
r

REPORT R-446 NOVEMBER, 1969

B e i! coordinated science laboratory
CSLx
(X=6,7)

A PROGRAMMERS MANUAL
TO THE USE AND UNDERSTANDING
OF A LOW - LEVEL LINKED LIST
STRUCTURE LANGUAGE
W. JACK BOUKNIGHT

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS
"This document has been approved for public release and sale; its distribution is unlimited"

CSLi:
(x = 6, 7)

A PROGRAMMER'S MANUAL TO THE USE AND UNDERSTANDING
OF A LOW-LEVEL LINKED LIST STRUCTURE LANGUAGE

by
W. Jack Bouknight

This work was supported in whole by the Joint Services Electronics
Program (U.S. Army, U„S. Navy, and U.S. Air Force) under Contract DAAB
07-67-C-0199.

Reproduction in whole or in part is permitted for any purpose of
the United States Government.

This document has been approved for public release and sale; its
distribution is unlimited

CSLx
(x = 6 , 7)

A PROGRAMMER'S MANUAL TO THE USE AND UNDERSTANDING
OF A LOW-LEVEL LINKED LIST STRUCTURE LANGUAGE

by

W. Jack Bouknight

November 30, 1969

ACKNOWLEDGEMENTS

Special thanks goes to Sandra Bowles who typed the final draft of this manual. Were
it not for her knowledge of publication preparation, the result would surely have been less
satisfactory.

As it is, time was not available to completely perfect the presentation and the reader
will have to bear with us as best he can. In fact, a special vote of appreciation must go
to those hardy pioneering souls who have been using the CSLx system for lo these many years with
nothing to guide them but direct communication with the author. Were it not for their helpful
suggestions and criticism, this language and this manual for its use might never have come to
pass.

Jack Bouknight
November 30, 1969

TABLE OF CONTENTS

Chapter Page

1. Introduction............................ X
2. List Structures, Blocks, Fields, Bugs and Pointers................................. 3

2.1 Overview of Data Storage Elements.. 3

2.2 Storage Blocks.. 7

2.3 Fields..................................... 9

2.4 "Bugs".. 1 2

3. The Basic Syntax and Format of Statements and Programs in the CSLx System......... 13
3.1 Overview.. 13

3.2 Basic Data Descriptions.. 14

3.2.1 Internal and External Full Word Fields................................. 14
3.2.1.1 Internal and External Full Word Fields....................... 14
3.2.1.2 Variable Length Fields and Field Strings..................... 14
3.2.1.3 Pseudo-Subscripting of Internal and External FWF............. 17
3.2.1.4 Literals............. 17

3.3 Basic Operation Unit... 19

3.4 Test Unit... 20
3.5 "goto" Elements.. 21
3.6 Program Statement Elements... 22
3.7 Test Statements.. 24
3.8 Source Language Formats in CSLx Programs...................................... 26

3.8.1 Comment Source Records... 26
3.8.2 CSLx Source Records... 26
3.8.3 ILLAR Source Records.. 28

3.9 Program Descriptions... 29
4. Storage Allocation, Field Definition and Manipulation.............................. 31

4.1 Overview.. 31

4.2 Storage Allocation... 32
4.2.1 Storage Allocation Setup Unit.. 33

4.3 Definition of Fields... 34

4.3.1 Definition of Full Word Fields (FWF)................................... 34

4.3.2 Definition of Variable Length Fields (VLF)............................. 35
4.4 Block and Field Manipulation Operations....................................... 39

4.4.1 Block Manipulation Operations.. 39

4.4.2 Field Manipulation Operations.. 41
4.5 Special Debugging Aids - STATE and DUMP....................................... 44

5. Logical Operations on Data.. 45

5.1 Overview.. 45

5.2 The Complement Operation... 46

iii

5.3 Logical OR Operation.............
5.4 Exclusive OR Data Operation.....
5.5 The Logical AND Data Operation...
5.6 Logical Substitution Operation...
5.7 Logical Left Shift Operation....
5.8 Logical Right Shift Operation....
5.9 Bit Counting.....................
5.10 Bit Position Detection Operation.

6 . Mathematical Operations...............
6.1 Overview.........................
6.2 Addition Operation...............
6.3 Subtraction Operation...........
6.4 Multiplication Operation........
6.5 Division Operation...............
6 .6 Data Format Conversion..........
6.7 Absolute Value Function.........

7. Subprograms, Subroutines and Functions
7.1 Overview.........................
7.2 SUBPROGRAM Operations...........
7.3 Fortran type Subroutine Operations..
7.4 Fortran type Functions.............
Control Transfer Operations...................
8 . 1 Overview............................
8.2 "Assigned" TRANSFER Operation......
8.3 "Computed" Transfer Operations.....
Relational Test Operations......................
9.1 Overview............................
9.2 Pointer Equality Test...............
9.3 Block Size Test.....................
9.4 Data Equality Test..................
9.5 Data Inequality Test................
9.6 Greater Than Test...................
9.7 Less Than or Equal Test.............
9.8 Ones Pattern Test...................
9.9 Zeros Pattern Test..................
User Pushdown-Popup Data Stacks.........

1 0 .1 Overview............................
10 .2 Definition of a User Stack.........
10.3 Pushdown Operation on a User Stacks
10.4 Popup Operations on a User Stack.__

iv

47
48
49
50
51
52
53
54
55
55
56
57
58
59
60
61
62
62
63
66

68
69
69
70
71
73
73
74
75
76
77
78
79
80
81
82
82
83
84
85

11. Input/Output of BCD Information with Format Conversion..........
11.1 Overview............................
11.2 Initialization of Input/Output Operations................
11.3 Data Fetch and Store in An I/O Operation...............

11.3.1 Data Storage During An Input Operation...............
11.3.2 Fetching Data During An Output Operation.............

11.4 I/O Area Termination...........................
12. Sample Programs...........................

12.1 Overview..................................
12.2 Sample Program to Sort A String of Integers.................
12.3 Sample Program to Read BCD Records and Determine Frequency of

Character Usage and Average Length of Word..................
APPENDIX A Error Messages.....................

A.l Statement Breakdown...........................
A.2 Field Designations............................
A.3 Operation Block Processing.....................
A.4 Unknown Data at End of Statements....................
A.5 IF and NOT Statements.............................
A . 6 OUTPUT Statement.....................................
A. 7 INPUT Statement......................................
A . 8 TRANSFER Statement...................................
A.9 SWITCH Statement....................................
A.10 GLOBAL Statement...................................
A. 11 POPUP Statement.......................
A. 12 PUSHDOWN Statement.......................
A. 13 DEFINE Statement......................................
A .14 CALL Statement.....................................
A.15 ENTRY Statement......................................
A. 16 DO ENTRY Statement....................................
A.17 CALL ENTRY Statement....................................... .
A.18 EXTERNAL Statement..................................
A.19 DEFSTACK Statement..
A.20 STACK Statement..
A.21 UNSTACK Statement...
A.22 Hollerith Literals.....
A.23 Block Duplication Operation..........................
A.24 Field Contents and Field Definition Stack Operation..........
A.25 FEED Operation.......................................
A.26 TAKE Operation..
A.27 Storage Setup...............................

86

86

87
89
89
90
91
92
92
96

103
106
106
106
106
107
107
107
107
107
108
108
108
108
108
108
109
109
109
109
109
109
110

110

110

110

110

111
111

v

A..28 Substitution Operation.. \\\

A.29 Compilation of Argument Lists for CALL and Doarg Statements................ Ill
A.30 Header Card... m

A.31 FORMAT Statement.. H I
APPENDIX B Proper Formats for Driving FORTRAN Language Function Subroutines......... 112

CHAPTER 1. Introduction

In keeping with the effort to upgrade the CSL computer system in software, a need
was recognized in the summer of 1967 for some type of list structure manipulation language
which could be implemented on the CDC 1604 and integrated into the new CSL computer
operating system ILLSYS.

During the summer of 1967, the author was introduced to L (Bell Laboratories
Low-Level Linked List Language) which was developed at Bell Labs by K. C. Knowlton. We
reproduce some of the introductory comments by Mr. Knowlton from his article describing
. i T 6 „ 1the L system.

Bell Telephone Laboratories Low-Level Linked List Language (L6,
pronounced "L-six") contains many of the facilities which underlie such
list processors as IPL2, LISP3, COMIT4 and SNOBOL5 , but it permits the
user to get much closer to machine code in order to write faster-running
programs, to use storage more efficiently and to build a wider variety of
linked data structures....

....Important features of L are: the availability of several sizes
of storage blocks, a flexible means of specifying within them fields con
taining data or pointers to other blocks, a wide range of logical and
arithmetic operations on field contents, and an instruction format in which
remote data is referenced by concatenating the names of fields containing
the succession of pointers leading to this data....

£
....L data structures are made by fetching from a storage allocator blocks
of many sizes, and linking them by pointers which are planted in fields which
the programmer himself defines....Relative sizes of blocks go as powers of 2;
thus the storage allocator can easily split large blocks of free storage
into smaller ones and, conversely, can easily fit pieces back together to
reconstitute large blocks if and when their parts are simultaneously free....

£
....In general, L is useful where storage allocation is microscopic

and dynamic or where the programmer wants the pattern of pointers among data
items to correspond closely to the physical or logical structure of the
objects with which his program deals (electronic circuits, communication

1

networks, strings of text, parsed sentences and formulas, search trees) as in
simulation, game playing, symbol manipulation, information retrieval and graph
manipulation. It can also serve as the means for implementing quickly, and
in a relatively machine-independent way, higher-level list languages which
contain more powerful operations for specific problem areas.

The CSLx (x = 6,7) system is the result of implementing the basic concepts of the
L language on the CDC 1604 computer system under the control of the Illar System (ILLSYS)
developed by the Computer Group at CSL. The CSLx language is a superset of the original

language and includes the following features:

-- two methods of storage allocation
-- direct coupling to FORTRAN system functions and subroutines
-- contains facility for embedding machine language statements

(ILLAR language)
-- floating point arithmetic
— user defined pushdown-popup stacks
-- generalized format I/O statements
-- computed control transfer statements
— pseudo-subscripted field declarations
-- DO operations with arguments

The organization of this manual is somewhat like the structure of a tree. The
entire work requires a good foundation of knowledge of the basic precepts of linked-list
storage systems. Chapter 2 gives a brief initial development of strings, storage blocks
and pointers. Chapter 3 discusses the basic syntax of the language and gives the formats
of the statements, operations and programs in the language.

The trunk of the tree is made up of the operations of the CSLx language. These
include storage control (Chapter 4), data manipulation (Chapters 5 - 6) .

Extending from the trunk of the tree are the branches which correspond to
operations statements of the CSLx language. These include control of program flow
(Chapters 7 - 8) and decision-making statements (Chapter 9). Programmer controlled push-
pop data stacks and basic I/O statements complete the manual (Chapters 10 - 11) followed
by some sample programs (Chapter 12).

This manual is a compromise between an outline and a textbook. It is assumed that
programming experience has been acquired by the reader, not necessarily with list-structures.
We make no attempt to treat list-structures themselves beyond a brief look at linked lists
since CSLx is a general blocked-storage system. If the reader needs further information
about the ILLSYS operating system on the CSL 1604 computer, he should consult with members
of the Computer Group.

2

CHAPTER 2. List Structures, Blocks, Fields, Bugs and Pointers

Section 2.1 Overview of Data Storage Elements

The general method of data storage used in computer memories for mathematical programs
is the array structure. An array is a block of contiguous memory locations (words) where the
lowest word is labeled with the name of the array and individual elements of the array are
obtained by specifying a subscript (index) which when appended to the array name uniquely
designates the desired element. As an example, assume an array ALPHA exists. The tenth
element of ALPHA would be specified by ALPHA(9) where the array begins at ALPHA(0).

Relationships between elements in an array are specified by operations on the indices
of the elements. Suppose ALPHA contains x,y pairs of cartesian coordinates of some curve.
An x coordinate lies in element ALPHA(I) and the jy coordinate lies in element ALPHA(1+1) .
Thus, given the index I of some x coordinate in ALPHA, the index for the associated _y
coordinate is 1+1. Furthermore, given the index I of the x coordinate of some point on the
curve, the index of the x coordinate of the next point is 1+2 .

Many cases of data storage arise where the relationships between data elements or
blocks of data elements are not conveniently specified in terms of operations on indices of
linear arrays. To satisfy this need for a more general data linking, list-structures (strings)
were developed.

The key defining feature of list-structures is an element called the link. Relation
ships between blocks of data are specified in the manner in which the blocks are linked
together. What is a link? An illustration if we may.

Suppose we have three (3) sets of cartesian coordinates, x ^ , x2y2} and x3y3 .
Each coordinate is contained in one computer word and the % coordinate lies in word m+1
where the x coordinate lies in word m.

Let us append one more computer word to each coordinate pair to form a block of
three (3) words. This extra word will be used to hold a link for use in "stringing" the
blocks together into a list-structure.

Assume that the coordinate pairs lie in computer word blocks beginning at locations
Pi, P2 and P3 (called the base addresses of the blocks). Let us define a pointer as the
contents of a computer word which contains the computer representation of the base address of
some coordinate block.

Now let us place a pointer in the third word of each block as follows:

3

block
x2y2 block
x3y3 block

third word holds P2
third word holds P3
third word holds Pi

etc. We pictorially represent out data in the figure below. By knowing which block we
are looking at in any instant in time, we can search the third word of the block for a pointer
to another block. This concept states the link between the two blocks.

Block P3

Block P2 DR-1490

Linked List of Three Blocks
Figure 2.1

Note that the three coordinate blocks may lie in non-contiguous sections of the com
puter memory. This is the inherent power of the list structure when combined with the ability
of using the links to specify relationships between data blocks in storage analogously to the
relationships in the actual conceptial data.

The actual representation of a pointer in a computer system with 32,768 words of
memory would be a 15-bit binary address of the base address of some block of words. Typically,
the same computer will have a word size of N bits where N > 15. Thus, we are wasting N-15 bits
of the third word of each coordinate block in the above example. We can solve the problem of
wasted space by a concept of subdivision of a word into elements called fields.

Fields are usually defined in a global manner relative to block base addresses. They
are also specified as all bits in a computer word delimited by a left-most bit and a right-most
bit. For instance, suppose we define field POINT as the third word of any block, and

4

f

consisting of the (n-16)th bit through the (N-l)St bit in the word. Thus, the pointer in
the PI block would be found in element Pl(POINT).

Note that the form of the descriptor of the desired element is analgous to the
array_ subscript notation. Because pointer search routines actually trace the pointers in
the description to reach the desired data element, there is no reason why successive pointer
strings cannot be used. By starting at block PI, the pointer in block P2 can be addressed

by the descriptor P1(P0INT(P0INT)). The search starts at block PI and its field POINT.
Because Pl(POINT) is not the end of the "string", the field PI(POINT) is accessed for the
pointer P2 and the search continues at block P2.

At this point the original descriptor has in effect been reduced to P2(P0INT) and
since this terminates the string," the field POINT is accessed for a data element, the
£ointer to P3. We are now free to define the reamining (N-15) bits of word 3 as some other
data or pointer field if we desire.

A quick example of a conceptual data structure that is easily stored in a computer
memory in list-structure form is a family tree. Using a block and field structure:

P a re n t’s Name

Child # 1 Child # 2

Child # 3 Child # 4

DR-1491

Block with Five (5) Fields
Figure 2.2

we might arrive at the structure in Figure 2.3.

Each pair of parents is indicated by a block in the structure. The
the block holds the name of the parents. Each field CHILD #x holds a pointer
block defined for that child.

first word of
to the resulting

5

We will not discuss the basic theory or operations on list-structures any further
at this point. Examples of their usage will be given later with particular emphasis on how
they may be handled using the CSLx language.

We begin at this point to elaborate on the CSLx system, its syntax and usage.

Family Tree Structure
Figure 2.3

6

Section 2.2 Storage Blocks

The basic element of storage in the CSLx system is the block. A block may contain 2N
words in the CSL6 system (N = 0-7) and 1-32 words in the CSL7 system. The words in a block are
numbered contiguously from zero (0) to N-l for a block of N words. For purposes of discussion,
we will adopt the notation N-block when we discuss a block where N is the number of words in *
the block.*

The global .storage area (GSA) is defined at program loading time as the "free storage"
area bounded at the low end by the system location MEMEND and at the upper end by location
COMNBEG. MEMEND is the first location above the end of the user's program and subroutines.
COMNBEG is the lowest location of COMMON as defined in the user's program and subroutines.

Control of the use of the GSA is performed by two system routines: L6ST0RAG or
L7ST0RAG. The GSA is partitioned into blocks and strung together in lists called the unused
N-blocks lists (UBI^). The user must initially instruct the storage allocator (SA) (either
L6ST0RAG or L7ST0RAG) as to the maximum size block which will be needed by his program. Storage
is then partitioned into as many maximum size blocks as is possible. Then the remaining storage
is partitioned into the next smaller size of block. This continues until all of GSA is parti
tioned into blocks.

All of the 1-blocks are then strung together in the unused 1-block list (UBL1). All
of the 2-blocks are placed in the UBI^ • This process continues up to the M-blocks where M is
the maximum size block to be needed.

During the execution of the user's program, requests are made to the storage allocator
(SA) for bl°c.ks from the GSA. If such a block is available, the program receives from the SA a

2 Qinter which enables it to work with the requested block. Pointers are 15-bit quantities
and therefore,require that fie Ids where they are held are large enough to hold at least 15-bits
of information. Further discussion of pointers must await a description of fields and bugs
which are described later in this chapter.

What happens if no block of the requested size is immediately available from the GSA?
For this occurrence, separate actions are taken in the CSL6 and CSL7 systems. We discuss the
CSL6 system operation first.

Suppose the program requested an N-block from storage. Since the UBl^ is empty, the
SA searches the higher UBL. for the next UBL. which is not empty. If UBLk contains a K-block,
the following occurs.

*
Original notation in Bell Labs report. 1

7

Suppose N = 2J and K = 21. Then the K-block is divided into two L-blocks where
L = 2L 1. These L-blocks are placed in UBL^. If N + L, then K is set equal to L and the
division process is repeated with one of the blocks from UBL^.

When N = L, a block of the requested size is now available and the SA completes its
operation by passing the pointer of the requested block to the program. The remaining half of
the divided block is left in UBI^.

The possibility exists that no UBLĵ above UBI^ contains a block. In other words,
there are no other unused blocks in the GSA that are larger than the requested size block.
When this condition occurs, the SA performs a "garbage collection" operation. "Garbage col
lection" consists of recombining smaller blocks into larger blocks until all possible pairs have
been recombined. A complete recombination is performed on all blocks smaller than the requested
size starting with l-blocks and working up. If, after "garbage collecting" is complete, there
is still no block of the requested size, then a system error message results informing the user
that no more unused blocks of the requested size exist and a return is made to the system
monitor (CSLMCS).

In the CSL7 system, the same procedure of dividing larger blocks into smaller blocks
is used to produce a block of the required size. Suppose the program is requesting an N-block.
The SA finds that it has no N-block but it does have a K-block (K = N+4 for purposes of dis
cussion). The SA will simply divide the K-block into an N-block and a 4-block. The 4-block will
be added to UBL^ and the pointer for the N-block will be returned to the program.

No recombination is allowed in the CSL7 system. The reason for this will be explained
later. Because of no recombination, the SA must declare no more unused blocks if it cannot find
some UBL. higher than UBL„ with at least one i-block available.

1 N -------

8

Section 2.3 Fields

The basic element of storage for data and pointers is the field. Fields fall into
two (2) categories: Fullword Fields (FWF) and Variable Length Fields (VLF). A fullword
field (FWF) is one 1604 word, i.e., 48-bits in length. Variable length fields (VLF) may be any
length from 1 to 48 bits long and may reside in any portion of a 1604 word.

VLF are designated internal to storage blocks while FWF are separately defined in the
user program or his subroutines. Literals are FWF and are defined in each user program or
subroutine. Literals may be read from but not written into during program execution. FWF
defined internal to a given program or subroutine for use as a data storage location are called
internal fields (IF), FWF used in a program or subroutine for data storage but defined ex
ternally in some other program or subroutine are called external fields (EF). The various
means by which FWF are designated in a program or subroutine will be detailed in a later section

Let us turn our attention for the present to a discussion of variable length fields
(VLF). The VLF and the block structure are the basic attributes of CSL6 and CSL7 that give the
languages their power and utility.

Recall that a block is a contiguous set of 1604 words and pointed to by a pointer.
Figure 2.4 shows the schematic of a 4-block. The divisions within the block are called VLF.
They may lie anywhere within the block, they may overlap one another, and they may even coincide
in some cases.

Two different arrangements are shown: one for a CSL6 block and one for a CSL7 block.
Two areas in the CSL6 block and one area in the CSL7 block(2)are crossed out.
These areas are:

@ Word 0 Bits 0- 8

Word 0 Bits 24-26
(D Word 0 Bits 0- 5

CSLx system information is kept in these areas and therefore, the user is not allowed to assign
VLF covering these areas.

A VLF is defined by specifying three (3) parameters:
1. Word bias
2. Left bit boundary
3. Right bit boundary

^ listing of the parameters of the VLF in Figure 2.4 will best illustrate their meanings. The
VLF letter name (which may be A-Z, 0-9) is shown in the upper right hand corner of each VLF area.

9

1

Word

0

1

2

3

C S L6 Block

C S L 7 Block
A 4-Block ln CSL6 and CSL7

Figure 2.4

DR-14 8 I

10

Field
Word
Number

Left
Bit

Right
Bit

A 0 33 47
B 0 9 23
C 0 27 32
D 1 33 47
E 1 9 23
F 1 24 32
G 2 0 47
H 3 0 47
M 1 24 47
N 2 0 47

Note that VLF G and N coincide and VLF M overlaps F and D.

*The user must remember the following rule concerning VLF specifications: every VLF
specification applies to every block in use by the user program or subroutine. The word bias
parameter is relative to the beginning of any block and when taken together with the pointer
ho a block, the result is a unique address in the 1604- memory.

11

Section 2.4 "Bugs"

An electronic computer is usually designed with one or more full word registers where
data manipulation may occur. In the CSLx systems, 26 registers, referred to as "bugs," have
been set aside for use as data registers or pointer registers. These registers, hereafter
referred simply to as bugs, are actual 1604 memory locations, not hardware registers, but the
use is the same.

The notation "bug" comes from the original Bell Laboratory L6 Report1. Linked-list
structures can be likened to beads on a string. Since "bugs" hold pointers to blocks which may
reside on the string, the blocks are referenced through the "bug" depending on where the "bug"
points, or for the analogy, where the "bug" sits. Moving pointers up and down the list corre
sponds to the "bug" crawling up and down the string.

As a general descriptive convention, a "bug" is indicated pointing to a block as shown
in Figure 2.5. "Bug" B holds the pointer to block X.

Any one of the 26 "bugs" may also be used for data manipulation. A "bug" is 48-bits
in length and therefore, falls into the FWF category. They are referenced in the CSLx program
with a field string field descriptor which will be described in Section 3.2.1.2.

"Bugs" are automatically set up by the CSLx compilers in the user's MAIN program.
Each "bug" is also made as an entry point. Therefore, all subroutines reference "bugs" as
external symbols and allow a single set of system "bugs" to suffice for all the user's
program and subroutines. Obviously, this means that not more than one MAIN program may be
loaded into memory at a given time.

0

1

Block X

A 2-Block Pointed to by a "Bug"
Figure 2.5

12

CHAPTER 3, The Basic Syntax and Format of Statements and Programs in the CSLx System

Section 3.1 Overview

Syntax descriptions of the basic elements of the CSLx language are our first
order of business (Sec. 3.2 - 3.5). The discussion will then advance to combinations of
the basic elements into the various statement forms (Sec. 3.6 - 3.7). Finally, we describe
the form of the programs and subroutines (Sec. 3.8 - 3.9).

13

Section 3.2 Basic Data Descriptions

Two classes of syntax elements describe data. The data descriptor is the
notation for describing some field in core storage whether it be a full word field (FWF) or
a variable length fie Id (VLF). Literals describe explicit forms of data such as numbers or
hollerith character strings.

Section 3.2.1 Data Descriptors

There are three (3) types of data descriptors; internal full word fields (IF),
external full word fields (EF) and field strings which reference VLF.

Section 3.2.1.1 Internal and External Full Word Fields

Internal full word fields (IF) are used for reference to FWF which are defined
internally to the program or subroutine where the reference is made. Any FWF is labeled
with up to eight (8) BCD characters under the label convention of the ILLAR language. 7

The data descr iptor has the form:

/XXXX

where XXXX is the label attached to the FWF. A form of pseudo-subscripting is allowed on
IF's. A pseudo-subscripted IF has the form;

/XXXX+(exp)

where (exp) is an arithmetic expression made up of the operators + and/or - and literals
and/or other data descr iptors. Section 3.2.1.3 discusses pseudo-subscripting further.

External full word fields (EF) follow the same conventions as for IF except that
the referenced FWF is defined in a program or subroutine other than the one in which the
reference is made. The form of the data descr iptor is;

*YYYY

Pseudo-subscripting is also allowed in the same manner as for IF.

Section 3.2.1.2 Variable Length Fields and Field Strings

A variable length field (VLF) is referenced through a field string data descriptor.
A field string describes a string of pointers which eventually point to the destination field
where the desired data is to be found or stored. Recall that a pointer denotes the 0th word
of some n-block in memory. The notation for discussion is shown in Figure 3.1. The basic

14

format for a VLF field string is as follows:

BTT...TR

Each of B, T and R are single characters. B designates one of the 26 "bugs" (A-Z). T and
R designate field names (A-Z, 0-9).

The "bug" B and each T designate where pointers are to be found. R is a field
to be referenced, either for fetching or storing of data or a pointer. To get to R, a
"trace" is made in the following manner:

The bug contains a pointer to some block. If there are no T in the
field string, then R lies in the block "pointed to" by the "bug." If
there are one or more T in the field string, then the first T field
lies in the block pointed to by the "bug" and contains a new pointer
to a block. Each successive T field lies in the block pointed to pre
viously and contains a pointer to a block. The R field lies in the
block "pointed to" by the last T field and can be referenced from there.

A special case of the VLF fie Id s tr ing occurs when only one alphabetic character appears in
the string. There are, therefore, no T's and no R. Thus, the indicated "bug" is to be
referenced directly for fetching or storing.

Let us illustrate using Figure 3.1. There are three (3) VLF singled out and
numbered as (T^^^and VLF^^may be referenced in one of the following ways.

BCM (1)
BCBM (2)
CBM (3)
BDCBM (4)

Let's look at field string (1). "Bug" B "points" to block 1 whose C field "points" to
bl°ck 2 whose M field is the desired field for reference. (2) states that "bug" B
"points" to block 1 whose C field "points" to block 4 whose B field "points" to block 3
which contains the M field. The reader should now be able to follow the "trace" to arrive
at the desired M field by any of the indicated paths. For VLF (2^ only one path can be
taken:

BAD

A Typical Linked-List Structure
Figure 3.1

16

While for VLF (Ŝ) the following paths may be taken:

BCA
CA
EDCA

The reader is encouraged to plot the paths from either of the "bugs" B and C to any of the
VLF's for further practice and understanding of the VLF referencing algorithm.

Section 3.2.1.3 Pseudo-Subscripting of Internal and External FWF

In order to allow completely general compatibility between the CSLx list-structure
system and the more common array-structured systems, FORTRAN and ILLAR, some form of sub
scripting in linear arrays is necessary.

In the CSLx system, an IF or EF may be treated as a linear array and indexed in a
pseudo-subscriptive manner by use of a data descriptor of the following form:

field is the label assigned to the referenced EF or IF which becomes the zeroth element of
the array field.

The string of index! elements separated by + or - forms an arithmetic expression
which when evaluated provides the bias used to index the array field. The elements indexl
may be any form of data descriptor or decimal/octal literals.

/field + indexl + index2 ++ indexN
Afield + indexl + index2 ++ indexN

Some examples will further illustrate:

/BUFFER+10B
/BUF+25
/LIST-/INDEXCT
/STRING-BAD
/BUFR+*EXTINDEX
*BUFA+345B
*BUFB-21
*BUFC-/TINDEX
*BUFRA+DART
*BUFL-BUFEXT

internal field - octal literal index
internal field - decimal literal index
internal field - internal field index
internal field - string index (field)
internal field - external field index
external field - octal literal index
external field - decimal literal index
external field - internal field index
external field - string index (field)
external field - external field index

3.2.1.4 Literals

Literal data descriptors explicitly define data during an operation. There are

17

four types of literal elements allowed in CSLx programs:

1 . octal
2 . dec ima 1
3. floating point
4. hollerith

We choose not to discuss each type of data in detail because the literal conventions for
CSLx programs are identical to the conventions of the ILLAR language system. The ILLAR
system manual may be referred to by the reader to clarify his questions.

The type of literal allowed in a given situation varies greatly and is best ex
plained when necessary.

18

Section 3.4 Test Unit

The test unit (TU) is a special operation unit which makes a test between two items
and produces a "vote" of yes or no for a result. Test units are allowed only as part of a
test statement (Section 3.7).

The format of the TU is:

(a,t,b)

a and b are data descriptors or literals, t is some relationship (e.g., >, >, 4, etc.). The
TU determines if atb is true, yes or no. The yes or no "vote" is used to make a test state
ment decision during the execution of the CSLx program.

Further discussion of the relational test operators will be made in Chapter 9.

20

Section 3.5 "goto" Elements

The most basic form of control transfer allowed in the CSLx language is the "goto."
A goto is simply the labe1 of the statement to which control is to be transferred. This
operation is the equivalent of the GO TO statement in FORTRAN. However, only the label of
the destination statement is needed.

There are several CSLx system "goto" elements which are reserved for special pur
poses and therefore, the user may not use them as statement labels:

EXIT
DONE (Section 7.2)
FAIL (Section 7.2)

The DONE and FAIL "goto" elements are connected with subroutine calling operations and are
explained in the indicated sections. The EXIT "goto" will cause a transfer of control to
the END statement of the program for a subsequent exit to the calling program.

21

Section 3.6 Program Statement Elements

In a CSLx program, there are two classes of statements: declarative and executable.
The declarative statement performs non-executable operations such as storage space definition,
global space linkage, program definition, etc. All other statements are called executable
statements because they compile operations which are executed only at run time.

For purposes of outline, we choose to list the types of statements at this time
but we defer any elaboration until the appropriate section. The declarative statements are

GLOBAL
DEFINE
ENTRY
DO ENTRY
CALL ENTRY
EXTERNAL

(Section 4.3.2)
(Section 4.3.1)
(Section 4.3.1)
(Section 7.2)
(Section 7.3)
(Section 4.3.1)

Under the heading of executable statements, we have three classes: composite, test,
and pr imary statements. We will discuss in detail the makeup of the compos ite statement in
a moment. The test statement discussion is reserved until Section 3.7. For now, we simply
list the members of the pr imary statement class and give the definition of the class as those
statements whose formats are specifically related to their individual functions:

INPUT (Section 1 1 .2)
OUTPUT (Section 1 1 .2)
END 10 (Section 11.4)
TRANSFER (Section 8.2)
SWITCH (Section 8 .2)
POPUP (Section 4.4)
PUSHDOWN (Section 4.4)
CALL (Section 7.3)
DEFSTACK (Section 1 0.2)
STACK (Section 10.3)
UN STACK (Section 10.4)

The statement most used in a CSLx program is the composite statement. The name
of the class is derived from the fact that the statement is made up of a composite of basic
operation units (BOU), goto," and sometimes ended with a pr imary statement used as a unit.

The arrangement or presence of any or all of the three types of units in a composite
statement is governed by the following rules:

1. A composite statement ends after a "goto" or primary statement unit.

22

2. A composite statement may contain as many BOU elements as desired.
3. Only one "goto" or primary statement unit may appear in a composite statement.

After the reader has read later sections and studied the sample programs, the form
of permissible composite statements will be more apparent.

23

Section 3.7 Test Statements

Tes_t statements are provided for conditional transfer of control in a CSLx program
during the execution run. One or more test units (TU) are executed and their "votes" tallied.
Action is then taken based on the "vote" according to the type of test statement.

There are four (4) basic test statements covering the four (4) possible outcomes of
"voting" tabulations:

IF ALL
IFNONE
IF ANY
IFNALL

Two shorthand test statements:

IF
NOT

are allowed. IF functions as IFALL and NOT functions as IFNONE with the restriction that
only one (1) test unit be used in either case.

The general format of the test statement consists of four (4) parts:

1. LABEL
2. TYPE
3. IF computation
4. Result computation

The LABEL is a standard statement label. TYPE is one of the six (6) mnemonics specified
above. The IF computation is a string of one or more TU's (except for IF and NOT). The re
sult̂ computation may be of two forms.

1 . a "goto"
2. a composite statement proceeded by the key word THEN

As we give a brief explanation of the four basic test statements. we will also
illustrate to clarify the actual source record form.

IFALL (A,L,3) (B,G,Z) THEN (A,E,B) EXIT
IFALL (K,E,3) (J,N,4) BITE

no.
The IFALL statement transfers to the next consecutive statement if any TU "votes"

24

IFNONE (A,G,1) (A,I,8) BADTAPE

The IFNONE statement transfers control to the next consecutive statement if any TU
"votes" yes.

IFANY (A,L,2) (B,L,3) THEN (A,E ,B)

The IFANY statement transfers control to the next consecutive statement if all TU's
"vote" no.

IFNALL (G ,G,H) (H,G,I) THEN (I,E,G) OUT

The IFNALL statement transfers control to the next consecutive statement if all
TU's "vote" yes.

Note that we have essentially stated the action taken by these test statements in
the reverse manner. This is intended to require the reader to do some thinking about the
operation of test statements. A good fundamental understanding reduces programming errors
and reversed decision-making is among the most common ones.

f

25

Section 3.8 Source Language Formats in CSLx Programs

There are three types of source language records in a CSLx program:

1. Comment
2. CSLx source
3. ILLAR source

All three classes of records are ten (10) words long in BCD format.

Section 3.8.1 Comment Source Records

The comment source record class contains just three records:

1. Comment record
2. CSL6 switch record
3. ILLAR switch record

Comment records contain an asterisk (*) in col. 1 with columns 2-80 available for
user typed material. Comment records are not compiled but are listed on both the CSLx
source listing and when requested, the subsequent ILLAR listing of the compiled program.

The CSLx system has the facility for programmer selection of either CSLx language
or ILLAR machine language internal to any CSLx program. To accomplish a switch, either of
the switch records:

--ILLAR col. 1-7
--CSL6 col. 1-6

is placed in the program. All following records up to the next switch record or the end of
the program will be treated as of the type of language selected. Even though the length of
records in either language is the same,note that comment records assume the tab information
of the language selected.

Section 3.8.2 CSLx Source Records

These are four fields in the CSLx Source Record:

1 . LABEL col. 1-8

2 . CHAIN col. 9
3. STATEMENT col. 10-72
4. USER col. 73-80

26

Tab information is present in the ILLSYS system to allow tab operations to column
10 and 73. Moving to column 9 requires eight (8) spaces.

The LABEL field serves two purposes: 1) to provide a means for statement refer
encing during EDIT operations on the CSLx program and 2) to provide symbolic references for
transfers of control inside or out of the CSLx program. The convention for statement labels
is that established for the ILLAR assembly language and we repeat the convention briefly
for completeness.

Labels must be left-justified in the field and are restricted to eight (8) BCD
characters or less. All of the alphabet and numeric characters may be used in labels subject
to some restrictions described below. Xn addition, two special characters, the period M .M
and asterisk may be used with the following restrictions: an asterisk may end a label
but should not appear within it. A period may not begin a labe1 but may appear within it or
at the end.

The following restrictions on symbols beginning with numeric characters are
necessary to avoid conflicts with the convention on literals :

1. A single digit number may not be followed immediately by one of the
letters f_, £ or h.

2. Any combination of numeric characters may not be followed immediately
by one of the letters b, d, or e_.

For illustration, we list here some of the acceptable and not-acceptable forms of labels.

Acceptable
a
al
abcdefgh
231mn
read*
a .b
a. .c

Not Acceptable
(a)
*abc
read*a
a+b
lb
.a
..twofive

The STATEMENT field holds all CSLx statements. Although the field is only 63 char
acters long, extra long statements can be placed in the STATEMENT fields of successive source
records by placing a non-blank character in the CHAIN field of all records in the "chain"
but the first. Note that a chain is broken by the next source record with a blank CHAIN
field or a comment class record. Labels placed on "chained" records (col. 9 non-blank) will
be ignored.

/
27

The USER field is simply an eight (8) character field which is reproduced on the
CSLx source listing only and can be used in any way desired.

Section 3.8.3 ILLAR Source Records

The conventions of the ILLAR system are well written up in the ILLAR manual. For
further details, the reader should contact the system librarian.

28

Section 3.9 Program Descriptions

forms:
A program written in the CSLx (x = 6,7) language system may take one of three

1. Main program
2. Subprogram
3. Subroutine

Each program begins with a header record and ends with the END record. The END record con
tains END in columns 10-12 and blanks in the remaining columns. The END card may be labeled
if the user wishes.

Each of the three program classes is identified by a unique header record:

1. Main programs - PROGRAM
2. Subprograms - SUBPROGRAM
3. Subroutine - SUBROUTINE

The descriptive word begins in column 10 of the header record. The descriptive word is
followed by a space and then the program name, up to eight (8) BCD characters.

If arguments are present for the program, they are listed by label on the header
record following the name, enclosed in parentheses, and separated by commas. The following
are some examples of header records:

PROGRAM TEST
SUBPROGRAM TESTER(A,TIME)
SUBROUTINE CLOCK(ARG)

To initialize the ILLSYS system to read CSLx format records, a CSL6 language dir
ective should be placed just prior to the header record. The language directive is a record
containing --CSL6 in columns 1-6 of the record followed by blanks in the remaining columns.

A program set is a collection of programs which are placed in consecutive order on
some input medium to be read and compiled in contiguous order. A program set begins with the
first header record read from the medium and ends with a FINIS record. The FINIS record
contains FINIS in columns 10-14 with blanks in the remaining columns. In accordance with
ILLSYS conventions, two (2) end-of-file records are written after the FINIS record on the
medium.

A program set may contain any number and arrangement of programs from the three (3)
classes of CSLx programs with the following single exception:

29

THERE MAY BE ONLY ONE (1) MAIN PROGRAM IN A PROGRAM SET.

Further flexibility in programing is provided by allowing the intermixing of CSLx system
programs and ILLAR system programs in the same program set. The user may also store his
source records in SQUOZE BCD format which allows a condensing factor of 5 or 6 in the length
of the program set on the input medium.

The following is an illustration of a representative program set.

--CSL6
PROGRAM MAIN

END
--END
--CSL6

SUBPROGRAM ROUTINE1(ARG1,ARG 2)

END
--END
--ILLAR

IDENT ILLAR6

END
--END
--CSL6

SUBROUTINE SUBI

END
--END
--ILLAR

FINIS
--END
--END

30

CHAPTER 4. Storage Allocation, Field Definition and Manipulation

Section 4.1 Overview

The first operation which must be performed when a CSLx program is executed is to
set up available storage in a block structure format. The next operation usually performed
is to define the fields which will be used in the blocks. The name of the rest of the game
is manipulation of data stored in the fields of various blocks.

The first two topics of this chapter will be presented in detail. The third will
be only a beginning since manipulation covers many areas (later chapters). The types of
manipulation which will be discussed in this chapter are data - independent such as pushdown-
popup in stacks, field interchange, etc.

Since we begin in this chapter to show exact formats of statements and operation
units, we will also begin the practice of giving an example in detail for each new disclosure.

31

Section 4.2 Storage Allocation

In Chapter 2, we explained the two methods of storage allocation available to the
use of the CSLx system.

The method used in CSL6 is the fast storage allocation developed by K. C. Knowlton.6

This method of storage allocation allows for complete recombination of smaller "free" blocks
if possible and therefore, allows greatest flexible usage of storage. The penalty paid is
in the power of 2 size of blocks.

In the CSL7 system, the flexibility of variable size is allowed at the expense of
recombination which somewhat reduces flexibility of storage. The main reason for developing
the CSL7 type of storage allocation was due, however, to a need on the part of some users to
cut down on the amount of permanent system information attached to each block.

In the CSL6 system, three types of system tags are attached to each and every block
obtained from the storage allocator routine (L6ST0RAG). The first tag is the FREE/INUSE flag
and occupies bit 0 of word 0 in every block:

set to 0 if FREE
set to 1 if INUSE

This flag is used by the system debugging routines (Section 4.5) during dump operations.

The second tag attached to each block is the size of the block specified as a power
of 2. This tag is placed in bits 24-26 of word 0. The system uses this tag to identify
block size and an operation has been provided for the user which enables him to also read
this tag (Section 4.4.1).

The third tag, located in bits 1-8 or word 0, is storage allocator information.
This tag is used during recombination.

In developing the CSL7 storage allocation and block scheme, the third tag is elimi
nated and the second tag expanded to hold five (5) bits of information, i.e., the actual
number of words in the block. The FREE/INUSE flag still lies in bit 0 of word 0 while the
count tag has been moved to bits 1-5 of word 0. Thus, only six (6) bits of system information
are used in the CSL7 system as opposed to twelve (12) in the CSL6 system.

The CSLx user is protected from violating the system areas of word 0 as long as he
stays in the CSLx language. As soon as he moves into ILLAR, it becomes his responsibility
to protect against violations. During the first year of usage of the CSLx system, this has
not become a problem.

32

Section 4.2.1 Storage Allocation Setup Unit

The first execution statement in a CSLx MAIN program should contain a storage
aUPfg-tiPB. s.etup BOU. This requirement applies only to the MAIN program in a program set.

 ̂ The Storage Setup operation unit initializes the storage
allocation routine and causes all available storage to be
dismembered into blocks, the largest of which is specified
by <i, a positive dec ima 1 integer.

In the CSL6 system, d_ is taken to be either a power of
2 with a maximum of 128(2^) and minimum of 4. In the CSL7
system, d_ is any integer from 4 to 32.

The (SS,d) BOU also causes all fieId definitions to be
cleared out and all stacks to be cleared. Thus, this opera
tion effectively initializes the user's program and the CSLx
system.

Example: (SS,4)

This BOU initializes the storage allocator to partition
all available storage into N-blcoks with a maximum value of
N = 4.

33

Section 4.3 Definition of Fields

Recall that there are two (2) classes of fields in the CSLx system: full word
£ields (pWF) and variable length fields (VLF). The methods of definition of these two (2)
classes of fields are completely different and as such, will be explained in separate sec
tions .

Section 4.3.1 Definition of Full Word Fields (FWF)

Since a FWF is of fixed length (48 bits), the user must simply define the label to
be attached and whether the field is internal or external. The simplest of these is the
external field (EF) and therefore, we will discuss it first.

Briefly stated, the use of an EF data descriptor:

*XXXX

is sufficient to cause the necessary information to be compiled stating that XXXX is a FWF
external to the current program.

Situations sometimes arise where the user desires to explicitly declare some labels
for EF. The EXTERNAL declarative statement provides this ability:

EXTERNAL,LABELl,...,LABELX

The EXTERNAL statement may appear any place in the CSLx program. Defining the EF may also
occur in an ILLAR section of code. Since this is a departure from compiler control, the
user assumes all risks.

Example: EXTERNAL, CSLMCS, TAPBINOT

The FWF CSLMCS and TAPBINOT are defined as external to the current CSLx program.

Defining the internal field (IF) is a bit more precise as follows; each IF must be
explicitly defined. The definition process is handled through the DEFINE declarative statement:

DEFINE, LABLE1, LABEL2,...,LABELN

An expansion of the capability exists to allow the labels to define arrays by specifying the
size of the array in enclosing parentheses:

DEFINE, ALPHA (20)

34

The DEFINE statement may appear at any point in a CSLx program.

Example: DEFINE, ALPHA, LONG, TWO (20)

FWF labeled ALPHA and LONG will be set aside in the program. A twenty (20) word
array labeled TWO will also be set aside.

The ENTRY declarative statement is provided to allow a user to flag selected FWF
in one CSLx program to be referenced as EF in another program:

ENTRY,LABEL1,...,LABELN

The labeIs of the ENTRY statement may refer to arrays in which case, no size parameter is
used and the zeroth location of the array is the actual global entry point.

Example: ENTRY, ALPHA, LONG, TWO

Assume that this statement appears in the same program as the previous example. Thus,
programs outside this CSLx program may refer to the FWF ALPHA and LONG and also to the
array TWO.

Section 4.3.2 Definition of Variable Length Fields (VLF)

The definition of VLF in the CSLx system is a dynamic operation which occurs during
execution of the program. A definition may occur at any place and time in any program.

There are three (3) attributes in a field definition:

1. Word position in a block. Counting begins at zero (0).
2. Leftmost bit position of the word.
3. Rightmost bit position of the word.

Fields may not overlap word boundaries. Fields may overlap or coincide with other fields.
A field definition must occur prior to the first use of that field in a CSLx program. Other
wise, a compiler diagnostic will occur.

Bit positions in the word are numbered 0 to 47 moving from left to right. Due to
the organization of the 1604 computer, three fields compile operations which are faster than
the general fie Id definitions:

1. bits 0 to 47 - full word field

35

2. bits 9 to 23 - upper address of 1604 word
3. bits 33 to 47 - lower address of 1604 word

It is to the user s advantage if he can use these arrangements where possible.

Example I:
Word

Example II: Word A B

0 1 2 3 4 5 6 7

Field Word Left Bit Right Bit
A 0 9 23
B 0 33 47
C 1 0 47
D 2 0 47
E 3 0 47

Fie Id Word Left Bit Right Bit

A 0 9 23
B 0 33 47
C 1 0 47
0 1 0 5
1 1 6 11

2 1 12 17
3 1 18 23
4 1 24 29
5 1 30 35
6 1 36 41
7 1 42 47

Fields are defined by using the following BOU:

(w ,Df,l,r) This BOU causes a definition of field f_ to be made
at this point in the program during execution, f is a
single letter, A-Z or 0-9.

The fields w, l, and r_ may be either positive integers
or data descr iptors of fie Ids where a positive integer can
be found, w is the word position of field f_ in all blocks.
1 is the leftmost bit position of f_ and £ is the rightmost
bit position of £.

Error messages occur for illegal values of w, 1_, and r and if f is not a legal
field character name. To aid in debugging, legal values are assumed for w, 1_ and r where
necessary as follows:

36

error assumption

w < 0

w > 127
1 < 0

1 > 47
r < 0

r > 47
1 > r

w = 0

w = 0

1 = 0

1 = 47
r = 0

r = 47

In CSL6, if f covers bits 0-8 and/or 24-26 and w = 0, w is set to 1.
In CSL7, if £_ covers bits 0-5 and w = 0, w is set to 1.

For examples of the field definition BOU's, we list the BOU's for previous
examples I and II below:

Example I:

1. (0,DA,9,23)
2. (0,DB,33,47)
3. (1,DC,0,47)
4. (2,DD,0,47)
5. (3,DE,0,47)

Example II:

1. (0,DA,9,23)
2. (0,DB,33,47)
3. (1,DC,0,47)
4. (1,D0,0,5)
5. (1,D1,6,11)
6. (1,D2,12,17)
7. (1,D3,18,23)
8. (1,D4,24,39)
9. (1,D5,30,35)
10. (1,D6,36,41)
11. (1,D7,42,47)

Provision is made to allow the field definitions made in one program of a program
set to be used in other programs of the set. The fields are specified in the GLOBAL declara
tive statement :

GLOBAL,a,b,...,z

37

The a, b, ...,z are single letters, A-Z.

There are 3 cases concerning the occurrence of the GLOBAL statement in a program

Case 1. Field definition - no GLOBAL statement.

The defined field is internal to the associated program and
cannot be referenced from the outside.

Case 2. No field definition - GLOBAL statement.

The referenced field is defined in the associated program
with external labels so that all fieId processing routines
for that fieId are located outside the program and linkages
are made by the ILLSYS loader.

Case 3. Field definition - GLOBAL statement.

The referenced fieId is defined in the associated program
and each fie Id processor routine for the referenced field
is assigned as an ENTRY point. This allows both internal
and external routines to reference a given set of field
processor routines.

The importance of these cases is that only one definition point for a given field
may be allowed to be GLOBAL in nature. Otherwise, there will be more than one set of field
processing routines for some field and the system will be unable to handle this ambiguous
loading situation.

Incorporated into the CSLx auxiliary systems are pushdown stacks which retain
entries containing all necessary information for the definition of some fie Id at a later
date with a previous field definition. F ieId definitions may also be passed to and from
subroutines by this means.

(S,FD,f)
(R,FD,g)

The user Slaves (pushdown) the current definition of field f
and Redefines (popup) field £ with the last entry pushed into
the pushdown stack, f and £ are fie Id names, A-Z. Entries
are placed in a stack on a last-in-first-out basis.

38

Section 4.4 Block and Field Manipulation Operations

We begin at this point to discuss manipulation operations in the CSLx system. Our
concern in this section is with the data-independent operations (we stretch the point a
little when we deal with pointers) which we divide into two (2) classes:

1. Block operations
2. Field operations

Section 4.4.1 Block Manipulation Operations

The first two (2) BOU's we discuss are concerned with communication with one or the
other of the CSLx storage allocator routines (L6ST0RAG or L7ST0RAG).

(a,GT,b) Blocks of storage are obtained from the storage allocator
(a,GT,b,c) with this operation.

In the CSL6 system, b is either a positive integer denot
ing the number of words in the desired block or a data descrip
tor of a field where such an integer resides, b should be a
power of 2 but if it is not, the next higher power of 2 will
be assumed up to a maximum of 128 words.

In the CSL7 system, b is the same as in the CSL6 system
except that values run from 1 to 32 and no assumptions are
made. In either system, b < 0 causes an error return to the
system (ILLSYS).

Upon completion of the call to the storage allocator,
the pointer to the requested block is placed in field a. If
£ is present, the contents of field a prior to the storage
allocator call are placed in field c. New blocks, when
obtained from the storage allocator, are completely cleared
to zeros.

Example: (A,GT,4)

When complete, "bug" A will hold the pointer to some
4-block which is initialized to all zeros.

Example: (A,GT,4,AB)

Assume field B is fifteen (15) bits long and also that
"bug" A holds a pointer to block N. After the operation is

39

complete, "bug" A will point to a new 4-block and field B
of the new block will hold a pointer to block N.

Blocks of storage are "freed" or returned to the storage
allocator by this BOU when they are no longer in use.

a is a field which points to the block of storage to be
"freed." If b is present (not 0), then when the block freeing
operation is completed, the contents of field b are placed in
field a .

Example: (A,FR,AB)

Assume "bug" A points to block M and field AB holds a
pointer to block N. After completion of this operation,
block M will be placed in some UBL in free storage and "bug"
A will hold a pointer to block N.

The facility for duplicating blocks exists in the next BOU.

(a,DP,b) Field b points to a block in storage. A new block of
storage of the same number of words is obtained from the
storage allocator and the contents of the first block are
copied into the new block. A pointer to the new block is
placed in field a_.

Example: (A,DP,C)

Assume that "bug" C holds a pointer to some N-block M.
After the operation is complete, a new N-block K will be
present containing the exact same contents as block M and
"bug" A will hold a pointer to block K.

In order to maximize the amount of information stored in a block, the user is
allowed to access the size tag for a block.

(a,BS,b) This operation allows the user to monitor the sizes of
blocks that he is working with, b is a data descriptor of
a field which holds a pointer to some block of storage. The
BOU obtains the size of that block of storage and places it
in field a.

Example: (A,BS,C)

(a,FR,0)
(a,FR,b)

40

/
Assume "bug" C holds a pointer to a K-block. After

completion of the operation, "bug" A will hold the integer K.

Section 4.4.2 Field Manipulation Operations

We begin our discussions of field manipulation operations with the pointer
copying BOU.

(a,P,b) This BOU causes the pointer contained in the field
designated by b to be copied into the field designated by a.
All fields which will contain pointers must be at least
fifteen (15) bits wide.

Example: (A,P,AB)

Assume field AB to hold a pointer to block K. After
completion of the operation, "bug" A will hold a pointer to
block K. The field AB will be undisturbed.

We inherited the following shorthand notation for the pointer copying BOU from
the original language.

(a>b) A special 2-element form exists to aid in scanning down
strings. The 2-element form produces the same operation as
if the second data descriptor were a concatenation of a and
b.

Example: (A,B)

This BOU produces the same result as the previous
example: (A,P,AB).

For copying of all other forms of field contents, the field copy BOU is used.

(a,E,b) b may be either a signed decimal integer or a data
descriptor. The contents of field b are copied into the field
designated by a.

Example: (A,E,~23)

After completion of the operation, "bug" A will contain

41

(a , E O , c)

(a ,EH,d)

(a,EF,e)

c_ may be either a signed octal literal or a data
descr iptor. The contents of fie Id c_ are copied into fie Id a_.

Example: (B,EO,77)

After completion of the operation, "bug" B will contain
778 .

d is a string of up to 8 BCD characters, right justified,
zeros left with spaces counted, which will be copied into
field a_.

Example: (H,EH,HOLLRITH)

After completion of the operation, "bug" H will contain
the BCD string HOLLRITH.

£ may be either a floating point literal conforming to
ILLAR language specifications or a data descriptor. The
contents of field e_ will be copied into field a_.

Example: (G,EF,22.3E10)

22.3 x 10
After completion of the operation, "bug" G will contain

10

The CSLx system provides a BOU for exchanging the contents of two fields.

(a,IC,b) The contents of the field designated by a_ are Inter
changed with the contents of the field designated by b.

Example: (AC,IC,AB)

Assume field AC = IO^q and field AB = 24^q . After
completion of the operation, field AC will contain 24^q and
field AB will contain IO^q .

Incorporated into the CSLx auxiliary systems is a pushdown stack which will hold
the contents of specified fields in the user's program. An example of such usage would be
saving and restoring the contents of a "bug" during execution of a subroutine.

(S,FC,a) The user may Save (pushdown) the contents of field a_ or
(R,RC,b) he may Restore (popup) the contents of field b.

42

Example: (S,FC,A)
(R,FC,B)

Assume "bug" A holds the number 62^. The first BOU
"pushes" the 62^0 into the stack. The contents of "bug" A
wil^be undisturbed.

The second BOU will "pop" the 6 2 ^ out of the stack and
store it in "bug" B.

Two statements are provided to aid the CSL6 system programmer in providing multiple
pushdown and popup operations on the system field contents stack. The format of the PUSHDOWN
primary statement is:

PUSHDOWN ,ABC,CD,10,77b,-10.0

The elements of the statement are separated by commas "," and may be either data descriptors
or literals (octal, decimal, or floating point, but not hollerith).

The format of the POPUP pr imary statement is:

POPUP,B,EF,GH,Z

The elements of the statement are also separated by commas"," but they may be data descrip
tors only. Note that the order in which field contents are "popped" out of the stack is the
reverse of the order in which they were "pushed" into the stack.

Example: PUSHDOWN,A,B,C,
POPUP,C,B,A

After both statements are executed, "bugs" A, B, and C will contain their original
contents.

The CSLx system also provides the facility for allowing the user to define and
operate his own pushdown-popup data stacks. These operations will be discussed in Chapter 10.

43

Section 4.5 Special Debugging Aids - STATE and DUMP

Because the storage design of the CSLx system is so different from the standard
memory array, two BOU elements have been provided which will dump required information about
the status of the user's CSLx program.

(DO,STATE) The (DO,STATE) operation unit causes the following
information to be output on the line printer.

1. Name of program and record number of "do" operation
unit.

2. Time since execution of program began.
3. All current field definitions.
4. Contents of field contents pushdown stack.
5. Contents of subroutine calls pushdown stack.
6 . Count of blocks in free storage by size.
7. Contents of all bugs.

(DO,DUMP) The (DO,DUMP) operation unit causes the following infor
mation to be output on the line printer:

1. All information provided by the (DO,STATE) operation
unit.

2. Memory contents.

a. Pointers of strings of free storage by block size.
b. Contents of all occupied storage blocks in octal.

Neither dump will affect the interval clock.

Both options output a message to the console typewriter requesting the user to type
a carriage return (CR) to allow the computer to continue execution. When control is returned
from either BOU, execution will begin on the next executable statement or unit following the
BOU.

44

Chapter 5. Logical Operations on Data

Section 5.1 Overview

Logical data operations fall into three classes:

1. Bit manipulation
2. Shifts
3. Count and position detection

The first class includes the complement operation (Section 5.2), OR (5.3), Exclusive OR
(5.4), AND (5.5) and field substitution (5.6). The second class contains the left (5.7)
and right (5.8) shifts. The third class contains the bit counting (5.9) and the bit-
locating (5.10) operations.

45

Section 5.2 The Complement Operation

The bit complement BOU fetches the contents of a field or literal, complements by
bit, and stores the result in a second fieId. Because of the ones-complement integer arith
metic and the biased exponent floating point arithmetic of the 1604 computer, the complement
operation also may serve as the negation operation.

(a,C,b) b may be either a signed octal integer or a data
descriptor. The contents of fieId b are complemented
on the way to being placed in field a.

Example : (ABC,C,53)

Suppose that field C is a 6 -bit field. Then the octal
integer 53g would be complemented to 24g and stored in VLF
ABC.

(a,CD,b) This form is the same as above except that b may be a
signed decimal integer or a data descriptor.

Example : (/TIME,CD,460)

The decimal integer 4601Q is negated to -460tn and
stored in field /TIME

10

(a,CH,b) b is interpreted to be a string of up to 8 BCD charac
ters, right-justified, zeros left with spaces counted. All
other considerations apply as with the preceding two forms.

Example : (*EXH,CH,J B)

The hollerith literal J B(412062g) is complemented
to = <(365715g) and stored in field *EXH.

(a,CF,b) This form is the same as the first two except that b
may be either a floating point literal conforming to the
ILLAR language specifications or a data descriptor. All
other considerations are the same as with the preceding
three forms.

Example: (ABF,CF,-10.23)

10.23 will be stored in field ABF,

46

Section 5.3 Logical OR Operation

The logical OR data operation operates in a bit-wise manner according to the
following truth table:

(a,0 ,b)
(a,0 ,b,c)

b may be either a signed octal integer or a data
descriptor. The contents of field b are logically Ored with
the contents of field a. The result is copied into field c
if it is present. Otherwise, the result returns to field a.

Example: (ABE,O,40B)

(a,0H,b)
(a,0H,b,c)

Assume field ABE contains 320.. After completion ofO
the operation, field ABE will contain 360_.8

Example: (ABE,O,40B,C)

Assume field ABE = 320g. After completion of the
operation, "bug C" will contain 360„. Field ABE will beo -----
unaffected.

In this format, b is interpreted to be a string of up
to 8 BCD characters, right justified, zeros left with spaces
counted. All other considerations are the same as for the
preceding form.

Example: (D,0H, - 1 - - - - -)

Assume "bug" D holds the octal constant 2020002062464642..8
This is the hollerith literal - - ; - BOOK. After completion,
"bug" D will contain - - 1 - BOOK.

47

Section 5.4 Exclusive OR Data Operation

The Exclusive OR operation handles data in a bit-wise manner according to the
following truth table:

(a ,X ,b)

(a ,X ,b ,c)

(a ,XH ,b)

(a ,X H ,b ,c)

b may be either a signed octal integer or a data
descriptor. The contents of field b are exclusively Ored
with the contents of field a. The result is copied into
field c if it is present. Otherwise, the result returns
to field a .

Example: (ACE,X,170B)

Assume field ACE to contain 340g. After the operation
is complete, field ACE will contain 230O.8

In this format, b is interpreted to be a string of up
to 8 BCD characters, right justified, zeros left with spaces
counted. All other considerations are the same as for the
preceding form.

Example: (/TEST,XH,FREE)

If field /TEST contains the hollerith constant FREE,
then after completion of the operation, field /TEST will
be zero.

48

Section 5

following

(a,N,b)
(a,N,b,c)

(a ,NH ,b)
(a,NH,b,c)

5 The Logical AND Data Operation

The logical AND operation handles data in a bit-wise manner according to the
truth table:

b may be either a signed octal integer or a data
descriptor. The contents of field b are logically aNded
with the contents of field a. The result is copied into

Td c if it is present. Otherwise, the result returns
to field a.

Example: (/RES,N,777B)

Assume field /RES holds 37477g . After completion,
field /RES will contain 4770.

8

In this format, b is interpreted to be a string of up
to 8 BCD characters, right justified, zeros left with spaces
counted. All other considerations are the same as for the
preceding form.

Example: (NAME ,NH,TWO)

Assume field *NAME holds 770077g. After completion,
field *NAME will hold 230046 . (TWO = 232646).o 8

49

Section 5.6 Logical Substitution Operation

The logical substitution operation operates upon data in a bit-wise manner according
to the following truth table:

a b m result
X y 0 X
X y 1 y

(a,U,b,m)
(a ,U,b,m,c)

(a,UH,b,m)
(a,UH,b,m,c)

This operation unit allows selective substitution
(insertion) of any portion of a field with another field.

a is a data description whose contents will be substitu
ted for. m is either a signed octa1 integer or data descrip-
tor which provides a mask through which the substitution
will be made. Each 1-bit in the mask means that the corres
ponding bit in field a will be substituted for. m is right
justified with zeros left.

b_ is either a signed octal integer or a data descriptor
which provides the data to be substituted into a. If £ is
present, the new field contents after substitution will be
placed in field £. Otherwise, the result will be returned
to field a .

Example: (A,U,77B,CBA)

Assume "bug" A holds the hollerith literal FIELD= .
Assume field CBA holds the BCD number 6 . After completion
of the substitution operation, "bug" A will contain FIELD= 6 .

This form is also the same as the first form except
that b is interpreted to be a string of up to 8 BCD characters
right justified, zeros left with spaces counted.

Example: (A,UH,77b,6)

This example is the same as the one above except that
the BCD character 6 is explicitly stated as a hollerith
literal.

50

Section 5.7 Logical Left Shift Operation

The logical left shift operation allows information from one field to be shifted
in the left direction into another field.

(a,L,b) b may be either a positive decimal integer or a data
descriptor. The content of field b_ is the number of bit
positions which field a is shifted to the left. This
3-element form specifies that zeros are shifted in from
the right. The result is placed back in field a.

(a,L,b,c)
(a,L,b,c,d)

(a,LH,b,c)
(a,LH,b,c,d)

Example: (A,L,2)

Assume "bug" A to hold the number 15^. After completion
of the shift, "bug" A will hold 60^0. If we express the
numbers in octal, 170 becomes 74n.O O

b again specifies where the shift count is found. £ may
be a signed octal integer or a data descriptor. The field
or literal specified by £ is positioned prior to the
shifting operation such that the left edge of £ is next to
the right edge of field a. The result after shifting is
placed in field cl if it is present. Otherwise the result is
returned to field a.

Example: (A,L,6 ,ACD)

Assume field ADC to be six (6) bits long. Assume also that
field ADC holds the BCD character + and "bug" A holds the
string ALPHA. After the shift, "bug" A will hold the string
ALPHA+. Field ADC is undisturbed.

£ is interpreted to be a string of up to 8 BCD characters,
right-justified, zeros left with spaces counted-. All other
considerations are the same as the previous form.

Example: (A,LH,6 ,+)

This example produces the same result as the example
above for the second case where "bug" A contains the string
ALPHA.

51

Section 5.8 Logical Right Shift Operation

The logical right shift operation allows information from one field to be shifted
in the right direction into another field.

(a,R,b) b may be either a positive decimal integer or a data
descriptor. The content of f ield b is the number of bit
positions which field a is shifted to the right. This
3-element form specifies that zeros are shifted in from the
left. The result is placed back in field a.

Example : (A,R,4)

(a ,R ,b ,c)
(a,R,b,c,d)

Assume "bug” A holds the number 1024-rt(2000). After10 8
the shift is completed, "bug" A will hold 641rt(100o).

10 8

b again specifies where the shift count is found, c may
be a signed octal integer or a data descriptor. The field
or literal specified by c_ is positioned prior to the shifting
operation such that the right edge of c is next to the left
edge of field a. The field width of literals is assumed to
be the same as field a_. The result after shifting is placed
in field ^ if it is present. Otherwise, the result is
returned to field a.

Example : (AC,R,6 ,A)

Assume field AC is six (6) bits wide. Assume "bug" A
holds the string ALPHA+. After the shift, field AC will
contain the character +. "bug" A will not be disturbed.

(a ,RH ,b ,c)
(a ,RH ,b ,c ,d)

c is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted. All
other considerations are the same as the previous form.

Exampel: (AC,RH,6 ,+)

This operation unit produces the same result as the
example above.

52

Section 5.

(a,OS,b)

(a,ZS,b)

Bit Counting

The field designated by b has its one bits counted and
the count is placed in the fie Id designated by a_. If no bits
of the type required are present, the count is set to zero (0).

Example: (A,OS,BC)

Assume field BC holds the octal number 103463 . Afterg
completion of the bit count, "bug" A will hold

10

The field designated by b has its zero bits counted and
the count is placed in the field designated by a. If no bits
of the type required are present, the count is set to zero(0).

Example: (A,ZS,BC)

Assume field BC is eighteen (18) bits wide and contains
the octal number 103463g. After completion of bit counting,
"bug" A will hold the count of 10

10

53

«■)

Section 5.10 Bit Position Detection Operation

The bit-position detection operation units determine the position of the leftmost
or rightmost zero or one bit in the field designated by b. Positions are counted as the ith
position in the field, not the word in which the fieId resides. Positions number from 1 up,
left and right. If no bit of the type designated exists in the field. the position informa
tion is set to zero (0). When the operation is completed, the position count will be placed
in the field designated by a. In the following examples, assume that field BC is twenty-
four (24) bits wide and contains the number 14061375O.8

(a,LO,b) This operation detects the position of the leftmost one
bit in field b. The position count is placed in field a.

Example: (A,LO,BC)

When complete, "bug” A will contain 3^.

(a,LZ,b) This operation detects the position of the leftmost zero
bit in field b̂. The position count is placed in field a_.

Example: (A,LZ,BC)

When complete, "bug" will contain 1
10

(a,RO,b) This operation detects the position of the rightmost one
bit in field b. The position count is left in field a.

Example: (A,RO,BC)

When complete, "bug" A will contain 1^.

(a,RZ,b) This operation detects the position of the rightmost zero
bit in field b. The position count is left in field a.

Example: (A,RZ,BC)

When complete "bug" A will contain
10

54

Chapter 6. Mathematical Operations

Section 6.1 Overview

The CSLx system provides the standard set of mathematical operations usually found
in computer languages with the exception of exponentiation. They are:

1. Addition (6.2)
2. Subtraction (6.3)
3. Multiplication (6.4)
4. Division (6.5)

In addition, conversion from fixed-point to floating-point and vice versa is provided/6 *6 ̂
An absolute value function is provided for either type.^'^

The type of mathematical operation, fixed or floating-point, is stated by the
postfix on the opcode. Floating-point operations always have the postfix letter F attached.

Because the 1604 computer word is forty-eight (48) bits long, arithmetic operations
on VLF require that the field be expanded to forty-eight (48) bits. This is accomplished by
extending the leftmost bit in the field to the left until forty-eight (48) bits are achieved.
Thus, the leftmost bit in a field holding an arithmetic quantity is treated as the sign bit
of the field.

Note that sign extension dictates that integers in fields live in the range (-2N_1)
to (2 ~1) where the width of the field is N bits. This sign extension feature does not apply
anywhere else in the CSLx system.

55

Section 6.2 Addition Operation

(a,A,b)
(a,A,b,c)

(a,A0 ,b)
(a,AO,b,c)

(a,AF,b)
(a,AF,b,c)

— may be either a signed decimal integer or a data
descriptor. The contents of fields b and a are added as
integers. The result is copied into field c if it is
present. Otherwise, the result is returned to field a.

Example: (/SLOT,A,10)

Assume /SLOT = 20^. After addition, /SLOT = 30^.

The operations are the same as the above form except
that b may be either a signed octal integer or a data
descriptor.

Example: (/SLOT,AO,12)

Assume /SLOT = 24g. After addition, /SLOT = 36g.

b may be either a floating-point literal conforming to
the ILLAR language specifications or a data descriptor. The
contents of field b are added to field a in floating-point
format. The result is copied into fie Id c if it is present.
Otherwise the result is returned to field a.

Example: (/SLOT,AF,10.0)

Assume /SLOT = 20.0. After floating-point addition,
/SLOT = 30.0.

56

Section 6.3 Subtraction Operation

(a,S,b)
(a,S,b,c)

(a,SO,b)
(a,SO,b,c)

(a.SF.b)
(a,SF ,b,c)

b may be either a signed decimal integer or a data
descriptor. The contents of f ieId l) are subtracted from
f a. The result is copied into f ie Id c_ if it is present.
Otherwise, the result is returned to field a.

Example: (/SLOT,S,10)

Assume /SLOT = 20.^. After subtraction, /SLOT = 10^.

The operations are the same as the above form except
that _b may be either a signed octal integer or a data
descr iptor.

Example: (/SLOT,SO,12)

Assume /SLOT = 24~ . After subtraction, /SLOT = 12Q.o 8

b may be either a floating-point literal conforming
to the ILLAR language specifications or a data descriptor.
The contents of field b are subtracted from field a in
floating-point format. The result is copied into field c
if it is present. Otherwise the result is returned to
field a.

Example: (/SLOT.SF,10.0)

Assume /SLOT = 20.0. After floating-point subtraction,
/SLOT = 10.0.

57

Section 6.4 Multiplication Operation

(a,M,b)
(a,M,b,c)

b may be either a signed decimal integer or a data
descriptor. The contents of fields b and a are multiplied
as integers. The result is copied into field c if it is
present. Otherwise, the result is returned to field a.

Example: (/SLOT,M,10)

Assume /SLOT = 20^. After multiplication, /SLOT =

2M i0 -

(a,MO,b)
(a,MO,b,c)

The operations are the same as the above form except
that b may be either a signed octal integer or a data
descriptor.

Example: (/SLOT,MO,12)

Assume /SLOT = 24_. After multiplication, /SLOT = 310 .
0 8

(a,MF,b) J2 may be either a floating-point literal conforming to
(a,MF,b,c) the ILLAR language specifications or a data descriptor. The

contents of field b are multiplied with field a in floating
point format. The result is copied into field c if it is
present. Otherwise the result is returned to field a .

Example: (/SLOT,MF,10.0)

Assume /SLOT = 20.0. After floating-point multiplica
tion, /SLOT = 200.0.

58

Section 6.5 Division Operation

In all cases of divide operations, the CSLx system will compile a check for a divisor
of zero. When an attempt to divide by zero occurs during the execution of the program, an error
message will appear and control will be transferred to the operating system (ILLSYS).

(a,V,b)
(a,V,b,c)

b may be either a signed decima1 integer or a data
descriptor. The contents of field a are divided by field b
as integers. The result is copied into field c if it is
present. Otherwise, the result is returned to field a.

Example: (/SLOT,V,10)

Assume /SLOT = 20^. After division, /SLOT = 2^.

(a,VO,b)
(a,VO,b,c)

The operations are the same as the above form except
that b may be either a signed octal integer or a data
descriptor.

Example: (/SLOT,VO,12)

Assume /SLOT = 24g. After division, /SLOT = 2.

(a,VF,b)
(a,VF,b,c)

b may be either a floating-point literal conforming
to the ILLAR language specifications or a data descriptor.
The contents of field a are divided by field b in floating
point format. The result is copied into field c if it is
present. Otherwise the result is returned to field a.

Example: (/SLOT,VF,10.0)

Assume /SLOT - 20.0. After floating-point division,
/SLOT =2.0.

59

Section 6 .6 Data Format Conversion

(a,FX,b) k is a data descriptor of a field assumed to hold a
floating-point format data word. The BOU converts the
floating-point word to fixed-point format and places the
result in the field designated by a.

Example: (AC,FX,B)

Assume field AC to be six (6) bits in length. Assume
also that "bug" B contains the number 24.65. After com
pletion of the operation, field AC will contain 24-...

10

(a,FL,b) Th is operation is complementary to the above form.
The contents of fie Id b_ are assumed to be in fixed-point
format. The BOU converts the fixed-point word to floating
point format and places the result in the field designated
by a.

Example: (AD,FL,AC)

Assume field AD to be forty-eight (48) bits in length
and field AC to be eight (8) bits in length. Assume field
AC to contain the number -17^. After the operation is
complete, field AD will contain the number -17.00.

/

60

Section 6.7 Absolute Value Function

(a,ABSV,b) The absolute value of the contents of field b is
placed in fieId a_. a_ and b_ are both data descriptors.
If field b is a VLF, sign extension will be performed
before taking the absolute value.

Example: (A,ABSV,A)

Assume bug A to hold -24.6. After completion of the
operation, "bug" A will hold +24.6.

Chapter 7. Subprograms, Subroutines and Functions

Section 7.1 Overview

In the ILLSYS system, calling sequences in the ILIAR and FORTRAN language systems
obey what we will call the FORTRAN type calling sequence:

1. A return jump (1604 code) instruction is made to the entry point
of the subroutine or function.

2. Only one call may be made to a given subroutine or function at a time.
3. Argument transfers are made by passing the address of the argument

instead of the argument.

In the CSLx system, a new type of subroutine calling sequence called the DO type
entry is provided:

1. A direct transfer is made to the entry point.
2. Calls to routines are recursive, that is, the return addresses are kept

in a last-in-first-out pushdown stack.
3. Argument transfers follow the FORTRAN convention.
4. Two types of exit from the called routine are provided:

standard and error exit.

The consequences of the first rule are that any statement or group of statements in
a CSLx program may be treated as a subroutine. The second rule increases the flexibility of a
subroutine by allowing it to call itself. Fule four provides for exits based on unusual
conditions.

In this chapter, we discuss both the DO type calling sequence (Section 7.2) and the
FORTRAN type calling sequence (7.3). A special form of the FORTRAN type calling sequence, the
FUNCTION subroutine call is treated in Section 7.4.

62

Section 7.2 SUBPROGRAM Operations

The BOU used to drive DO type subroutines in the CSLx system is, of course, the
DO BOU.

(DO,label) label is the name of the subroutine to be executed.
(f,DO,label) This is a program label which may appear at any place in a

CSLx program. The BOU causes an internal label pointer to
the next BOU or statement after the DO BOU to be pushed down
into the system subroutine call stack. This entry in the
stack may be executed by a DONE "goto" as will be explained
later.

If £_ is present, it is interpreted as a label to which
a return from the subroutine may be made by a FAIL "goto" as
will be explained later.

The action of the DO BOU after pushdown is to transfer
control in the CSLx program to the "called" routine.

Either label or f_ may be treated as external to the
CSLx program where the DO BOU is present by prefixing the
label with an astrisk (*).

Example: (DO,COUNT)

After the proper return address is pushed down into the
subroutine call stack, control will be transferred directly
to the routine COUNT. No "fail" exit will be allowed from
COUNT.

Example: (*CSLMCS,DO,DRIVE)

After the proper return address and the external "fail"
label CSLMCS have been pushed down in the subroutine call

r stack, control will be transferred to the routine DRIVE.

This form of the DO BOU does not allow for argument transfers. A special case
called the DOARG BOU is provided for this purpose.

(DOARG,label,list) label and are the same type of labels as described
above for DO BOU's. The distinction is made by the use of
DOARG instead of DO as the opcode.

63

routines.

DONE

FAIL

The arguments are specified in the list. The list is
made up of data descriptors or literals separated by commas

an<i terminated by the ")" of the operation unit. No
hollerith literals may be placed in the list.

Example: (DOARG,TIME,4 7B)

The routine TIME is driven with the argument 47Q.8

Example : (ENDFILE,DOARG,READTAPE,32032B,/BUFFER,10)

The routine READTAPE is driven with the arguments
32032g, BUFFER and 10^. The'fail" exit label ENDFILE
is also provided.

Two system defined "goto" elements provide the means of return from DO type sub-

The encountering of a DONE "goto" causes essentially a
subroutine type return transfer of program control. The
transfer point is obtained by a popup of one element from
the subroutine call stack. If no element exists, an error
return will be made to ILLSYS.

A DONE "goto" terminates the statement in which it
occurs. The "goto" also compiles an end to any input/output
(1 /0) operation area that may be in force at that point
(Chapter 11). This I/O end operation is executed before
the transfer of the "goto."

The encountering of a FAIL "goto" causes an error
return transfer from a subroutine. The transfer point is
obtained by a popup of one element from the subroutine call
stack. If no element exists, an error return is made to
ILLSYS. An error message and return to ILLSYS will be made
if no FAIL entry is found in the element popped from the
stack.

Note that each element from the subroutine call stack
may contain both DONE and FAIL transfer points.

A FAIL "goto" terminates the statement in which it occurs.
The "goto" also compiles an end to any I/O operation area

4P

64

that may be in force at that point (Chapter 11). This I/O
end operation will be executed before the transfer of the
"goto."

Examples of usage will be made in Chapter 12 where we intend to give CSLx programming
examples.

Facility for entering a program or subroutine at some entry point other than at the
header card by use of a DO or DOARG BOU is provided by the DO ENTRY declarative statement.
The statement format is as follows:

label DO ENTRY
label' DO ENTRY,NOPREAMBLE

A DO ENTRY point may be declared in either a PROGRAM, SUBROUTINE or SUBPROGRAM at any point
desired. The first form will cause parameter setting operations when entered if there are
arguments specified in the header record. The second form will cause parameter setting opera
tions to be ignored for that entry point.

The label attached to a DO ENTRY statement will be tagged as a global entry point
which can be accessed from programs outside the program where the entry point is defined.
The DO ENTRY point may only be accessed by either a DO or a DOARG BOU operation. Exit from
the section of code headed by the DO ENTRY statement must be performed by either the DONE
or FAIL goto" operations. This requirement is also met by the END statement of a SUBPROGRAM
program.

65

Section 7.3 Fortran type Subroutine Operations

The calling sequence for a FORTRAN type subroutine is specified by the CALL primary
statement. The format of the CALL primary statement is as follows:

CALL, NAME(list)

NAME is the name of the routine to be called. NAME is always an external program label
(no required).

The must be present to separate CALL from NAME. The "list" may or may not be
present. The format of the "list" is simply a string of data descriptors, literals (no
hollerith) or program labels. Two-way transfers of information via any one element of the "list"
is possible for all element forms except field strings. The user must be responsible for not
destroying literal arguments through return transfer usage.

If the list is present, it must be enclosed by "(" and ")". If only the "(" and ")"
are present, the calling sequence will establish that the last "list" used in a CALL to routine
NAME is used for this CALL.

We remind the user that only one type of return is allowed from FORTRAN type
subroutine. Control will be returned to the next CSLx statement after the CALL statement.

Example: CALL,TIME
M

This is the simple form with no arguments. The routine TIME is executed and control
returned to the next CSLx statement.

Example : CALL,NAME 1 (A ,ABC,/BC,*TIME,10,77b,10.4)
CALL,NAME1()

The first CALL to NAME1 also carries with it the arguments:

1. "bug" A
2. field ABC

Internal FWF BC
 ̂ -V

4. External FWF TIME
5 . integer number 10

6 . octal number 77
7 . floating-point number 10.4

The second CALL to NAME1 causes the same arguments of the first CALL statement to be
used as NAMEl is executed. This form executes a little faster as no argument address planting
needs to be performed.

Examples of usage will be given in Chapter 12 where we intend to give CSLx programming
examples.

Facility for entering a program or subroutine at some entry point other than at the
header card by use of a FORTRAN type calling sequence is provided by the CALL ENTRY declarative
statement. The statement format is as follows:

label CALL ENTRY
label CALL ENTRY, NOPREAMBLE

A CALL ENTRY point may be declared in either a PROGRAM or SUBROUTINE at any point. CALL ENTRY
statements may not be used in SUBPROGRAM programs. The first form of the statement will cause
parameter setting operations when entered if there are arguments specified in the header record.
The second form will cause parameter setting operations to be ignored for that entry point.

The label attached to a CALL ENTRY statement will be tagged as a global entry point
which can be accessed from programs outside the program where the entry point is defined.
The CALL ENTRY point may only be accessed by a FORTRAN type calling sequence. Exit from the
program entered at the CALL ENTRY statement must be through the END statement of the associated
program or subroutine.

67

Section 7.4 Fortran type Functions

A special version of the FORTRAN type calling sequence routine exists and is called
a FUNCTION routine. The calling sequence is the same as a FORTRAN type subroutine but the
return of the result of execution is made by leaving the one (1) word result in the 1604
computer main arithmetic register.

The CSL system provides the FUNC BOU which allows the calling of a FUNCTION routine
and placement of the execution result in some field for further processing by the CSLx program.

(a,FUNC,name,list) The name of the FUNCTION routine is name and will always
be defined as an external label (no needed).

a is a data descriptor where the result of the FUNCTION
will be placed upon completion of its operations. list is an
arguments list constructed in the same manner as in the
DOARG BOU. The arguments are determined by the FUNCTION
routine's requirements.

Example: (A,FUNC,SQRT,4.0)

The SQRT of 4.0 is computed and returned to "bug" A
upon completion of the operation.

Appendix B contains the necessary forms to allow usage of all the standard FORTRAN
system functions.

68

Chapter 8» Control Transfer Operations

Section 8.1 Overview

We previously discussed the "goto" in Section 3.5 for use in effecting unconditional
transfers of control between segments of CSLx programs.

Section 8.2 discusses the "assigned" TRANSFER primary statement and Section 8.3
discusses the "computed" TRANSFER primary statement. These two statements are analogous to
the "assigned" and "computed" GO TO statements in the FORTRAN language system. Both statements
provide dynamic control transfers during execution of a CSLx program.

69

Section 8.2 "Assigned" TRANSFER Operation

The format of the "assigned" TRANSFER primary statement is as follows:

TRANSFER (aa)

aa is the up to eight (8) BCD character statement label attached to a transfer "goto" variable
This label must not be used for any other purpose in the CSLx program where it occurs.

Since aa is in effect a special type of data word, we use a special primary statement
to change the value of aa:

SWITCH, aa, bb

The SWITCH primary statement sets the contents of transfer "goto" variable aa to the statement
lake 1 kk* When the TRANSFER (a;a) statement is executed, program flow is transferred to the
CSLx program statement labeled bb. An error return is made to ILLSYS if no assignment has
been made to aa.

External program labels may be used provided they are prefixed by an asterisk (*) or
declared as external FWF.

Example: SWITCH,ALPHA,ENDI
TRANSFER(ALPHA)

When execution of the TRANSFER statement occurs, control will be transferred to the
statement labeled ENDI.

70

Section 8.3 "Computed" Transfer Operations

The computed' TRANSFER primary statement achieves dynamic transfer control by sampling
the value of some designated integer field. The general format is:

TRANSFER (XI, X2,...,Xn) index

The list XI, X2,...,Xn is made up of statement labels, each of which may be internal or external
to the current CSLx program. External labels must either be declared as external FWF or be
prefixed with an asterisk (*).

Index is a data descriptor for some fieId where an integer number in the range of - °°
to N-l where there are N labels in the list. If the contents of index are negative, the
TRANSFER statement is not executed. Program execution continues at the next program statement.
If the contents of index are ^N, then an error will be declared and control transferred to
the ILLSYS monitor CSLMCS. Otherwise, control will be transferred to statement X

index*

Example: TRANSFER(UP,DOWN,OUT)I

If "bug" 1 = 0 , control transfers to the statement labeled UP. If "bug" 1 = 1 ,
control goes to statement DOWN. No transfer occurs in "bug" I contains a negative number.

There is a short form of the "computed" TRANSFER statement that allows a binary choice
of control transfer:

TRANSFER(label) index

If field index contains a positive number, control will go to statement labeled label.

Example: TRANSFER(SI)I
TRANSFER(BETA)J

ALPHA ___

SI TRANSFER(ALPHA)J
BETA ---

71

The above sequence of statements solves the following truth table

I J Transfer
to statement

- - ALPHA
- + BETA
+ - BETA
+ + ALPHA

72

Chapter 9. Relational Test Operations

Section 9.1 Overview

In this chapter, we will discuss the relational test operation units (ID) which are
used in decision statements (Section 3.7). The first TU discussed is the pointer equality
TU (Section 9.2). The second TU allows checking of block size (9.3).

Next to be discussed are four (4) mathematical relationship TU's:

1 . Equality (Section 9.4)
2 . Inequality (Section 9.5)
3. Greater Than (Section 9.6)
4. Less than or equal (Section 9.7)

The last two TU's are logical in nature and test for patterns of ones (9.8) or zeros (9.9).

The reader will note that the opcode fields of the TU may be the same as those of
some BOU's. The distinction is made simply upon the condition that the TU must appear in a
dec is ion statement after the statement mnemonic.

73

Section 9.2 Pointer Equality Test

A special test unit (TU) is provided for checking equality between pointers. This
lends itself to clarification of the language when being read and also protects against
possible error due to the design of the 1604 computer (some pointers might not appear equal
even though in fact they were).

â,P,b ̂ 2. and b must be data descriptors. The fields contain
BgAnters which are compared and if equal, the TU registers
a "yes" vote. Otherwise, the TU says "no."

Example: (A,P,BC)

Assume "bug" A and field BC hold pointers. If the
pointer in "bug" A points to the same block as the pointer
in field BC, a "yes" vote will be recorded.

74

Section 9.3 Block Size Test

(a,BS,b)** a is a data descriptor of a field that contains a
- pointer. The size of the block which the pointer references

is compared to the contents of field b and if equal, a "yes"
vote is recorded. Otherwise, a "no" vote is taken by the
TU.

b may be either a positive decimal integer or a data
descriptor. Successful values of the contents of field b
are powers of 2 (max 128) in CSL6 and 1 to 32 in CSL7.

Example: (AT,BS,8) (CSL6)
(AT,BS,13) (CSL7)

Assume field AT holds a pointer to 16-block K. Both
TU's will register "no" votes. *

75

Section

(a,E,b)

(a,EO,b)

(a,EH,b)

(a,EF,b)

.4 Data Equality Test

This TU compiles a vote on the mathematical equality of two (2) data items.

a is a data descriptor, b may be a signed decimal
integer or a data descriptor. The contents of field a are
compared to the contents of field b and if equal, the TU
votes "yes." Otherwise, the TU votes "no."

Example: (/ACT,E,-22)

Assume field /ACT = -20^. The TU will vote "no."

b may be either a signed octal integer or a data
descriptor. All other considerations are the same as the
previous form.

Example: (/ACT,EO,-24)

Assume field /ACT = -20^. The TU will vote "yes."

b is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as for the two previous
forms:

Example: (A,EH,TIME)

Assume "bug" A holds the string CLOCK. The TU will
vote "no".

b may be either a floating point literal conforming
to the ILLAR language specifications or a data descriptor.
All other considerations are the same as for the three
previous forms.

Example: (D,EF,26.145)

Assume "bug" D holds the number 26.1451. The TU will
vote "no".

76

Section 9.5 Data Inequality Test

This TU compiles a vote on the mathematical inequality between two (2) data items.

(a,N,b) a is a data descriptor, b may be a signed decimal
integer or a data descriptor. The contents of field a are
compared to the contents of field b and if not equal, the TU
votes "yes." Otherwise, the TU votes "no."

Example: (/ACT,N,-22)

Assume field /ACT = -20^. The TU will vote "yes."

(a,NO,b) b may be either a signed octal integer or a data
descriptor. All other considerations are the same as the
previous form.

Example: (/ACT,NO,-24)

Assume field /ACT = -201(). The TU will vote "no."

(a,NH,b) b is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as for the two
previous forms.

Example: (A,NH,TIME)

Assume "bug" A holds the string CLOCK. The TU will
vote "yes".

(a,NF,b) b may be either a floating point literal conforming to
the ILLAR language specifications or a data descriptor. All
other considerations are the same as for the three previous
forms.

Example: (D,NF,26.145)

Assume "bug" D holds the number 26.1451. The TU will
vote "yes".

77

Section 9.6 Greater Than Test

This TU compiles a vote on whether one data item is mathematically greater than
another data item.

(a,G,b)

(a,GO,b)

(a,GH,b)

(a,GF,b)

a is a data descriptor, b may be a signed decimal
integer or a data descriptor. The contents of fie Id a are
compared to the contents of field b and if a > b, the TU
votes "yes." Otherwise,the TU votes "no."

Example: (/ACT,G,-22)

Assume field /ACT = -20^. The TU will vote "yes".

Jd may be either a signed octal integer or a data
descriptor. All other considerations are the same as the
previous form.

Example: (/ACT,GO,-24)

Assume field /ACT = -20^. The TU will vote "no."

b is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as for the two previous
forms.

Example: (A,GH,TIME)

Assume "bug" A holds the string CLOCK. The TU will
vote "yes".

b may be either a floating point literal conforming to
the ILLAR language specifications or a data descriptor. All
other considerations are the same as for the three previous
forms.

Example: (D,GF,26.145)

Assume "bug" D holds the number 26.1451. The TU will
vote "yes".

78

Section 9.7 Less Than or Equal Test

This TU compiles a vote on whether one data item is mathematically less than or equal
to another data item.

(a,L,b) a is a data descriptor, b may be a signed decimal
integer or a data descriptor. The contents of field a are
compared to the contents of field b and if a < b, then TU
votes "yes." Otherwise, the TU votes "no."

Example: (/ACT,L,-22)

Assume field /ACT = -20^. The TU will vote "no."

(a,LO,b) b may be either a signed octal integer or a data
description. All other considerations are the same as the
previous form.

Example: (/ACT,LO,-24)

Assume field /ACT = -20^. The TU will vote "yes".

(a,LH,b) b is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as for the two
previous forms.

Example: (A,LH,TIME)

Assume "bug" A holds the string CLOCK. The TU will
vote "no".

(a,LF,b) b may be either a floating point literal conforming to
the ILLAR language specifications or a data descriptor. All
other considerations are the same as for the three previous
forms.

Example: (D,LF,26.145)

Assume "bug" D holds the number 23.1451. The TU will
vote "no".

79

Section 9.8 Ones Pattern Test

This TU compiles a vote on whether the pattern of one-bits in one data item is
included in another data item.

Ca»°>b) a is a data descriptor, b may be a signed octal
integer or a data descriptor. A "yes" vote is registered by
the TU if a has one bits in all of the positions that b has
one bits. Otherwise, a "no" vote is recorded.

Example: (B,0,146)

Assume "bug" B holds the number 340146O . The TU will8
vote "yes".

(a,0H,b) b is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as the previous form.

Example: (H,0H,ED)

Assume "bug" H holds the string TRIED. The TU will
vote "yes."

80

Section 9.9 Zeros Pattern Test

This TU compiles a vote on whether the pattern of zero-bits in one data item is
included in another data item.

(a>z »b) a is a data descriptor, b may be a signed octal
integer or a data designation. A "yes" vote is registered
by the TU if fieId a has zero bits in all of the positions
that t) has zero bits. Otherwise, a "no" vote is recorded.

Example: (K,Z,401)

Assume "bug" K holds the number 107301. The TU will
vote "no".

(a,ZH,b) b is interpreted to be a string of up to 8 BCD char
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as the previous form.

Example: (P,ZH,TRIED)

Assume "bug" P holds the string ED. The TU will vote

Chapter 10, User Pushdown-Popup Data Stacks

Section 10.1 Overview

The CSLx system provides automatically one (1) data pushdown-popup stack where data
may be temporarily stored. Further capability for this type of operation is provided in the
user defined stack system.

The user performs three operations concerning his own defined stacks;

1. definition by labelling (Section 10.2)
2. pushdown operations (Section 10.3)
3. popup operations (Section 10.4)

A maximum of fifty (50) user stacks may be defined.

The lengths of the stacks are bounded only by the limits of unused memory and the
number of "free" blocks available from the storage allocator.

82

Section 10.2 Definition of a User Stack

The CSLx user "defines" a user stack by assigning a label as follows with the
DEFSTACK primary statement:

DEFSTACK, stackl, stack2,......... . stackN

stackl...... stackN are BCD program labels of up to 8 characters by which the stacks will be
referenced. All user stacks will be open-ended to the limit of available core storage. That
is, as a stack needs to be extended, it will be by adding one more block of storage. As stacks
are emptied, their "freed" sections (storage blocks) will be returned to the storage allocator
for use elsewhere.

User stack "definition" is not global in nature. This dictates that the same
"definition" for a given user stack must be given in every program of a program set where that
user stack will be used. During execution of a program set, all "definitions" of a given
user stack will refer to the exact same stack in memory.

Example: DEFSTACK, ALPHA, BETA

User stacks ALPHA arid BETA may now be referenced.

Note: In order for proper initial setup of the user stack system to occur, at least
one (1) stack must be defined in the PROGRAM of a program set.

83

Section 10.3 Pushdown Operation on a User Stack

Data may be pushed down into a user stack by using the STACK primary statement;

STACK, stakname, list

£..^knarne is a labe 1 previously attached to one of the user stacks. A compiler error will result
if the stack has not been defined". list is a list of data descriptors or literals (no
hollerith) similar to the lists for the PUSHDOWN statement. The elements of the list specify
fields which the user desires to pushdown in the indicated stack.

Example: STACK, BETA, 1, 77B, 10.83, A, /TIME

The top five (5) items in user stack BETA will be, in order:

1 . contents of field /TIME
2 . contents of "bug" A
3. literal 10.83
4. literal 77Q
5. literal 1

84

Section 10.4 Popup Operations on a User Stack

Data is popped up out of a user stack by using the UNSTACK primary statement:

UNSTACK, stakname, emptyext, list

stakname is the name of a previously "defined" user stack from which the user desires to remove
data (popup). If the stack has not been previously defined, a compiler error will result. If
the stack is empty, control of the user program will be transferred to emptyext which must be
a statement label. The user may find out how many elements of the list were filled prior to
the emptyext by accessing the filled count in either external fields L6STKCT (CSL6) or
L7STKCT (CSL7). list is a list of data descriptors where the user desires the data being
popped up from the stack to be stored.

The emptyext transfer point and the filled count locations make the user stacks
somewhat more flexible than the system supplied data stack. This advantage is offset by the
fact that user stack operations are slower than system stack operations.

Example: UNSTACK, BETA, ERROR, A, B, C, D, E

Assume user stack BETA was loaded by the STACK statement in Section 10.3. Then, when
all operations are complete:

1 .
2 .
3.
4.
5.

"bug" A holds
"bug" B holds
"bug" C holds
"bug" D holds
"bug" E holds

the contents of field /TIME
the former contents of "bug" A
10.83

778
1

85

■))

Chapter 11» \ rut/Output of BCD Information with Format Convers

Section 11.1 Overview

The CSLx system provides statements for format controlled I/O operations only. All
other forms of input/output may be used by appropriate CALL statements to the ILLSYS input/
output routines.

The use of the I/O statements is broken down into three phases:

1. Initialization
2. Data fetch or storage
3. Termination

The three (3) phases all apply to either input or output.

The statements for initialization are described in Section 11.2 followed by the data
fetch and store BOU s (11.3). Section 11.4 ends the discussion by describing the
termination phase.

The CSLx user should familiarize himself with the FORTRAN language system FORMAT
statement. The FORMAT statement for the CSLx system is identical and therefore, the user is
directed to the FORTRAN manual for detailed information.

86

Section 11.2 Initialization of Input/Output Operations

If the reader is familiar with the FORTRAN language, he will remember that I/O occurs
within single statement where all data items and the controlling format are tied together in
a common specification. In the CSLx system, a great deal more flexibility is achieved by
separately specifying format and data items.

Each and every FORMAT statement controls what we will call an input/output area
(I/O area). The I/O area begins with either an INPUT or an OUTPUT primary statement and ends
when properly terminated (Section 11.4). Also associated with each I/O area is an input or
output medium.

The formats of the INPUT and OUTPUT primary statements are as follows:

INPUT, Imedium, format, end#I
OUTPUT, Omedium, format end#0

All three arguments: Imedium(Omedium). format and end#I(end#0) are statement label in form.
format refers to the controlling FORMAT statement.

Imedium (Omedium) may represent one of two ways for specifying an input(output)
medium. The first way is an explicit statement of the type of input(output) unit.

For input:

1. PAPER TAPE F paper tape reader
PT (flexowriters)

2. TYPEWRITER T console typewriter
3. MAG TAPE x x magnetic tape (BCD mode)

(x = 2, 3, ..., 8)
4. TELETYPE Y paper tape reader

TTY (teletype)

For output:
1. PAPER TAPE F paper tape punch

PT (flexowriter)
2. TYPEWRITER T console typewriter
3. MAG TAPE x x magnetic tape (BCD mode)
4. PRINTER P printer-format control

PRINTER Q Q no format control
PRINTER 0 0 no line count

5. TELETYPE Y paper tape punch
TTY (teletype)

87

The second way in which Imedium (Omedium) may be specified is as a data descriptor of
a field which contains the single character logical unit code as indicated in the center
column above. The code is right-justified with zeros left in the field. This second specifi
cation is assumed by the CSLx compiler if Imedium (Omedium) is not one of the above labels.

The end#I (end#0) parameter is used for termination of the I/O area and will be
discussed in Section 11.4.

The CSLx programmer must remember that an input I/O area may not overlap an
output I/O area. A compiler diagnostic will occur if this happens. Any errors occurring in a
FORMAT statement will in all probability not be found until execution time.

I

I

I

K

I

Section 11.3 Data Fetch and Store In An I/O Operation

Data is transmitted to and from the I/O medium in units corresponding to the areas in
memory where the data items were found or will be stored. Since the area of storage in the CSLx
system is the field (or literal), we move data in or out in terms of the fields from which they
were fetched or to where they will be stored.

Section 11.3.1 Data Storage During An Input Operation

A special BOU called the TAKE BOU is used during an input operation.

(TAKE, a) a is only a data descriptor. One unit of data is taken
from the input medium and stored in field a_. The format of
the data item is determined by the FORMAT statement control
ling the I/O area where the BOU is found.

Inside the I/O area, almost any CSLx operations may be performed. The user must not
attempt certain operations as follows:

1. No transfers into an I/O area except to the INPUT statement.
2. No transfers out of the I/O area without properly terminating I/O operations

(see Section 11.4).

Let us present a short example of an input I/O area in a CSLx program.

READ INPUT, PT, FORMIN, END1
(TAKE,A) (TAKE,B)

ENDl (C,E,0) (TAKE,D) END10
FORMIN FORMAT (12, F7.4, R4)

Assume the following data record is read from the paper tape reader in Flexowriter Code:

1229.6873CSL6

After completion of the input operation, the "bugs" have the following contents:

"bug" A 1210
"bug" B = 29.6873
"bug" C = 0

"bug" D = CSL6

89

Section 11.3.2 Fetching Data During An Output Operation

A special BOU called the FEED BOU is used during an output operation.

(FEED, a) a may be either a data descriptor or a literal (no
Hollerith). One unit of data is taken from field and
delivered to the output medium. The format of the data
item is determined by the FORMAT statement controlling the
I/O area where the BOU is found.

Inside the I/O area, any CSLx operations may be performed subject to the same restrict
ions as for the input I/O area.

We present here a short example of an output I/O area from a CSLx program.

WRITE OUTPUT, PRINTER, FORMOUT, END2
(FEED,A) (FEED,B)

END2 (FEED,C) END10
FORMOUT FORMAT (IX, 12, 2X, II, 2X, F7.4)

Assuming that "bugs" A, B, and C were set up by the input I/O area in the example of
Section 11.3.1, the following line will appear on the printer when the output is complete:

12 0 29.6873

90

Section 11.4 I/O Area Termination

The CSLx user has two (2) types of I/O area termination to be aware of: compiler and
execution. Compiler termination of an I/O area deliniates the end of the CSLx source records
to be read by the compiler and included in a specific I/O area. Execution termination must
occur at all points where control will be transferred out of an I/O area.

Compiler termination of an I/O area occurs at the end of the CSLx statement labeled
end#I (for input) or end#0 (for output). end#I and end#0 are the last arguments of the INPUT
and OUTPUT primary statements.

Execution termination of an I/O area occurs when the ENDIO primary statement is
encountered. The ENDIO statement consists only of the character string ENDIO. Additionally,
the DONE, FAIL and EXIT system "goto" units will create execution termination operations just
prior to control transfer.

For examples of the usage of the ENDIO statement, see both of the examples of
Sections 11.3.1 and 11.3.2.

91

Chapter 12. Sample Programs

Section 12.1 Overview

We present in this chapter two (2) sample programs written in the CSL6 language which
illustrate some of the basic operations performed in the CSLx system. Either program will run
in the CSL7 system without any modifications.

Each program is presented first in its complete listing format as it appeared on the line
printer followed by a discussion of how the program operates step-by-step. For reference, each
line of the program is numbered sequentially and referred to as line 23 for example.

92

CSL6 OF 5/20/69 CSL6 COMPILATION DATE 5/26/69 PAGE 1
--CSL6

*
*
*
*
*

VOW

FIELDA
FIE.LDB
FIELDN
*
*

*
INIT
*
*
*
*
READLOOP
INFORM
END I
*
*

*

ADDNUM

*
*
*
PRINT1
PRINT11
OUTFORM
ENDO

*
*
*
SORT
SORTI
SORT2

PROGRAM SORTNUMS

SAMPLE PROGRAM TO FORM A LIST OF INTEGERS IN A STRING,
SORT THE STRING AND ELIMINATE DUPLICATES, AND THEN
LIST THE CONTENTS.

(SS,4)
(0,DA,33,47)
(0,DB,9,23)
(1,DN,0,47)

INITIALIZE LIST WITH ZERO LIST ELEMENT

(A,GT,2)(L,P,A)

READ LOOP - WHEN NEGATIVE INTEGER APPEARS, SKIP TO INITIAL
PRINTLOOP

INPUT,PT,INFORM,ENDI
FORMAT (14)
(TAKE,N) END10

ADD NEW NUMBER TO LIST

(A, GT, 2 ,AB) (ABA, P ,A) (AN, E , N)
IF (N,L,-1) PRINT1
READLOOP

PRINT INITIAL CONTENTS OF LIST IN ORDER RECEIVED

<A,P,LA)
OUTPUT,PRINTER,OUTFORM,ENDO
FORMAT (IX ,14)
(FEED,AN) ENDIO
(A ,A)
IF (AA,N,0) PRINT11

SORT LIST - SORT ROUTINE TAKEN FROM ORIGINAL L6 WRITEUP

(A,P,LA)
IF (AA,E,0) PRINT2
IF (AN,E,ABN) THEN (ABA,P,AF)(A,FR,AA)S0RT1

1

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

CN CO
m

*

IF (AN,L,ABN) THEN (AN,IC,ABN)(A,B) SORT2
(A,A) SORTI 42

43
*
* PRINT LIST IN SORTED ORDER AND RETURN BLOCKS TO FREE STORAGE 44

45
PRINT2 (A,P,LA)(C,E,0) 46
END3 OUTPUT,PRINTER,OUTF 2,END 3 47
OUTF2 FORMAT(1H) 48
PRINT22 OUTPUT,PRINTER,OUTF1,END4 49

50

OF 5/20/69 SORTNUMS COMPILATION DATE 5/26/69

OUTF1 FORMAT(IX,6HENTRY,14,3H = ,14)
END4 (C,A,1)(FEED,C)(FEED,AN) ENDIO

(A, A)
IF (AA,N,0) PRINT22
END

51
52
53
54
55

PAGE 2

t

CSL6 OF 5/20/69 CSL6 COMPILATION DATE 5/26/69 PAGE 1

--END
--ILLAR

FINIS
2

81
1(04
32
512
6
2
1

48

ENTRY 1 = 1
ENTRY 2 = 2
ENTRY 3 = 6
ENTRY 4 = 32
ENTRY 5 = 48
ENTRY 6 = 81
ENTRY 7 = 1(04
ENTRY 8 = 512
ELAPSED TIME t t

Section 12.2 Sample Program to Sort A String of Integers

Program SORTNUMS reads a file of records from paper tape, each record containing an
integer number. Each integer is placed in a block in core, and all blocks are linked together
on a string with both forward and backward pointers.

When input is completed, the blocks of the string are arranged in ascending order of
their integer contents. The final result is listed along with the input data.

The output as shown for program SORTNUMS is exactly as it would appear on the 1604 line
printer. Had there been any error messages during compilation, they would have occurred
immediately following the record in error.

The program is begun on lines 1-6 where storage is set up with a maximum block size of
4. Fields A, B and N are defined on lines 7-9.

"Bug" L will be loaded with a pointer to the first block in the string containing the
input data. Thus, in line 13, we get one 2-block, point to it with "bug" A and set the same
pointer in "bug" L.

Line 18 begins the input I/O area where the integer data string will be read in. The
input medium is PT (flexcode paper tape) and the format is specified in statement INFORM
(line 19). The I/O area will end on statement ENDI (line 20). Each time lines 18-20 are exe
cuted, one integer value is read in and placed in "bug" N. The end of I/O operations is sig
nalled by ENDIO on line 20.

Each new entry to the string is processed in lines 24-26. First, a 2-block is obtained
and linked back to the last block on the string. Then, the last block is linked forward to the
new block. Finally, the integer read in is placed in field N of the new block (line 24). If
the integer read in is negative, this signals the end of the input data. Control will transfer
to the initial print loop PRINT1 (line 25). Otherwise, we return for a new read operation
(line 26).

Printout begins by setting "bug" A to point to the first block in the string which con
tains data. Note that the actual first block on the string is a dummy block used to initialize
the string (line 30). Then we start an output I/O area for the PRINTER (line printer) controlled
by format statement OUTFORM (lines 31-32). The end of the I/O area occurs on statement ENDO
(line 33).

Each time through lines 31-33, one item of data, taken from field AN, is printed.
"Bug" A is then advanced to the next block (line 34). At this point, we make a test on whether
we have reached the end of the string or not.

96

Two tests could be made. We could test the next field AN in the string to see if it is
negative. We could also test the forward pointer of the next block to see if it is zero (0).
Remember that all blocks obtained from the storage allocator are zeroed in all fields. Thus,
the last block on the string will have zero (0) in its A field (forward pointer).

We test the end of the string via the second test described above (line 35). If field
AA is not zero (0), control returns to PRINT11 to print another value.

When the list is printed, sorting begins as the list pointer is initialized in "bug" A
(line 39). Next comes the test for end of the string (line 40) where control will advance to
the second print routine PRINT2 when sorting is complete.

Line 41 determines if the integer in the current block (pointed to by "bug" A) is equal
to the value in the previous block. If so, the current block is dropped from the string by
linking the previous block to the next block on either side of the current block. Then the
current block is returned to storage with "bug" A set to point to the next block on the string.
Control then returns to the end test.

Line 42 now tests the relationship between the value in the current block and the value
in the previous block. If the current value is less than or equal to the previous value, the
values of the two blocks are interchanged. Then "bug" A is moved back to the previous block.
This enables push back of smallest values before larger ones. Control then returns to the
equality test SQRT2. If no interchange is needed, "bug" A is moved down the string (line 43)
and the end test performed again.

After sorting, the printer is spaced (line 48-49) and the list is output in the format
(line 47, 50-54):

ENTRY N = Value

When the printing is complete, the program ends and control returns to ILLSYS.

On page 12-4 the actual listing of the output from SORTNUMS is shown. The time of exe
cution was 2.4 seconds. The entire listing of compilation and execution is shown exactly as it
would appear on the line printer.

97

CSL6 OF 5/20/69 CSL6 COMPILATION DATE 7/1/69 PAGE 1

--CSL6

•k
PROGRAM CHARCT

* THIS ROUTINE READS BCD SOURCE RECORDS AND COUNTS
1
2* FREQUENCY OF CHARACTERS, SIZES OF WORDS AND COMPUTES 3*

*
THE AVERAGE SIZE WORD. 4

5*
(SS,8)

6
7(A,E,0) 8

LOOP1 IF (A,N,64) THEN (/COUNT+A,E,0) (/SIZE+A,E,0) (A,A,1) LOOP1 9
(/AVG,E,0) (/WORDCT,E,0) 10* 1 1* INITIALTZE READ ROUTINE 12* 13
(ERROR1,DO,*INITREAD) 14* 15* READ 1 CHARACTER AND COUNT 16* 17READ (ENDREAD,DO,*READCHAR) (/COUNT+C,A,1) 18
IF (C,NH,) THEN (/WORDCT,A,l) READ 19* 20* SPACE REQUIRES COUNT ON WORD SIZE 21* 22

SPACES IF (/WORDCT,G,30) THEN (/WORDCT,E,30) 23
(/SIZE+/WORDCT,A,1) (/WORDCT,E,0) 24
READ 25* 26* 27* PRINT RESULTS 28* 29* 30* OUTPUT CHARACTER FREQUENCY COUNTS 31* 32

ENDREAD OUTPUT,PRINTER,F1,ENDREAD 33FI FORMAT(16H1CHAR CT) 34
ENDIO 35OUTPUT,PRINTER,F 2,E 1 36F2 FORMAT(1H ,2X,R1,I10) 37
(A,E, 1) 38E1B IF (A,EH,)E1A 39(FEED,A)(FEED,/COUNT+A) 40

EIA (A*A,1) 41
IF (A,L,60) ElB 42El ENDIO 43

OUTPUT COUNTS OF WORD SIZE*

*

(A,E,1)
E2 OUTPUT,PRINTER,F3,E2
F3 FORMAT(13H0SIZE CT)

OUTPUT,PRINTER,F6 ,E 3

CSL6 OF 5/20/69 CHARCT COMPILATION DATE

F6 FORMAT(2X,12,4X,15)
E 3A (FEED,A)(FEED,/SIZE+A)(A,A ,1)

IF (A,L,30) E3A
E3 ENDIO
*
* COMPUTE AVERAGE SIZE OF WORD
*

(A ,E , 1) (C ,E ,0)
E4 (A, M, /SIZE+A,B)(/AVG,A,B)(C,A ,/SIZE+A)(A ,A ,1)

IF (A,L,30) E4
(A,FL, C) (/AVG, FL, /AVG) (/AVG, VF, A)

*
* OUTPUT AVERAGE SIZE OF WORDS
*

OUTPUT,PRINTER,F4,E 5
F4 FORMAT(25H0AVERAGE SIZE OF WORD IS,F12.6)
E5 (FEED,AVG) ENDIO

EXIT
*
* ERROR MESSAGE FOR PREMATURE EOF
*

ERROR1 OUTPUT,PRINTER,ER1,ERRORI
ER1 FORMAT(15H1EOF READ FIRST)

EXIT
*
* STORAGE
*

DEFINE,COUNT(64),SIZE(64),AVG,WORDCT
END

100

CSL6 OF 5/20/69 CSL6 COMPILATION DATE 7/1/69 PAGE 1

--END
--CSL6

SUBPROGRAM READCHAR
* 1
* READ BCD SOURCE RECORDS AND DELIVER ONE CHARACTER PER 2
* CALL - FAILEXIT TAKEN IF END-OF-FILE IS READ FROM 3
* TAPE 4 4
* DRIVE *INITREAD* BEFORE FIRST CALL TO *READCHAR* 5
* CHARACTER WILL BE LEFT IN BUG C 6
* 7
* 8
REDO (/INDEX,A,1) 9

IF (/INDEX,L,80) THEN (C,E,/LIST+/INDEX) DONE 10
(FAIL2,DO,REREAD) REDO 11

* 12
* READ NEW CARD AND BREAK DOWN INTO CHARACTER LIST 13
* 14
REREAD CALL,READBCD(4,/BUFFER,10,7 7B) 15

IF (/BUFFER,EH,--END) FAIL 16
CALL,DCDBCDIN(/FORMl,/BUFFER,80) 17
(/INDEX,E,l) 18

REREAD1 CALL,WRDBCDIN(/LIST+/INDEX) 19
(/INDEX,A,1) 20
IF (/INDEX,L,80) REREAD1 21
(/INDEX,E,0) CALL,ENDBCDIN 22
DONE 23

* 24
* INITIAL ENTRY FOR SETUP 25
* 26
INITREAD DO ENTRY,NO PREAMBLE 27

(FAIL2,DO,REREAD) EXIT 28
FAIL2 FAIL 29
* 30
* STORAGE 31
* 32

DEFINE,LIST(80),BUFFER(10),INDEX 33
FORMl FORMAT(80R1) 34

END 35

CSL6 OF 5 /2 0 /6 9 CSL6 COMPILATION DATE 7 /1 /6 9 PAGE 1

--END
— ILLAR

F IN IS

CHAR CT
1 35
2 9
3 11
4 8
5 5
6 9
7 0
8 1
9 1
0 15
= 0

0
< 0
% 0
[0
/ 20h-*

o S 40h-*
T 70
U 37
V 12
W 14
X 5
Y 2
Z 15
] 0
5 103
(47
-» 0
= 0
A

0
- 2
J 0
K 0
L 10
M 12
N 40
0 70
P 24
Q 3

R 90
0

* 0
* 39
T 0
4 0
> 0
+ 8
A 89
B 5
C 43
D 47
E 126
F 45
G 15
H 18
I 50
< 0
2
(47

SIZE CT
1 41

h-‘
O 2 28
ho 3 14

4 23
5 16
6 15
7 18
8 6
9 6

10 2
11 3
12 0
13 4
14 6
15 2
16 0
17 0
18 1
19 2
20 4
21 1
22 1
23 1
24 0

(COLUMN CONT.)

25 2
26 0
27 0
28 0
29 1
30 3

AVERAGE SIZE OF WORD IS
ELAPSED TIME 0 0 1 5 .8

6 .0 9 5 0 0 0

Section 12.3 Sample Program to Read BCD Records and Determine Frequency of Character Usage
and Average Length of Word

Program CHARCT drives subroutine READCHAR to break down data on BCD source file records
in order to find the frequency of character usage, determine the length of words on the records,
and to calculate the average length of words in the file. This routine uses no linked storage
but does contain pseudo-subscripting and extensive input-output operations.

The output as shown is exactly as it would appear on the 1604 line printer. Had there
been any error messages during compilation, they would have occurred immediately following the
record in error.

The operation begins in lines 7 - 10. Storage is initialized because the system push
down stacks will require linked blocks even though they are not used in the program. Two
arrays, COUNT and SIZE, are cleared to zero (0) counts. The initial values of average length
AVG and total number of words counted WORDCT are also cleared to zero (0).

In line 14, an initial call is made to READCHAR to cause the first look-ahead read-in
of a BCD source file record. The input file is always assumed to be on logical unit 4. We
will leave the discussion of READCHAR until later in order to not interrupt the flow of the
program listing.

The read-in of each character is performed on line 17. READCHAR produces one character
in "bug" C. When the end of the input file is reached, an early exit is made to statement
ENDREAD (line 33). Normally, the count for the input character is incremented by one (line
17). Additionally, the character is checked for being a space (20B). If it is not a space,
WORDCT is incremented (line 18) to count the number of characters for the current word and the
loop is repeated.

If a space character is read, then a word boundary has been reached (line 23). The
size of word is limited to 30 characters maximum to prevent spill-over in memory (line 23).
The appropriate word size counter is incremented (line 24) and the characters per word counter
is reset to zero (0) (line 24). Control then returns to read a new character.

When the input file is exhausted, the character usage counts are listed. Output is
initialized (lines 33-35) by labelling the printout. The count lines for the printout are
started at line 36. An index for the printout is kept in "bug" A. Note that the printout for
the character space (20B) is skipped on line 39. For all other characters up to 6 0 ^ (74B),
first the index and then the count are fed to the output statement (line 40). The index is
checked, and if the end is reached, the output loop is left. Otherwise, the next count is
processed (lines 41-43).

103

The second part of the printout is initialized with a heading (lines 47-49) and an
index in bug A is set to one (1). Again, a feed output loop is set up in line 50 and the
loop entered at line 52. The index of the word size count is output, followed by the total
count for that size. When all counts have been printed (lines 52-54), the third part of the
printout is prepared.

Line 58 initializes an index in "bug” A to one (1) and a summing register, "bug" C,
to zero (0). The list of word sizes will now be summed for total size and total words. The
loop starts in line 59 where the total count for the current index is multiplied by the current
size and summed in AVG. The total count of words is summed in "bug" C. Then the index is
advanced.

When the loop is complete, the average size or word is computed (line 61). Lines 65-67
output a statement and the calculated average. Control returns to the calling routine at this
point (line 68).

A small section of code resides in lines 72-74 where an error message will result if
the input data file contains no data. Note also in line 78 that the two arrays, SIZE and
COUNT, and two variables, AVG and WORDCT, are explicitly defined.

The second p a rt o f the program is the SUBPROGRAM READCHAR which has two e n try p o in ts .

INITREAD provides an initializing step to read in the first record from the source data file
and set up the character unpacking routines for operation. READCHAR causes one character to
be read from the current source record. If the record is empty, a new record is read. When
the end of the file is reached, the special "fail" exit is taken.

Character unpacking operations begin at REDO (line 9) where the current character index
is incremented. If the index is less than 81, then the next character is taken from the se
quential characters LIST (line 10). Otherwise, a new record is called for (line 11) and control
returned for the first character in that record (line 9). The "fail" exit will be taken by
the REREAD section of code at the end of the file.

The next record from the in p u t f i l e is obtained beginning a t REREAD (l in e 15). A 10-
word BCD record is read in to BUFFER. I f the f i r s t e ig h t (8) ch arac ters o f the next record

are --END , then the end o f the in p u t file has been reached. Thus, the " f a i l " e x i t w i l l

be taken (l in e 16).

The breakdown of the input record is accomplished by use of the system DECODE routine
which is initialized in line 17 to decode 80 characters in Rl format from BUFFER. 80 characters
are planted in LIST in lines 18-21. The DECODE input operation is terminated and the current
character index set to zero (0) in line 22. Control then returns to the calling section of code.

104

Lines 27-29 contain the initializing code. The REREAD section is called in order to
set up the first record or detect an empty input file. The program ends with a definition of
variable INDEX and the two arrays, BUFFER and LIST.

105

APPENDIX A

Error Messages

In this appendix we list the various error messages produced by the CSLx compiler.
Each message is listed as it will be printed and may be followed by a clarification statement
if necessary.

A.l Statement Breakdown

ILLEGAL USE OF ,

ILLEGAL USE OF)
Generated by misplaced commas and right parentheses.

A.2 Field Designations

x FIRST CHAR NOT BUG
x is not A-Z for "bug"

a(oo) IS AN ILLEGAL FIELD CHARACTER
a is not 0-9, A-Z. oo is octal value.

FIELD a UNDEFINED
INTERNAL FIELD SHORT

Only "/" appears as field designation.
EXTERNAL FIELD SHORT

Only "*" appears as field designation.

A.3 Operation Block Processing
SINGLE OPERATION BLOCK
NO FIELD AFTER (

First field in block is missing. Also may mean space after "(".
ILLEGAL SEPARATOR

Only "," is legal separator.
MISSING 2nd FIELD
MISSING 3rd FIELD
MISSING 4th FIELD
MISSING 5th FIELD

Field missing between "," and ")"
OPERATION BLOCK TOO LONG

Block has more than 5 fields
INCOMPLETE STATEMENT

")" probably missing in last operation block of statement.
106

TEST BLOCK NOT 3 FIELDS
ILLEGAL FIELD OPERATOR aa(oooo)

Not allowed operation. _aa is field operator and oooo is octal equivalent.
ILLEGAL OPERATION IN IF COMPUTATION aa(oooo)

Not allowed test operation, aa is operation code and oooo is the octal equivalent.

A.4 Unknown Data at End of Statements
UNKNOWN DATA AT END OF xxxxxxxx STATEMENT
UNKNOWN DATA AFTER xxxxxxxx

xxxxxxxx operations must be at end of the statement they occur in.
xxxxxxxx is one of
1. EXIT
2. FAIL
3. DONE
4. a "goto"
5. ENDIO
6 . INPUT
7. OUTPUT
8 . TRANSFER
9. SWITCH

A.5 IF and NOT Statements
ONLY ONE TEST ALLOWED IN IF STATEMENT
ONLY ONE TEST ALLOWED IN NOT STATEMENT

A . 6 OUTPUT Statement
ILLEGAL FORMAT FOR OUTPUT STATEMENT
INCOMPLETE OUTPUT STATEMENT
ATTEMPTED TO START OUTPUT STATEMENT INSIDE INPUT STATEMENT AREA
ATTEMPTED TO START OUTPUT STATEMENT INSIDE OUTPUT STATEMENT AREA

A.7 INPUT Statement
ILLEGAL FORMAT FOR INPUT STATEMENT
INCOMPLETE INPUT STATEMENT
ATTEMPTED TO START INPUT STATEMENT INSIDE OUTPUT STATEMENT AREA
ATTEMPTED TO START INPUT STATEMENT INSIDE INPUT STATEMENT AREA

A. 8 TRANSFER Statement
ILLEGAL TRANSFER STATEMENT FORMAT
INCOMPLETE TRANSFER STATEMENT
MISSING INDEX FIELD ON TRANSFER STATEMENT
ILLEGAL INDEX FIELD FORM

107

A.9 SWITCH Statement
ILLEGAL FORMAT FOR SWITCH STATEMENT
INCOMPLETE SWITCH STATEMENT

A.10 GLOBAL Statement
INCOMPLETE GLOBAL STATEMENT

"Bug" name missing a f t e r la s t " ,"

ILLEGAL SEPARATOR IN GLOBAL STATEMENT
Only "," is legal separator

ILLEGAL BUG NAME IN GLOBAL STATEMENT a
a is not a "bug" A-Z

NON SINGLE CHAR FIELD IN GLOBAL STATEMENT a
a contains more than 1 character

A.11 POPUP Statement
INCOMPLETE POPUP STATEMENT

M issing f i e l d a f t e r la s t " ,"

ILLEGAL SEPARATOR IN POPUP STATEMENT
Only is legal separator

ILLEGAL FIELD IN POPUP STATEMENT
Not a le g a l f i e ld des ig natio n or may be a l i t e r a l

A.12 PUSHDOWN Statement
INCOMPLETE PUSHDOWN STATEMENT

M issing f i e ld a f t e r la s t " ,"

ILLEGAL SEPARATOR IN PUSHDOWN STATEMENT
Only "," is legal separator

ILLEGAL FIELD IN PUSHDOWN STATEMENT
Not a le g a l f ie ld des ig natio n

A.13 DEFINE Statement
INCOMPLETE DEFINE STATEMENT

M issing la b e l a f te r la s t " ,"

ILLEGAL SEPARATOR IN DEFINE STATEMENT
Only "," is legal separator

ILLEGAL LABEL IN DEFINE STATEMENT
Label does not conform to ILLAR label conventions

A.14 CALL Statement
INCOMPLETE CALL STATEMENT

Probable missing argument in call list and/or missing ")"
ILLEGAL SEPARATOR IN CALL STATEMENT

Comma must separate CALL from subroutine name

108

ILLEGAL FORMAT OF CALL OBJECT NAME
Subroutine name does not follow ILLAR program name convention.

A. 15 ENTRY Statement
INCOMPLETE ENTRY STATEMENT

Missing label after last
ILLEGAL SEPARATOR IN ENTRY STATEMENT

Only is legal separator
ILLEGAL LABEL FORMAT IN ENTRY STATEMENT

Label does not conform to ILLAR label convention

A.16 DO ENTRY Statement
NO LABEL FOR ENTRY POINT

A.17 CALL ENTRY Statement
NO LABEL FOR ENTRY POINT
NO CALL ENTRY ALLOWED IN SUBPROGRAMS

A.18 EXTERNAL Statement
INCOMPLETE EXTERNAL STATEMENT

Missing label after last
ILLEGAL SEPARATOR IN EXTERNAL STATEMENT

Only is legal separator
ILLEGAL LABEL IN EXTERNAL STATEMENT

Label does not conform to ILLAR label convention

A.19 DEFSTACK Statement
INCOMPLETE DEFSTACK STATEMENT

Missing name after last
ILLEGAL SEPARATOR IN DEFSTACK STATEMENT

Only is legal separator
ILLEGAL NAME IN DEFSTACK STATEMENT

Names must conform to ILLAR label convention
STACK NAME x TOO LONG

Name x contains more than 8 characters
50 STACKS USED UP

Only 50 user stacks may be defined
STACK a IS DOUBLY DEFINED

A.2^ STACK Statement
INCOMPLETE STACK STATEMENT

Premature end of statement after STACK or missing field designation after last
ILLEGAL SEPARATOR IN STACK STATEMENT

Only is legal separator

109

MISSING STACK NAME
Missing stack name or name does not conform to ILLAR label convention

STACK NAME TOO LONG
Stack name contains more than 8 characters

UNDEFINED USER STACK
ILLEGAL FIELD IN STACK LIST

Some field position contains an illegal field designation

A.21 UNSTACK Statement
INCOMPLETE UNSTACK STATEMENT

Statement ends prematurely after UNSTACK or missing field after last " "
ILLEGAL SEPARATOR IN UNSTACK STATEMENT

Only is legal separator
MISSING FAILEXIT IN UNSTACK STATEMENT

Missing FAILEXIT label or label does not conform to ILLAR label convention
FAILEXIT LABEL TOO LONG

FAILEXIT label contains more than 8 characters
UNDEFINED USER STACK
MISSING STACK NAME

Missing stack name or name does not conform to ILLAR label convention
STACK NAME TOO LONG

Stack name contains more than 8 characters
ILLEGAL FIELD IN STACK LIST

Some field position contains an illegal field designation

A.22 Hollerith Literals
HOLLERITH LITERAL OVER 8 CHARACTERS

A.23 Block Duplication Operation
ATTEMPTING TO DUPLICATE INTERNAL FIELD
ATTEMPTING TO DUPLICATE EXTERNAL FIELD

A.24 Field Contents and Field Definition Stack Operation
ILLEGAL FIELD DEFINITION OPERATION

First field in operation block is not S or R
ILLEGAL FIELD CONTENTS OPERATION

First field in operation block is not S or R

A.25 FEED Operation
FEED NOT ALLOWED IN IF COMPUTATION
FEED NOT PRIMED BY OUTPUT STATEMENT

110

A. 26 TAKE Operation

TAKE NOT ALLOWED IN IF COMPUTATION
TAKE NOT PRIMED BY INPUT STATEMENT

A . 27 Storage Setup

IF STATEMENT STORAGE SETUP

ILLEGAL BLOCK SIZE ARGUMENT

Argument must be positive integer literal

A.28 Substitution Operation
SUBSTITUTION OPERATION HAS ONLY 3 FIELDS

A,29 Compilation of Argument Lists for CALL and DOARG Statements
INCOMPLETE LIST

Missing f ie ld a f te r la s t

ILLEGAL FIELD IN LIST

Some field position contains an illegal field designation
ILLEGAL SEPARATOR IN LIST

Only is legal separator
ILLEGAL BUG CHAR IN LIST

Single character field is not A-Z or literal

A. 31̂ Header Card
ARGUMENTS ERROR

Premature end on PROGRAM, SUBROUTINE, SUBPROGRAM cards with arguments before ")"
found

A. 31 FORMAT Statement
MISSING) FOR FORMAT
MISSING (FOR FORMAT

111

APPENDIX B

Proper Formats for Driving FORTRAN Language Function Subroutines

In order to maintain good compatability between language systems in the ILIAR system
(ILLSYS), several special operation codes or statements have been included in each language to
allow driving of function subroutines peculiar to the other system languages. In the CSLx
language system, the FUNC BOU is provided to enable the use of FORTRAN language implicit
function subroutines. The function subroutines are peculiar in that their result (always a
single result) is returned to the calling program in the main accumulator of the 1604 computer.
The FUNC BOU allows these subroutines to be called and then to place their result in some
designated field.

Below we have listed proper forms of BOU's for driving most of the standard FORTRAN
function subroutines. Field A, any type of field designator, is the field where the returned
result will be placed. Arguments X, XI, and X2 may be any field descriptor or literal (no
hollerith) as required by the function subroutine. For further descriptions and details about
any particular subroutine, the reader is advised to see the ILLAR system librarian.

BOU Format
(A,FUNC,ABSF,X)
(A,FUNC,INTF,X)
(A,FUNC,MDDF,Xl,X2)
(A,FUNC,XM0DF,X1,X2)
(A,FUNC,SINF,X)
(A,FUNC,COSF,X)
(A,FUNC,TANF,X)
(A,FUNC,ASINF ,X)
(A,FUNC,AC0SF ,X)
(A,FUNC,ATANF,X)
(A,FUNC,TANHF,X)
(A,FUNC,SQRTF,X)
(A, FUNC, LOGF ,X)
(A,FUNC,EXPF,X)
(A,FUNC,SIGNF,X1,X2)
(A,FUNC,XSIGNF,X1,X2)
(A,FUNC,PWRRR,X1,X2)
(A,FUNC,PWRII,X1,X2)
(A,FUNC,PWRRI,X1,X2)
(A,FUNC,PWRIR, X 1, X2)
(A,FUNC,RANF,X)

Operation of Function Subroutine
Absolute value of X in floating-point
Truncation of integer part in floating-point
XI taken modulo X2 in floating-point
XI taken modulo X2 in fixed-point
Sine of X radians
Cosine of X radians
Tangent of X radians
Arcsine of X in radians
Arccosine of X in radians
Arc tangent of X in radians
Hyperbolic tangent of X radians
Square root of X in floating-point
Natural log of X in floating-point
e to the X fĉ power in floating-point
Sign of XI times X2 in floating-point
Sign of XI times X2 in fixed-point
X2XI in floating-point
X2XI in fixed-point
X2XI , XI in floating-point, X2 in fixed-point
X2XI , XI in fixed-point, X2 in floating-point

Random number generator, X = +, then result is
fixed-point; x = -, then result is floating
point

112

Distribution List as of November 1,1960

Defense Documentation Center
Attn: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

50 Copies

ESD (ESTI)
L. G. Hanscom Field
Bedford, Mass. 01731 2 Copies
Director, Electronic Programs
Attn: Code 427
Department of the Navy
Washington, D. C. 20360 3 Copies
Naval Air Systems Command
AIR 03
Washington, D.C. 20360 2 Copies
Naval Electronic Systems Command
ELEX 03, Room 2046 Munitions Building
Department of the Navy
Washington, D.C. 20360 2 Copies
Director
Naval Research Laboratory
Washington, D.C. 20390
Attn: Code 2027 6 Copies
Commander
U. S. Naval Ordnance Laboratory (
Attn: Librarian
White Oak, Md. 21502 2 Copies
Commanding General
Attn: STEWS-RE-L, Technical Library
White Sands Missile Range
New Mexico 88002 2 Copies
Commander
Naval Electronics Laboratory Center
Attn: Library
San Diego, Calif 92152 2 Copies

Raytheon Company
Attn: Librarian
Bedford, Massachusetts 01730
Dr. L. M. Hollingsworth
AFCRL (CRN)
L. G. Hanscom Field
Bedford, Massachusetts 01731
Division of Engineering & Applied Physics
210 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138
Director
Research Laboratory of Electronncs
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Materials Center Reading Room 13-2137
Massachusetts Institute of Technology
Cambridge, Mass. 02139
Project MAC
Document Room
Massachusetts Institute of Technology
545 Technology Square
Cambridge, Mass. 02139
Raytheon Company
Research Division Library
28 Seyon St
Waltham, Massachusetts 02154
Sylvania Electronic Systems
Applied Research Laboratory
Attn: Documents Librarian
40 Sylvan Road
Waltham, Mass. 02154
Commanding Officer
Army Materials & Mechanics Res. Center
Attn: Dr. H. Priest
Watertown Arsenal
Watertown, Mass. 02172
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetts 02173
Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02210
Commanding Officer (Code 2064)
Navy Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut 06320
Yale University
Engineering Department
New Haven, Connecticut 06520
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-HL-CT-A
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-HL-CT-DD
Fort Monmouth, New Jersey 07703

Commanding General
U. S. Army Electronics Command
Attn: AMSEL-HL-CT-I
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-HL-CT-L (Dr W. S. McAfee)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-HL-CT-0
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-HL-CT-R
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-KL-D
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-KL-E
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-KL-M (Drs Schie./Hieslmair)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-KL-S (Dr. H. Jacobs)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-KL-T
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-NL-A
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-NL-D
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-NL-P-2 (Dr. Haratz)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL- NL-P
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-NL-R (Mr. R. Kulnyi)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-NL-S
Fort Monouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-RD-GF
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-RD-MT
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-SC
Fort Monmouth, New Jersey 07703
Commanding General
U.S. Array Electronics Command
Attn: AMSEL-VI-F (R. J. Niemela)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-VL-D
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-WL-D
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-XL-C
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Army Electronics Command
Attn: AMSEL-XL-D (Dr. K. Schwidta)
Fort Monmouth, New Jersey 07703
Commanding General
U. S. Array Electronics Command
Attn: AMSEL-XL-E
Fort Monmouth, New Jersey 07703

Commanding General
U. S. Army Electronics Command
Attn: AMS EL-XL-S (Dr. R. Buser)
Fort Mouth, New Jersey 07703
Mr. Norman J. Field, AMSEL-RD-S
Chief, Office of Science & Technology
Research and Development Directorate
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703
Mr. Robert 0. Parker, AMSEL-RD-S
Executive Secretary, JSTAC
U. S. Array Electronics Command
Fort Monmouth, New Jersey 07703
Project Manager
Common Positioning & Navigation Systems
Attn: Harold H. Bahr (AMCPM-NS-TM),

Bldg.439
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703
U. S. Army Munitions Command
Attn: Science & Technology Br. Bldg 59
Picatinny Arsenal, SMUPA-VA6
Dover, New Jersey 07801
N. J. A. Sloane
Bell Telephone Laboratories
Mountain Avenue
Murray Hill, New Jersey 07974
European Office of Aerospace Research
APO New York 09667
New York University
College of Engineering
New York, N. Y. 10019
Director
Columbia Radiation Laboratory
Columbia University
538 West 120th St.
New York, N. Y. 10027
Airborne Instruments Laboratory
Deer Park, New York 11729
Mr. Jerome Fox, Research Coordinator
Polytechnic Institute of Brooklyn
333 Jay St.
Brooklyn, N. Y. 11201
Syracuse University
Dept, of Electrical Engineering
Syracuse, N. Y. 13210
Rome Air Development Center
Attn: Documents Library (EMTLD)
Griffiss Air Force Base, N. Y. 13440
Mr. H. E. Webb (EMMIIS)
Rome Air Development Center
Griffiss Air Force Base, N. Y. 13440
Professor James A. Cadzow
Department of Electrical Engineering
State University of New York at Buffalo
Buffalo, N. Y. 14214
Carnegie Institute of Technology
Electrical Engineering Department
Pittsburgh, Pa. 15213
Hunt Library
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pa. 15213
Lehigh University
Dept of Electrical Engineering
Bethelehem, Pennsylvania 18015
Commander (ADL)
Naval Air Development Center
Johnsville, Warminster, Pa. 18974
Technical Director (SMUFA-A2000-107-1)
Frankford Arsenal
Philadelphia, Pennsylvania 19137
Philco Ford Corporation
Communications & Electronics Div.
Union Meeting and Jolly Rods
Blue Bell, Pennsylvania 19422
Director
Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, D.C. 20012
Mr. M. Zane Thornton, Chief, Network

Engineering, Communications &
Operations Branch, Lister Hill

National Center/Bioraedical Communications
8600 Rockville Pike
Bethesda, Maryland 20014
Director
Advanced Research Projects Agency
Department of Defense
Washington, D.C. 20301
Director for Materials Sciences
Advanced Research Projects Agency
Department of Defense
Washington, D.C. 20301

Distribution List, Continued

Dr. A. A. Dougal
Asst. Director (Research)
Ofc. of Defense Res. & Eng.
Department of Defense
Washington, D.C. 20301
Office of Deputy Director
(Research & Information, Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301
Headquarters
Defense Communications Agency (340)
Washington, D. C. 20305
Commanding General
U. S. Army Material Command
Attn: AMCRD-TP
Washington, D.C. 20315
Director, U. S. Army Material
Concepts Agency
Washington, D. C. 20315
AFSC (SCTSE)
Andrews Air Force Base, Maryland 20331
Hq USAF (AFRDD)
The Pentagon
Washington, D. C. 20330
Hq USAF (AFRDDG)
The Pentagon
Washington, D. C. 20330
Hq USAF (AFRDSD)
The Pentagon
Washington, D.C. 20330
Dr. I. R. Mirraan
AFSC (SCT)
Andrews AFB, Maryland 20331
Naval Ship Systems Command
Ship 031
Washington, D. C. 20360
Naval Ship System Command
Ship 035
Washington, D. C. 20360
Commander
U. S. Naval Security Group Command
Attn: G43
3801 Nebraska Avenue
Washington, D. C. 20390
Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Dr. A. Brodizinsky, Sup. Elec Div
Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Dr. W. C. Hall, Code 7000
Director
Naval Research Laboratory
Attn: Library, Code 2029 (0NRL)
Washington, D. C. 20390
Dr. G. M. R. Winkler
Director, Time Service Division
U. S. Naval Observatory
Washington, D. C. 20390
U. S. Post Office Department
Library - Room 1012
12th & Pennsylvania., N. W.
Washington, D. C. 20260
Colonel E. P. Gaines, Jr.
ACDA/F0
1901 Pennsylvania Ave. N. W.
Washington, D. C. 20451
Commanding Officer
Harry Diamond Laboratories
Attn: Mr. Berthold Altman (AMXDO-TI)
Connecticut Ave. & Van Ness St., N.W.
Washington, D.C. 20438
Central Intelligence Agency
Attn: OCR/DD Publications
Washington, D. C. 20505
Dr. H. Harrison, Code RRE
Chief, Electrophysics Branch
National Aeronautics & Space Admin.
Washington, D.C. 20546
Federal Aviation Administration
Attn: Admin Stds Div (MS-110)
800 Independence Ave. S.W.
Washington, D. C. 20590
Director
Nation Security Agency
Attn: TDL
Fort George G. Meade, Md. 20755
The John Hopkins University
Applied Physics Laboratory
Attn: Document Librarian
8621 Georgia Avenue
Silver Springs, Maryland 20910

Commanding Officer
Human Engineering Laboratories
Aberdeen Proving Ground
Aberdeen, Maryland 21005
Commanding Officer (AMXRD-BAT)
U. S. Army Ballistics Research
Laboratory

Aberdeen Proving Ground
Aberdeen, Maryland 21005
Electromagnetic Compatibility
Analysis Center

(ECAC), Attn: ACLP
North Severn
Annapolis, Maryland 21402
Director
U. S. Army Engineer Geodesy
Intelligence & Mapping
Research & Development Agency
Fort Belvoir, Virginia 22060
Dr. G. M. Janney, AMSEL-HL-NVOR
Night Vision Laboratory, USAECOM
Fort Belvoir, Virginia 22060
Dr. A. D. Schnitzler, AMSEL-HL-NVII
Night Vision Laboratory, USAECOM
Fort Belvoir, Virginia 22060
U. S. Army Mobility Equipment Research

and Development Center
Attn: Technical Document Center

Bldg. 315
Fort Belvoir, Virginia 22060
Weapons Systems Evaluation Group
Attn: Colonel Blaine 0. Vogt
400 Army-Navy Drive
Arlington, Virginia 22202
Head, Technical Services Division
Naval Investigative Service Headquarters
4420 North Fairfax Drive
Arlington, Virginia 22203
Physical & Engineering Sciences Division
U. S. Army Research Office
3045 Columbia Pike
Arlington, Va.«2204
Lt. Col. H. W. Jackson
Chief, Electronics Division
Directorate of Engineering Sciences
Air Force Office of Scientific Research
Arlington, Virginia 22209
Commanding General
U. S. Army Security Agency
Attn: IARD-T
Arlington Hall Station
Arlington, Virginia 22212

VELA Seismological Center
300 North Washington Street
Alexandria, Virginia 22314
U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22448
Research Laboratories for the Eng.

Sciences, School of Engineering &
Applied Science

University of Virginia
Charlottesville, Va. 22903
Dr. Herman Robl
Deputy Chief Scientist
U. S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706
Richard 0. Ulsh (CRDARD-IP0)
U. S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706
ADTC (ADBPS-12)
Eglin AFB, Florida 32542
Commanding Officer
Naval Training Device Center
Orlando, Florida 32813
Technical Library, AFETR
(ETV,MU-135)
Patrick AFB, Florida 32935
Commanding General
U. S. Army Missile Command
Attn: AMSMI-REX
Redstone Arsenal, Alabama 35809
Redstone Scientific Information Center
Attn: Chief, Document Section
U. S. Array Missile Command
Redstone Arsenal, Alabama 25809
AUL3T-9663
Maxwell AFB, Alabama 36112
Hq AEDC (AETS)
Attn: Library/Documents
Arnold AFS, Tennessee 37389
Case Institute of Technology
Engineering Division
University Circle
Cleveland, Ohio 44106

NASA Lewis Research Center
Attn: Library
21000 Brookpark Road
Cleveland, Ohio 44135
Professor J. J. D'Azzo
Dept, of Electrical Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 54533
Director
Air Force Avionics Laboratory
Wright-Patterson AFB, Ohio 45433

AFAL (AVT) Dr H. V. Noble
Electronics Technology Division
Air Force Avionics Laboratory
Wright-Patterson AFB, 45433
AFAL (AVTA) R. D. Larson
Wright-Patterson AFB, Ohio 45433
Dr. Robert E. Fontana
Systems Research Laboratories Inc.
7001 Indian Ripple Road
Dayton, Ohio 45440
Dept, of Electrical Engineering
College of Engineering & Technology
Ohio University
Athens, Ohio 45701
Commanding Officer
Naval Avionics Facility
Indianapolis, Indiana 46241
Dr. John D. Hancock, Head
School of Electrical Engineering
Purdue University
Lafayette, Ind 47907
Professor Joseph E. Rowe
Chairman, Dept of Electrical

Engineering
The University of Michigan
Ann Arbor, Michigan 48104
Dr. G. J. Murphy
The Technological Institute
Northwestern University
Evanston, 111. 60201
Commanding Officer
Office of Naval Research Branch Office
219 South Dearborn St.
Chicago, Illinois 60604
Illinois Institute of Technology
Dept, of Electrical Engineering
Chicago, 111 60616
The University of Arizona
Dept, of Electrical Engineering
Tucson, Ariz. .85721
Commander Test Command (TCDT-)
Defense Atomic Support Agency
Sandia Base
Albuquerque, N. M. 87115
Los Alamos Scientific Laboratory
Attn: Report Library
P. 0. Box 1663
Los Alamos, N. M. 87544
Atmospheric Sciences Office
Atmospheric Sciences Laboratory
White Sands Missile Range
New Mexico 88002
Commanding Officer
U. S. Army Electronics R & D Activity
White Sands Missile Range
New Mexico 88002
Missile Electronic Warfare
Technical Area, AMSEL-WT-MT
White Sands Missile Range
New Mexico 88002
Director
Electronic Sciences Lab.
University of Southern California
Los Angeles, Calif. 90007
Engineering & Mathematical Sciences
Library

University of California at Los Angeles
405 Hilgred Avenue
Los Angeles, Calif. 90024
Aerospace Corporation
P.0. Box 95085
Los Angeles, California 90045
Attn: Library Acquisitions Group
Det 6, Hq OAR
Air Force Unit Post Office
Los Angeles, Calif. 90045
Director, USAF PROJECT RAND
Via: Air Force Liaison Office
The RAND Corporation
Attn: Library D
1700 Main Street
Santa Mtnica, California 90045

Distribution List, Continued

Hq SAMSO (SMTTA)Lt Nelson
AF Unit Post Office
Los Angeles, Calif. 90045
Dr. Sheldon J. Wells
Electronic Properties Information Center
Mail Station E-175
Hughes Aircraft Company
Culver City, California 90230
Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801
Commandant
U. S. Army Command & General Staff
College

Attn: Acquisitions, Library Division
Fort Leavenworth, Kansas 66027
Dept of Electrical Engineering
Rice University
Houston, Texas 77001
HQ AMD (AMR)
Brooks AFB, Texas 78235
USAFSAM (SMKOR)
Brooks AFB, Texas 78235
Mr B. R. Locke
Technical Advisor, Requirements
USAF Security Service
Kelly Air Force Base, Texas 78241
Director
Electronics Research Center
The University of Texas at Austin
Austin, Texas 78712
Department of Electrical Engineering
Texas Technological College
Lubbock, Texas 79409
Commandant
U. S. Army Air Defense School
Attn: Missile Sciences Div., C&S Dept.
P.0. Box 9390
Fort Bliss, Texas 79916
Director
Aerospace Mechanics Division
Frank J. Seiler Research Laboratory (OAR)
USAF Academy
Colorado Springs, Colorado 80840
Director of Faculty Research
Department of the Air Force
U. S. Air Force Academy
Colorado Springs, Colorado 80840
Academy Library (DFSLB)
U. S. Air Force Academy
Colorado Springs, Colorado 80912
Utah State University
Dept of Electrical Engineering
Logan, Utah 84321
School of Engineering Sciences
Arizona State University
Tempe, Ariz. 85281
Commanding General
U. S. Array Strategic Communications
Command

Attn: SCC-CG-SAE
Fort Huachuca, Arizona 85613
Deputy Director and Chief Scientist
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101
Aeronautics Library
Graduate Aeronautical Laboratories
California Institute of Technology
1201 E. California Blvd.
Pasadena, California 91109
Professor Nicholas George
California Inst, of Technology
Pasadena, California 91109
Commanding Officer
Naval Weapons Center
Corona Laboratories
Attn: Library
Corona, California 91720
Hollander Associates
P.0. Box 2276
Fullerton, California 92633
Commander, U.S. Naval Missile Center
Point Mugu, California 93041
W. A. Eberspacher, Associate Head
Systems Integration Division
Code 5340A, Box 15
U. S. Naval Missile Center
Point Mugu, California 93041
The Library
Government Publications Section
University of California
Santa Barbara, California 93106

Commander (Code 753)
Naval Weapons Center
Attn: Technical Library
China Lake, California 93555
Library (Code 2124)
Technical Report Section
Naval Postgraduate School
Monterey, California 93940
Glen A. Myers (Code 52Mv)
Assoc Professor of Elec. Engineering
Naval Postgraduate School
Monterey, California 93940
Dr. Leo Young
Stanford Research Institute
Menlo Park, California 94025
Union Carbide Corporation
Electronic Division
P.0. Box 1209
Mountain View, California 94041
Lenkurt Electric Co., Inc.
1105 County Road
San Carlos, California 94070
Attn: Mr. E. K. Peterson
Director
Microwave Physics Laboratory
Stanford University
Stanford, California 94305
Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94305
Nuclear Instrumentation Group
Bldg 29, Room 101
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720
Director, Electronics Research
Laboratory

University of California
Berkeley, California 94720

Security Classification

1 o r i g i n a t i n g a c t i v i t y (C o rp o ra te au th o r)

University of Illinois
Coordinated Science Laboratory
Urbana Illinois 61801

3. R E P O R T T I T L E

20. R E P O R T S E C U R I T Y C L A S S I F I

CSLx (x=6,7) A PROGRAMMER'S MANUAL TO THE USE AND UNDERSTANDING OF A LOW-LEVEL
LINKED LIST STRUCTURE LANGUAGE
4. D E S C R I P T I V E N O T E S (T y p e o f rep o rt an d in c lu s iv e d a te s)

BOUKNIGHT, W. Jack

76. N O . O P R E F S

R-446

This document has been approved for public release and sale; its distribution is
ar y n o t e s „ --------------12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Joint Services Electronics Program
thru U. S. Army Electronics Command

i3. a b s t r a c t - ------ ------------------------Enrf- M n n m n t i t h . Ne w Jersey 07703

This report is a programmer's manual for usage and understanding of a low-level
linked list processing language operating on the Control Data 1604 computer. The
basis for the language is L } a language developed at Bell Laboratories by K. C.
Knowton.

The manual describes all of the operation codes, statements and procedures for
using the language. In addition, a brief discussion is given on linked-list storage
schemes and how they are handled.

FORM
1 N O V 65 1473

Security Classification

Security Classification
1 4

K E Y WO R D S L I N K A L I N K B L I N K C »
R O L E .W T R O L E W T R O L E W T

List-processing
Computer Language
Programming
Linked-list Storage Scheme

Security Classification

