiken and A. Nicolau, “Optimal Loop Paral­
lelization,” in Proc. ACM SIGPLAN 1988 Conf.
Programming Language Design Implementation,
pp. 308-317, June 1988.

[7] J. A. Fisher, “Trace Scheduling: A Technique
for Global Microcode Compaction,” IEEE Trans.
Comput., vol. c-30, no. 7, pp. 478-490, July 1981.

[8] M. D. Smith, M. S. Lam, and M. Horowitz,
“Boosting Beyond Scalar Scheduling in a Super­
scalar Processor,” in Proc. 17th Annu. Symp.
Comput. Architecture, pp. 344-354, May 1990.

[9] S. A. Mahlke, W. Y. Chen, W.-M. W. Hwu, B. R.
Rao, and M. S. Schlansker, “Sentinel Scheduling
for VLIW and Superscalar Processors,” in Proc.
5th Int. Conf. Architecture Support Programming
Languages and Operating Syst., pp. 238-247, Oct.
1992.

[10] M. D. Smith, M. A. Horowitz, and M. S. Lam,
“Efficient Superscalar Performance Through
Boosting,” in Proc. 5th Int. Conf. Architecture
Support Programming Languages and Operating
Syst., pp. 248-259, Oct. 1992.

[11] N. J. Alewine, S.-K. Chen, C.-C. J. Li, W. K.
* Fuchs, and W.-M. W. Hwu, “Branch Recov­

ery with Compiler-Assisted Multiple Instruction
Retry,” in Proc. 22th. Int. Symp. Fault-Tolerant
Comput., pp. 66-73, July 1992.

[12] N. J. Alewine, Compiler-assisted Multiple In­
struction Rollback Recovery using a Read Buffer.
PhD thesis, Tech. Rep. CRHC-93-06, University
of Illinois at Urbana-Champaign, 1993.

[13] N. J. Alewine, S.-K. Chen, W. K. Fuchs, and W.-
M. W. Hwu, “Compiler-assisted Multiple Instruc­
tion Rollback Recovery using a Read Buffer,”
Tech. Rep. CRHC-93-11, Coordinated Science
Laboratory, University of Illinois, May 1993.

[14] J. E. Smith and A. R. Pleszkun, “Implementing
Precise Interrupts in Pipelined Processors,” IEEE
Trans. Comput., vol. 37, pp. 562-573, May 1988.

[15] Y. Tamir and M. Tremblay, “High-Performance
Fault-Tolerant VLSI Systems Using Micro Roll­
back,” IEEE Trans. Comput., vol. 39, pp. 548-
554, Apr. 1990.

[16] A. V. Aho, R. Sethi, and J. D. Ullman, Compil­
ers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[17] M. Johnson, Superscalar Microprocessor Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.

[18] C.-C. J. Li, S.-K. Chen, W. K. Fuchs, and W.-
M. W. Hwu, “Compiler-Assisted Multiple In­
struction Retry,” Tech. Rep. CRHC-91-31, Coor­
dinated Science Laboratory, University o f Illinois,
May 1991.

[19] J. A. Bondy and U. Murty, Graph Theory with
Applications. London, England: Macmillan Press
Ltd., 1979.

[20] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach. San Ma­
teo, CA: Morgan Kaufmann Publishers, Inc.,
1990.

[21] J. K. Lee and A. J. Smith, “Branch Prediction
Strategies and Branch Target Buffer Design,”
Computer, vol. 17, no. 1, pp. 6-22, Jan. 1984.

