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| INTRODUCTION

In the search for multiple-error-correcting codes which can be
easily and rapidly decoded, some coding theorists have turned their attentions
to threshold (majority logic) decoding. Much work has been done in this area
recently, and quite a few classes of new codes suitable for threshold decoding
have been developed.

The main desirable feature of majority logic decoding is that it can
be very simply implemented. While the BCH codes are the best known class of
codes for correcting large numbers of random errors, the cost and complexity of
its implementation and the time required for decoding leaves something to he
desired. On the other hand, although most of the known majority logic decodable
codes are somewhat inferior to the BCH codes, the simplicity of a majority logic
decoder and the ease of decoding give this method of decoding an attractive
prospect. Furthermore majority decoding can also automatically correct many
more patterns of errors other than those guaranteed by the decoding schemes
without any additional equipment.

This paper is a survey of the L-step majority decoding. One-step
majority decoding is studied extensively in a separate report.[3] Majority
logic decoding of block codes was first introduced in 1954 by Reed [16] who
invented a decoding scheme for the Reed-Muller codes. In 1958 Yale [26] and
Zierler [27] applied majority logic decoding to the maximal length sequence
codes. In 1961 Mitchell [14] majority decoded the cyclic Hamming codes, the
augmented maximal length sequence codes, and the (17,7), (21,11), and (73,45)
BCH codes. In his book of 1963, "Threshold Decoding" [13] Massey presented
majority decoding algorithms for block codes that are one-step and L-step
orthogonalizable. Rudolph’s majority decoding algorithm [17,18] differs from



previous ones in that the parity checks need not be orthogonal. He also
introduced finite geometry in the construction of majority logic decodable
codes. His geometric codes were further studied by Chow,[4] Weldon,[15,24,25]
Goethals and Delsarte.[5]

Weldon in 1966 devised a class of cyclic codes based on perfect
difference sets.[21] Kasami, Lin, and Peterson [9,10,11] showed that all
binary Reed-Muller codes with one digit dropped can be made cyclic by
rearranging the digits. Generalization to the nonbinary case was then
easily made. The non-primitive Reed-Muller codes were studied by Weldon.[22,23]
All these codes are subclasses of Rudolph's projective geometry codes and
hence are majority decodable.

In 1967 Townsend and Weldon [20] devised a new class of linear
block codes, called self-orthogonal quasi-cyclic codes, which is obtained
from disjoint difference sets. The code is one-step decodable. In 1969
Gore [6] generalized Massey's concept of threshold decoding and showed that
the Reed-Solomon codes are completely threshold decodable. The formal
equivalence hetween Massey's L-step orthpgonalization decoding procedure and
Reed's majority decoding scheme is also demonstrated by Gore [7] through the
formal equivalence of their respective decoding circuit.



I, L-STEP DECODING ALGORITHM

We shall begin our discussion with a series of definitions and
examples to make the understanding of the basic idea behind L-step majority
decoding as simple as possible.

Consider an (n,k) block code over GF(q) with parity check matrix
Ch] . We expand this parity check matrix by taking all possible linear com-
binations of its rows and call this expanded matrix [Hg]. If

C=(V A" " Ap-It 3 coc® vector> obviously
[Hg] + CT =0 2.1

Each row of equation (2.1) is a parity check equation.

Definition 2.1: Aset of J of the parity check equations of equation (2.1)
Is said to be orthogonal on the i™ bit position if the i b it is checked
by every one of those J equations while no other bit position is checked by
more than one of the J equations. Let [nE] = (h”) be the submatrix of [Hg]
corresponding to this set of J equations. Then[Hjjwill have only nonzero
elements in the ith column while each of the remaining columns will have no
more than one nonzero entry. For example, the following set of 4 equations

Is orthogonal on the ( digit

coteitocs

+ n t
co+ C2+ Co 2.9,
> QT

otoutg O



corresponding to the submatrix

N

110001000

101000100

100100010 (2.3)
100010001

Suppose [hE] is a submatrix orthogonal on the Hh pit position,
and let R = (rg,rq,....r,.¢ be areceived vector.
Let

(2.4)

where [s] is a J elements column vector.
Let R=C+E = (cQ...>¢xn " + (eQ,....e "), where Cis the
transmitted code vector and E is the error vector. Then from (2.4)

[«¢].rt = [PM]*ct + [h"]*et = o+ [ef]-et = Cs].

Hence
(2.5)

Is a set of J equations orthogonal on e*. Equation (2.5) can be written in
the alternate expanded form:

n-1
k§0 h”éX' ek:sj’ J = 1 eee ] (2.6)

Multiply both sides of each equation by (h "1 tor each j=1,...,0 we



obtain

=k, . (2.7)

To obtain an estimate on e®, we proceed according to theorem 2.2:
Theorem 2.2: ei is estimated to be equal to that value of GF(q) which is
assumed by the majority of s, $2', s In case of a tie between
zero and a nonzero element, set =0, e“will be correctly estimated hy
this decoding procedure if the number of errors t £ —

Proof: (a) If e* - 0, then t of the eJ
j f > is in no more than one of the equations in (1.7), at most t of the J

's, j M i, are nonzero. Since each e.,
J

Sj's are nonzero. Hence if t* at least half of the s*', ', ..., s’

are equal to 0.

(b) If e =0i,aceG(),af0 then t-1 of the eM's, j » 1, are nonzero,

each appearing in no more than one of the J equations in (2.7). Thus if

t A, at least J - (t-1) = J4l-t A J+#l - -j= 1+ —>-j, i.e., more than half,

of the J Sj's are equal to O. Hence in both cases, the decoding algorithm works.

Q.E.Do

Theorem 2.2 extends naturally to the decoding of an entire received
vector. If for each bit position a set of J or more parity check equations
orthogonal on that bit position can be found, then each digit of a received
vector can be correctly decoded by the algorithm of theorem 2.2 if a total of



no more than [~] (where [ ] stands for "the integer part of") errors have
occurred. In particular, for a cyclic code, if a set of J parity check equations
orthogonal on any bit position can be found, then by the cyclical nature of the
code, such a set can be found for every hit position, and hence the entire code
vector can be majority decoded using theorem 2.2. For a systematic code,
decoding is complete when the first k (information) digits are determined.

Hence for complete decoding of a systematic code, J orthogonal parity checks are
necessary only for each of the first k digits.

Theorem 2.3: If a set of J parity check equations can be formed orthogonal on
every bit position, then the code has minimum distance at least J + L

Proof: Assume that there is a nonzero code vector of weight J or less. A set
of J orthogonal parity checks can be formed on one of the nonzero digits. The
remaining J - 1 or less nonzero digits of the code vector can appear in at most
that many parity checks, leaving at least one parity check nonzero, which is
not possible. Hence each code vector must have weight J + 1 or greater.

0.E.D.

Corollary 2.4: For a code in systematic form, if a set of J parity check
equations orthogonal on each of the information digits can be formed, then the
code has minimum distance at least J+I.

Proof: Observing that every nonzero code vector has at least one nonzero
information digit, the proof follows similarly to that of theorem 2.3.

Q.ED.
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As an example of a parity check matrix of a systematic code orthogonal
on each of the first k digits, consider the parity check matrix of the following
(26,13) code:

11 1 1

1111 1
1 111 1

TR (2.8)

Here J - 4 and d - 5 The code can therefore correct 2 errors by the algorithm
of theorem 2.2. The code can be over any finite Galois field.

Thus far, the decoding of a digit depends on the existence of a set
of parity check equations orthogonal on that digit which are obtainable directly
from the original parity check matrix. Such majority decoding is called one-step
decoding. However, not all codes can be decoded by such a procedure. For some
codes it is necessary to arrive at a set of parity check sums orthogonal on a
digit from the original parity check matrix in L steps.

Def 2.5: A set of J parity check equations is said to be orthogonal on the sum
of i bit positions (a*, a*, ..., a") if the coefficients in positions ot"

are 1 in each equation and no other position has more than one nonzero
coefficient in the J parity check equations.

From the original parity check matrix, suppose that we can find sets
of parity checks orthogonal on selected sums of noise bits. By applying the
algorithm of theorem 2.2 on these sums, they can be determined. These sums of
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noise bits can then be regarded as new check sums and used to form new sets of
parity check sums orthogonal on some smaller sums. Eventually after repeating
such steps L times a set of parity check sums orthogonal on a bit position is
formed. Such a decoding procedure is called L-step decoding. For a cyclic code,
a procedure for decoding one digit decodes all the other digits.



I11. HAMMING CODES

Massey has shown that for M- 2,3,4,..., the Mth-order binary Hamming
(2M-1, ZM-M-I), d = 3, codes can be L-step orthogonalized for L no greater than
M-I. However, it has been shown in a separate report on one-step decoding [3]
that all Hamming codes can be one-step decoded by a somewhat different one-step
decoding algorithm. Since one-step decoding is simpler than L-step decoding,
we shall just look at one example of L-step decoding of a Hamming code for
illustration purpose and then move along.

Example:  Consider the (7,4) binary Hamming code with d = 3. Here M= 3 and it
will be shown that the code can be 2-step decoded.
The parity check matrix is given by:
110 1100

H = 1110 010 (3.1)
10 110 01

The corresponding parity checks are

e0 + el +e3+e4=231 (3:2)
eQ+ ei +e2+e5=352 (3.3)
e0 + e2 + e3 +¢e6 = S3 (3.4)

Equations (3.2) and (3.3) are 2 equations orthogonal on eQ + e* while (3.3)
and (3.4) are orthogonal on e + Thus if no more than one error has
occurred, the majority decoding algorithm of theorem 2.2 can 2.2 can bhe used
to determine e + e and e +  from these two sets of orthogonal equations,
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Let

o+ e "L (3:5)
and

g0+ 2" b (3.6)

Now equations (3.5) and (3.6) are a set of 2 equations orthogonal on e”, and

hence theorem 2.2 can again be applied to determine e* provided that no more

than one error has occurred. Thus e" can be estimated by the above procedure
of 2-step orthogonalization and decoding. A similar procedure can be followed
for e, e”, and e,
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V. SOME CLASSES OF CODES BASED ON FINITE GEOMETRIES

A class of codes can be defined by taking the incidence matrix
of a (b, v, r, k, X) balanced incomplete block design (BIBD)[I2] as its parity
check matrix.[17,18] | have called this class of codes the class | BIBD
codes.[3] The codes can be one-step decoded by a majority algorithm that does
not depend on orthogonal parity checks,[18] and can correct [ —] errors by
such a procedure. The investigation of the possibility of L-step decoding
this class of codes is worthwhile if better error correcting capabilities can
be achieved by such a procedure than by one-step decoding. So far such an
investigation has only been performed on two subclasses of the class | BIBD
codes, namely those BIBD's that are related to the projective geometry [1] and
the Euclidean geometry. It is well known that block designs can be derived
from both of these geometries. We shall now first review some of the properties
of finite geometries.

A. Projective geometry

An m-dimensional finite projective geometry over GF(pt) is denoted
by PG(m, pt). A PG(m, p*) may be considered as a set of points and subspaces.
Each point can be represented by a nonzero element of a GF(p"mt* t). Two
elements a and 3 of GF(p* ' ) represent the same point if a = 0®[3, where
OGGF(pt). There are thus v = (p t-1)/(pI-1) points in a PG(m, p*). A set
of all the points linearly dependent on s+1, s<m, linearly independent points
over GFCp*) constitutes an s-dimensional subspace PG(s, pfc. There are

(m-t-I)t mt [ (m-s+])t n

b(s,m,p ) = (p(S+i)t-I)(pSt-Io)o.o.“./\(pt-l) ~  distinct PG(s,p ) contained
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in a given PG(m, pf). Furthermore, each PG(n, p*), n<s, is contained in

exactly

PG(s, p ) which are contained in a given PGini, p"). By associating the points
with varieties, the PG(s, p ) with blocks, one can obtain from a given PG(m, p")

a BIBD with parameters:

b ="h(s, m p)
V= (P(mfD)t-i) | (p"i)
k = (P(s+1)t-D
(p1-1)
r=Xo0, s, mp) (4.2)

X(1, s, mp) for s> 1
X =<
for s = 1

The incidence matrix [s] —(s,) of a PG(m, p ) is defined by setting
Sju- 1if the j point is in the il PG(s, pfg, and s.. = 0 otherwise

Theorem 4.1: The incidence matrix [s] of a PG(m, pf)) is cyclic, i»e,, every
cyclic permutation of a row of [s] is also a row of [s].
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Proof. Let & be a primitive root of GF(p* " ). Then oV is a primitive

root of GF(p ). 4,0 ... , gV are linearly independent over GF(pt) and

are used to represent all the v points in a PG(m, pd). Let PQ, p"...» be

a set of s+1 linearly independent points defining a PG(s, pf), which is all the
distinct linear combinations of the P's over GFCpV Each point can be expressed
in the form

Ch=iso 9y 5 7 eipe

Cyclic permutation of the row representing this PG(s, pfo) is equivalent to
multiplying each point Dby oi, where otV is identical to ot® Since

O*C. = % 0..(«P.),
1 =0 J
this results in a set of points which are all the distinct linear combinations
of the ap's. It only remains to show that afo, apl,..., cv3s are a set of stl
linearly independent points and hence also defines a PG(s, p ). Assuming that
they are linearly dependent over GF(pt), then

S
= *!!
Eo o) =0 U8 Y
for some UK | - 0, 1,..., s. However since a0, this implies that
2 §.P. =0,
j-OUJ J

which is a contradiction. Hence orpQ----,aPg are linearly independent.
Q.E.D.
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Because of theorem 4.1, in the construction of an incidence matrix of a

PG(m, p*) one does not have to determine all the b distinct PG(s, p*). One
only has to determine the b/v PG(s, p ) which cannot be obtained from each
other by permutation on the incidence matrix, and permutes these rows to obtain
the remaining rows.

B. Euclidean geometry

From a given PG(m, p ), if any PG(m-l, p ) and all its points are
deleted, a new system of points and subspaces results. This new m-dimensional
geometry over GF(p ) is called the Euclidean geometry, denoted by EG(m, p*).
Each point of an EG(m, pt) can be represented by an element of a GF(pmt). There
are thus

pomts in an EG(m, pt). Each PG(s, pt) contained in the original PG(m, pt')
but not in the deleted PG(m-I, pf) becomes an EG(s, pl), since by deleting
a PG(m-I, pf)) from PG(m, pfo we also delete a PG(s-l, pfo from each of these
PG(s, pf. Therefore the number of EG(s, contained in an EG(m, pfo is

b(s, m pt) - b (s, m-1, pfy.

The number of EG(s, pf) containing a given EG(n, pf), n< s, is the same

as the number of PG(s, pl) containing a given PG(n, p*), namely X(n, s, mp*).
Let P1, P2,...,3¢ be s elements of GF(pmt) linearly independent over GFCp*)).
Then an EG(s, p*) can be considered as the set of points a3 +303,t, ..+aS3S+Y
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where ,a”,..»a" run independently over GF(p*) and Y is some element in
GF(pmt). As with the projective geometry, the EG(s, pt) of an EG(m, pl) form
a balanced incomplete block design with parameters

b =Db(s, m pt)-(b(s, m-1,

HI, s, m pf) if s< 1
all if s=1

Ct Class A PG Codes

As stated in the beginning of this section, the class | BIBD codes
are defined by taking the incidence matrix of a balanced incomplete block
design as its parity check matrix. We shall now define the class A PG
codes hy taking the incidence matrix of a projective geometry as its parity
check matrix. Since a balanced incomplete block design can be derived from a
projective geometry, the class A PG code is naturally a subcode of the class |
BIBD code. Since there are m-1 levels of PG(s, p*) in a PG(m, p*), corresponding
to s=1,2,...,m-1, there are m-1 different incidence matrices for each PCCm"*"),
Furthermore, the code which is defined by an incidence matrix of a projective
geometry may be taken over any finite Galois field. Hence there can be
infinitely many class A PG codes.

The class A PG codes can be one-step majority decoded by an algorithm
which does not depend on orthogonal parity checks. The number of errors that
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can be corrected by this procedure is

- r+X-1
U= T (4.4)

where r and X are as in (4.2). However the class A PB codes can also he
L-step majority decoded which may or may not yeild better error correcting
capabilities. Consider the incidence matrix of the b distinct PG(L, pfy,
every pair of points is in one and only one PG(1, pt). Hence a set of r
orthogonal parity ckecks can be formed on any bit position, and the code is
one-step orthogonalizable. From now on we shall only consider the case s > 1
where the code cannot be one-step orthogonalized.

Now consider the parity check matrix of a class A PG code which is
the incidence matrix of the b distinct PG(s, pf) in a PG(m, pf). Each
PG(s-I, p ) of PG(m, pfo is contained in exactly

0 t - :
37 - X(s-1, 8, m p) =2 T
0 (4.5)

PG(s, p ). Since the s linearly independent points defining a given PG(s-1, pf)
plus another point not in this PG(s-I, pf) define one and only one PG(s, p*),
each point in the PG(m, pf) which is not in a given PG(s-I, appears in at
most one of the J° PG(s, pf) containing this PG(s-l, pf. Consequently a set
of J parity checks orthogonal on the points of each PG (s-1, pf) can he
formed. In general, a given PG(s-i-I, pf) is contained in exactly

(m-s+itl)t n

i . .
J - X(S-0-1, $-i, M p ) = At e — /
Pt -1 (4.6)
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PG(s-i, pE). These again form Jl orthogonal parity check sums on the points
of the given PG(s-i-1, p*). Thus beginning with i=0 and finishing with i=s-I,
one arrives in s steps at a set of §-1 parity check sums orthogonal on one
point. Looking at equation (4.6) one can see that > < <,..< Js

Applying the majority decoding algorithm of theorem 2.2 at each step, the
error at a point can eventually be correctly estimated if the total number of
errors t £ minz{jl} -

As already pointed out, a class A PG code defined by an incidence
matrix [s] of a projective geometry may be taken over any GF(q). The choice
of GF(q) does not affect the error correcting ability of the code, as is
obvious in the above discussion. The number of check digits per block length
IS equal to the rank of [s], the parity check matrix, over GF(q). Thus the
efficiency of the code depends on the choice of the field. All the work done
in this area so far has been limited to the choice of q = p, where the code is
commonly known as projective geometry code. However, since all practical codes
are binary codes, GF(2) seems to he a more practical choice although this may
yield a less efficient code.

To summarize, the class A PG code can correct [—X ] errors using
one-step decoding and [—] errors using L-step decoding. The choice of which
decoding procedure to use is not obvious. One-step decoding is easier to
implement and is definitely the better choice when it can correct the same
number of errors as L-step decoding, i.e. [r+x 1|] = However in the case
where 10 C v a trade off must be made between ease of implementation on
one hand and error correcting capabilities on the other.
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D. Class A EG Codes

A class A EG code can be defined in a similar manner as the class A
PG code by taking the incidence matrix [s] of all the EG(s, pt) contained in
an EG(m, p*) as the parity check matrix. This class A EG code is also a sub-
code of the class | BIBD code. The field of the code can again be chosen
arbitrarily without affecting the error correcting capabilities of the code.
The choice of the field GF(q), however, does affect the number of check digits
which is the rank of [s] over GF(q). When q = p, the code is commonly known
as Euclidean geometry code. However GF(2) is a more suitable choice for
practical applications.

When one-step majority decoding is applied, the class A code can
correct [— —1] errors, where r and \ are as in (4.3). Just as the class A
PG code, the class A EG code can also he L-step decoded. The procedure is
exactly analogous to that of the PG code. Each EG(s-i-1, pfc) is contained in
exactly JLEG(s-i, p*). Since the (s-i-1) linearly independent points defining
an EG(s-i-1, p*) plus another point not in this EG(s-i-I, p*) define one and
only one EG(s-i-1, p!), each point in the EG(m, p') which is not in a given
EG(s-i-1, p*) is in at most one of the J1 EG(s-i, pfo containing this
EG(s-i-1, pt). Thus in s steps a set of § EG(L, ﬁ) orthogonal on a point
can be formed. Applying the majority decoding algorithm of theorem 2.2 at each
step, the error at a point can eventually be correctly estimated if the total
number of errors t A L

E. Class B PG Codes
The incidence matrix of a balanced incomplete block design can also
be used to generate another class of codes, which | have called the class Il
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BIBD codes.[3] Consider the parity check matrix [n] of a code which is in
the systematic form. Then [h] is of the form

[h] =[P 1] (4.7)

where | is an identity matrix. A class 11 BIBD code is defined by sub-
stituting the incidence matrix [s] of a balanced incomplete block design into
Pof (4.7). If [s] is also the incidence matrix of a projective geometry, then
we define the resulting code to be a class B PG code. Naturally this code is
a subclass of the class 111 BIBD codes. Once again the choice of the field of
the code can be arbitrary. However, here the choice of the field does not
have any effect on the efficiency of the code, since from (4.7) it is obvious
that the code has block length b+v, b parity check digits, and v information
digits, where b and v are as in (4.2). Furthermore since b " v, the class B
PG code can only have a maximum efficiency of no more than 0.5.

Since the (b+v,v) class B PG code is in systematic form, the first v
digits of each code word are the information digits. For each received vector,
it is then only necessary to decode these first v digits. It is now obvious
that each of these first v digits can be decoded in exactly the same manner as
the decoding of each digit of a class A PG code, because each parity check
digit appears in one and only one parity check equation. Consequently a
class A PG code and a class B PG code can correct [—IA-]] errors using one-
step decoding and [J—O] errors using L-step decoding. The choice of which
decoding procedure to use faces the same considerations as those of the
class A codes.



F. Class B EG Codes

The class B EG code can be similarly defined as the class B PG code.
By substituting the incidence matrix Ts] of an Euclidean geometry into P of
equation (4.7), the result is a parity check matrix of a class B PG code,
which can be decoded in exactly the same manner as the class B PG code.
C.2X ~ and are its error correcting capabilities by one-step and L-step
decoding respectively. The code has block length b+v and v information digits,
where b and v are as in (4.3). The choice of the field can be taken arbitrarily
without affecting either the error correcting capabilities or the efficiency



21
Vo GENERALIZED THRESHOLD DECODING

In all of the previous sections, L-step majority logic decoding
had depended on the existence of a set of J parity check equations orthogonal
on the sum of s positions, and the coefficients of each of these s positions
are 1 in all of the parity check equations. If any of those coefficients is
other than 1, the decoding scheme will obviously still work provided that the
coefficients of each of the s positions are the same throughout the set of J
parity check equations. In other words, if a"eMtb”e® and a2ei*"2e2 are w0

parity check equations orthogonal on e and e®, majority logic
decoding is seen to work easily just as well in determining the sum ae+he2
provided =a2=aand =b2 ="Db. However if aJ * a2 or bl » b2, it is not
obvious at all that majority decoding would work. After all it does not make
any sense to take a majority vote ona”™ + Db ™ and a”™ + b " when they are
two different entities. Thus if a set of J parity check equations is orthogonal
on s positions with the coefficients in these positions arbitrary, it seems
apparent that the previously given majority decoding algorithm cannot be
applied. However, by interpreting the meaning of a parity check in a somewhat
different manner, Gore was able to show that our previously given majority
decoding algorithm can still be applied in precisely the same form to the case
of arbitrary coefficients. He called it "generalized threshold decoding”[6]
although the algorithm is the same.

A, Generalized threshold decoding
Consider a parity check equation on position i and s other positions
(mA, m2, ..., m?). With the coefficient in position i normalized, the equation
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can he written as

S
e.t S B, e, = A 51
R (5.1)
We can interpret (5.1) as an equation which gives the error digit in position i
if no errors have occurred in positions m", mh, my. Such an equation is
called a generalized parity check equation and is written as

C(iimIm2,....m) =A, (5.2)

Thus every parity check equation can be written as some generalized parity
check equation,

We define here again a set of J parity check equations to be orthogonal
on position i and s other positions (m*, m* ..., m) if the coefficient in
position 1 is 1 in each equation, and the coefficients in positions m", m*, ...,
my are arbitrary, while no other position has more than one nonzero coefficient
in the J parity check equations. Also we define a set of J generalized parity
check equations to be orthogonal on position i and s other positions
(mr, mh ..., my) if iand , mA ..., mgare in every one of these J general-
ized parity checks while no other position appears in more than one of these
equations. Since every parity check equation is in fact a generalized parity
check, a set of J parity check equations orthogonal on position i and s other
positions (mA, m” ...» m) can be written as a set J generalized parity check
equations orthogonal on the same set of positions. For example, (5.3) is a set
of 4 parity check equations orthogonal on position 1 and positions 2 and 3.
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+ Rle2 + RGef+ Y&y + v5e8 = A
el + B3e2 + Pded +V 5 + ~BeY = A 5.3)
el + B5e2 + RGe3 + Y3e6 + V10 = A
el + R7e2 + R8e3 +V? + VIl =M o

(5»3) may be written as a set of 4 generalized parity check equations also
orthogonal on position 1 and positions 2 and 3 as in (5.4).

Cl(l;2,3,4,8 ) = Ax
C(1;2,3,5,9 ) = A (5.4)
G3(1;2,3,6,10) = A
CGA(1;2,3,7,11) = M

The majority logic decoding algorithm given previously in section [l
can now he applied directly to the case of arbitrary coefficients. This is
stated in theorem 5.1.

Theorem 5.1: A generalized parity check equation on position i and s other
positions (mAm2,...,m ) can be constructed from a set of J generalized parity
check equations orthogonal on the same set of positions

Cl(imi,mz, ..,
C2(|,m1,m2, riye,ms>S2)

V\D€>

Cl(imi,m2, ..,

I
>

" e Vv V

where S*, S>> ..., represent disjoint sets of positions, provided that
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[j/2] or fewer errors have occurred. The new generalized parity check
equation C(i;m™jin*, ... . m ) = B is obtained by setting B to bethat value
assumed by the majority of the A If zero (0) is assumed byexactly half of
the Aj, B is given the value 0.
Proof: The proof is exactly the same as that of Theorem 2.2. Because of the
definition of a generalized parity check equation, it is only necessary to show
that if no errors occur in m™»m? ... mg, the above assignmentof the value of B
indeed gives the correct error digit in position i. Thus assuming no errors
in positions m_m_....m_ for all cases, if e, =0, due to the orthogonality
of the set of equations, at most [*] of the A. are incorrect leaving at least
of the Aj correctly giving the value of 0, If e. ~ 0, then at most
['2]-1 of3the A. will be incorrect, leaving at least J-[~2]+I>[”2] of the Aj cor-
rectly giving the value of e”. .

0,E D.

If one can apply the algorithm of theorem 5.1 repeatedly on suc-
cessively smaller and smaller sets of positions m},m0,....m¢ and arrive at the
end of L steps a generalized parity check equation on i alone, i,e., C(i) =e"s
then L-step majority decoding is achieved. It 1is now obvious that the only
difference between the algorithm of Section Il and that of theorem5.1 lies
only in their interpretations of the result of a majority voting. The new
interpretation extends the domain of the application of the majority logic
decoding to include those cases of arbitrary coefficients, and hence are
rightfully called generalized threshold decoding.

As a simple example of the application of this generalized threshold
decoding, let us consider again the binary (7,4) Hamming code which has already
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been shown to be 2-step decodable previously. Referring to equations (3*2),
(303), and (3.4), the corresponding generalized parity checks are

("(0:1,3,4) = SL (5.5)
C2(0:1,2,5) = S2 (5.6)
C3(0;2,3,6) = S3. (5.7)

Equations (5*5) and (5.6) are a set of 2 generalized parity checks orthogonal
on position 0 and position 1, while (5.6) and (5.7) are orthogonal on position
0 and position 2. Thus if no more than one error has occurred, the generalized
threshold decoding algorithm of theorem 5.1 can be used to determine C(0;1)
and C(0;2) from these two sets of orthogonal generalized parity checks. Let

—
o
—

~

I

g (5.8)
t2. (5.9)

and C(0:2)

Now (5.8) and (5.9) are a set of 2 generalized parity checks orthogonal on
position 0 alone, and hence theorem 5.1 can again be applied to determine
C(0), which is equal to the error digit in position 0. Hence e, can be
estimated by the above procedure of 2-step majority decoding. A similar

procedure can be followed for the remaining digits.

B. Reed-Solomon Codes
The r-th order extended Reed-Solomon (ERS) code is defined to be the
code of length q = p and over GF(q), whose generator matrix G is given hy
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11T 1 1 s 1*
o 1 otl a2 » o3
S P
G= (5»10)
b 4 gf g2 1 1(0-2)

where a is a primitive element of GF(q). The code has minimum distance
d =q-r and is therefore capable of correcting r — or fewer errors» It
will be shown that the code can he r-step majority decoded up to its guaranteed
minimum distance,

Let (b"b2,...,bn) be the set of coefficients of a parity check
equation. This vector is in the null space of the generator matrix and hence

[bx b2 ee DAG = 0. (5.11)

Since the rows of Gare all linearly independent, the rank of matrix G is
(r+1)e We can therefore select arbitrarily (q-r-1) of the b and determine
the remaining (r+1) b* from (5.11). Suppose we wish to determine the error
digit in position i. We can assign the value 1 to b* and 0 to any (q-r-2) of

the remaining (q-1) b.. Then from (5.11) we can determine the value of bJ for

I
the remaining (r+l1) positions (m”n”,....m ~ . Therefore
r+1
e.+ Z b e =8 (5.12)

1 k=l mk nk
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Is a parity check equation from which we can obtain a generalized parity
check equation on position i and positions (mi.,mg,...,mm)

C(imIm2,....mr+l) = 8. (5.13)

However (m™>m2»e**mr+p *n (5.13) can  chosen arbitrarily from (q-1)
positions except i. Hence we can fix r of the positions and choose the (r+l)st
position from the remaining (q-r-1) positions successively, yielding a set of
J = (q-r-1) generalized parity check equations orthogonal on i and r other
positions. If or fewer errors have occurred, we can apply the generalized
threshold decoding algorithm of theorem 5.1 and obtain a new generalized parity
check on i and the other r positions. Again since the r positions can be
chosen arbitrarily, we can repeat the procedure, obtaining at the k-th step

a new generalized parith check on i and (r+l-k) other positions from a set

of  orthogonal generalized parity checks, where

Jk=q-1-2+Kk (5.14)

Hence at the end of (r+1) steps, the generalized parity check on position i is
determined, which is e, Further, since (5.14) is a monotonically increasing
function of k, e*will be correctly determi_ned by the above (r+1)-step
majority decoding1 procedure if iJ—l] = [A—~r2~'] or fewer errors have occurred,
which is the original guaranteed error correcting ability of the code, Hence
the r-th order ERS code can he completely (r+1)-step majority decoded.
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VI.  RUDOLPHS THRESHOLD DECODING OF CYCLIC CODES

Closely related to the subject of majority decoding is the threshold
decoding. In threshold decoding, a threshold function assigns an error digit
or output digit to each received vector. Majority logic decoding can obviously
be considered as one form of threshold decoding. Rudolph [19] has devised a
threshold decoding algorithm which can decode any cyclic code over GF(p) up
to its minimum distance by a single threshold element. The algorithm depends
on a general decomposition theorem for complex-valued functions defined on the
space of all r-tuples with elements from the ring of integers modulo p,

Ve first define the following notations.

1) The symbol t defines the mapping X = £X, where € = exp(2nilp). If (a.,)
IS a matrix, then (a”)t = (atl.y).

2) stands for the p’E X I matrix whose rows are the p-ary representations
of the numbers 0,1,...,pr-1 in that order.

3 If x = p€Q Is any complex number where p and 0 are real numbers and p " 0,
- %E 0 <p -\, then we define a threshold function T such that
T(x) = [0 + %], where [z] denotes the integer part of z. If y is an
integer, then

y+Tx) =y+[0+%
=[y+0+%
-T(p€ *¥)
=i(ey- Pee)
= T(yf ¢ x). 6.1
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Let Hbe the rXn parity check matrix of a linear cyclic code over
GF(p). Let y be a received vector when the code vector ¢ is sent. Then
y-c=e where e is the error vector. Let s be the syndrome when y is received.
Then s = yHT. The set of all syndromes is the set of p-ary numbers
0,1,...,pr-1, i.e., the rows of Ar. Let eg be the error pattern associated
with a syndrome s. Then the decoded code word é\: y-e , where s = yHT.
Considering only the first digit, then

Co =Yg = Eso (mod ). (6.2)

Let f be a function that maps the syndrome s to the first digit of

its corresponding error pattern, i*e., f(s) = -e Then

50
Co = Yot T(5). (6.3)

By the decomposition theorem for complex-valued functions, there exists a
weight vector w such that f(s) can be expressed in the form

f(s) = T[ (SA*w] . (6.4)
Since § = yHT,
f(s) = t[(yHTArT)+w]
= T[(yH'T)tw], (6.5)
where

H' = AI'H (6.6)
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Equation (6.3) can now be rewritten as

Co = Yot tLOH. 1y (mod p) (6.7)

By the property (6.1),

E o= Tv t(yHT)tw] (mod p) 6 8)
Now st o -ga.gh
- €a+b
= (ath) (6.9)
Therefore
T ,J t _ t Tt
yQ(y«' ) :y0 C(yO yX“.y/\)(('j
= C(yo yo = o) ¥ o V- - ¥ gH 1T
11 ...1
Qo yl ==V P _ © H+(y0 Yooeee Yo PHT
= [(yo yi = V i)B]t> G -10)

where B is the matrix obtained by adding 1 to each element in the first row
of H1". Now (6.8) can be rewritten as

cq = T[(yB) W] (mod p). (6.11)

Equation (6.11) is the threshold decoding function for y « To decode the
remaining digits, it is only necessary to shift the vector y successively in
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(6.11), since the iode is a cyclic code, It only remains to find the weight
vector w such that it satisfies equation (6.4) and gives the simplest decoding
circuit.

As an example, we again consider the binary (7,4) Hamming code, whose
parity check matrix is

1 1 10 1 0 0
H = 1 10 10 0 1 6.12

1 0 1. 0 0 1 1

The eight different syndromes and their corresponding error patterns are

tabulated below together with the function f(s) = -e,:

w
—n
—_
w
~

(6.13)

PP, O
PP OO R OO w
PO O OO
)OO OOODOO
O OO OO O
OO OO IOODO D
OO OOO OO
OO OOOO
OO OO O
OO OO
OO OODOOO

Note that for the binary case € = exp(~— = -1. We now have to find a weight
vector w such that (6.4) is satisfied for all s. One of the possible solutions is

W= (6.14)
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and (6.12),

The matrix H' as defined by (6.6) is obtained by substituting in

—_—

(6.15)

T D P Y o o P
OO Ao AAo
oot
ooATdooA
oA dATAo—To
oo Ao o

w

I
T

Finally the B matrix in (6.11) is obtained by adding 1 to each element in the

first row of the transpose of HL.

(6.16)

O oo - oo

Ao ddd oo

- 00« -

o< +d o< oo

" = A -9 o0 -9 0

o< o< oo

oo 4 oo

<+ OO0 oo oo

Therefore the threshold function for the first decoded digit is

00000000

1111111

1111111

1111111

0000000

1111111

0000000

0000000

0000000

(6.17)

OOOOOOO

OOOOOOO

0000000

0000000
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The threshold functions for the remaining digits are obtained from (6.17)
by simply cyclic shifting the received vector y. Note that since € = -1 for
the binary case, the function t simply maps even integers to 1 and odd integers

to -1, while the function T maps positive integers to 0 and negative integers
to 1.
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VIl SUMVIARY

In the preceding sections a survey on L-step majority decoding has
been given. In Chapter Il the procedure of L-step decoding was explained.
The application of L-step majority decoding to Hamming codes was shown in
Chapter I11. In Chapter IV four classes of codes, including two new classes,
constructed from finite geometry were introduced. These codes can all be L-
step majority decoded. Chapter V explained Gore's generalized threshold
decoding which increases the number of classes of majority decodable codes.
Finally a new threshold decoding procedure for cyclic codes over GF(p) by
Rudolph was presented in Chapter VI.

As a final word, further research should be done in the area of
majority logic decoding to find hetter majority logic decodable codes and
decoding algorithm; better codes in the sense of higher efficiency and greater
number of correctable errors, and better algorithm in the sense of easier
implementation and correcting larger number of errors.
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