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PARAMETRIC EXPANSIONS OF OPTIMUM CONTROLS

by
J. B. Cruz, Jr., P. V. Kokotovic, and W. R. Perkins 

University of Illinois 
Urbana, Illinois, U.S.A.

1. Introduction

In this paper we establish an approximation property of optimum 

controls expressible by Taylor series with respect to a parameter. We show 

that if an r-th order approximation is used instead of the exact optimum 

control, the optimum performance is approximated to order (2r+l) . We also 

present several applications of this result to the design of near-optimum 

large systems.

2. Approximation Property of Near-Optimum Control 

Consider a system

x = f(x,u,q,t) (1)

where the state x and the control u are n-dimensional and m-dimensional

vectors respectively, qe[q^,qy] is a scalar time invariant parameter,

te[t , t_] is time, and t and t_ are fixed time instants. The performance o f o f
index is

t
J (u) = TT[x(t f ,q) ,q] + J  V (x,u, q , t) dt, (2)

to
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the initial state is

x(tQ ,q) = x°(q) , (3)

and the final state is free.

Definition 1. A control u* = u*(t,q) continuous in t, te[tQ,tf]

for every qeLq^jq.^] is called the optimum control if it is the unique control

u which minimizes (2) subject to (1) and (3), for every qe[qT ,q ].L U
Assume that u*(t,q) exists and that f, V, XQ(q) , and tt are 

sufficiently smooth to insure the existence of d1u*/dq1 for i = 0,1,..., 

i = 0,1,...,N at qoeCq^,q^jD. In what follows, these and other derivatives 

with respect to q are to be interpreted as evaluated at q = q .

Definition 2 . A control u = ur (t,q) is called an r^* order near

optimum control if

i I* "N i TO u o u* 0,1,...,r < N (4)

x
Note that u is not unique because of the arbitrariness of higher order 

derivatives.

Theorem 1 (Main Theorem [ l]); For the system (1) with initial 

state (3) and final state free, the performance indices J(u*) and J(ur)
xobtained with u = u* and u = u have the property that

dLJ (u*) = dXJ (ur) 
dq^ dq^

i = 0,1,...,(2r+l) < N. (5)

Theorem 1 will be proved using the following two lemmas. 

z Lemma 1; For 0 < j < N,
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d~̂ [6 J'(u) 1 _ j '
dqj k=0 (j-'O'k'* T F k  ^ - p > ,6Sk t=t

+ [T1- 65 ]| + J
J K k t=t to o

7 h  uh> ' 6\  +oaJ

-.j-k dj“k
”— r"r (VvH + p)'6§ + — r-r (V H- x) '6T]j-k x k j-k pSq dq-

dt ( 6)

where p is the costate, H = V + p'f is the Hamiltonian, (JÛ, and
thdenote the k order derivative with respect to q of u, x, and p, and

A ^
V tt V H, and V H denote V tt, V H, V H, and V H resoectively, expressed as x » x > T u x 5 x * p 9 u j > r

functions of t and q only.

Proof of Lemma 1; Append p'(f-x) to the integrand in (2) , form
th6js integrate p'x by parts, apply Leibnitz rule for .the j derivative of a 

product, and set q = qQ.

Lemma 2 : For r and j satisfying 0 < j < (2r+l) < N, and for any

control u,

d^ J (u) _ ^ J *
dqj ~ k=r+l (j"k)iki

-.j-kr-r
dqj-k x j-k k

-j t=tf

+ [ T | |  + J
k t=t 1o o

/sj-k
j-k u J kV H I'd), +

- r  7XH + T|. j'S + ('S '. V H - I . .Yl] Sq3-k x ‘j-k J k VSqJ-k P 'k dt

.fcf
+ g + e dt

° t=t i °C-Cf t
(7)
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where g is a function of § ,...5 , and e is a function of &o o’ r 7 o• •
i  , i  , Tj ,...,71 , a) .o r o r o r o r

Proof of Lemma 2: In Lemma 1, for j-k < k,

J "k J-k J ’ k J “k
■— r r  <7 H, -— —  V H, -- —  V H, and -- — V TTôqJ-k u 3qJ-k x SqJ-k p SqJ-k x

do not involve 0 7, or T]  ̂ for i > k„ Hence d1J/dq'* is linear in

and 7]̂  for j-k < k, and the coefficients of 00̂ , and 7]̂  are the same

as the coefficients of 00)̂ , 6§^, and 07]̂  in (6) . Denote by (r+1) the smallest 

k for which (j-k) < k. Hence j < (2r+l) . Take the j ^  derivative of p'x, 

evaluate at q = q^, and integrate

S ------^ ------  TI' Ì
k=r+l (j“k) kl J-k k

by parts.

Proof of Theorem 1. The proof consists of evaluating (7) for 
r th(a) u = u* and (b) for u = u . The two expressions for the j derivative 

of J(u*) and J(u ) are then compared.

(a) For u to be optimum, u = u*, it is necessary that 

j j
r [6j(u*>] = 0, j=0,l,...,N. (8)

dqJ

Thus, from Lemma 1, it is necessary that

p,i
(V H - x) = 0

ôq1 P

Ò1 -
^ 7  (V H + p )  = 0
òq

(9)

( 10)
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and
(H)

with boundary conditions

and

Ô1: -*i 0 o x

Sq1 t=t Sq1

3q
r <$ *" - p)

-J t=t

( 12)

(13)

where i =  0,1,...,N. The conditions (9), (10), (11), (12), and (13), define 

the derivatives 0) *, § *, and 7]/*, i = 0,1,...,N. Using these derivatives 

(7) becomes

djJ(u*)
dqj t=t

...Tlpdt

(14)

(b) Next we evaluate (7) for u = u . Denote the state and costate
X X Xobtained by using u = u in (9) and (10) by x and p and denote the 

derivatives of u , x , and p by , and 7|̂  , i=0,l,...,r. By

construction, (J0̂r = U)̂ * for i = 0,1,...,r. Hence = 5/', and 7]̂  = 7]/'

for i = 0,1,...,r. Moreover, U)̂ r , an^ f°r 1 = 0>l>***>r > satisfy

(9), (10), (11), and (13) for i = 0,1,...,r. Finally, since the initial 

condition function x°(q) in (3) is specified, x satisfies (12) for all i.
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i XThus, d J (u ) /dq_. is equal to the right hand side of (14) which 

proves (5) .

Theorem 1 can be generalized to the case when q is an s=dimensional

vector.

Definition 3 : Given an s-dimensional vector r whose components
-x*are integers r^, r ^ . . . , ^ ,  u is said to be an rth order near optimal control, 

if
*k-r o u ^k * d u

k k k k k l
ôq-j. ôq2 ... ôqg ^  dq£ ... dq£

(15)

for all k.,...,k such that 0 < k1 < r.., 0 < k„ < r~,. . . ,0 < k < r ,1 s — 1 — 1 —  2 —  2 — s —  s
k + k_ + • • • + k = k, rn + r_ + • • • + r < N.1 2  s s 1 2 s —

Theorem 2 [ l] . For the system in (1) with initial state (3),

final state free, performance index (2), and time invariant parameter vector
g

qeQeE , where Q is compact and convex,

. abfu*')
J1 Jo

ôq2
^1 ^2 ^sôqx ôq22 ... ôqs

(16)

for all j p  j2,..., jg , such that 0 < j1 < (2^+1) , 0 < j2 < (2r2+l) ,.. .,

0 £  js < (2rg+l) , j i +3 2+ •** + Js = and ^ ( ^ s + D  1  N »

The proof of Theorem 2 is similar to that of Theorem 1.

The following sections survey some applications of Theorem 1 

together with related perturbation and imbedding methods [1—15] to expansions 

of optimum controls. A perturbation method for the synthesis of systems 

with uncertain parameters [l6] and imbedding methods for the synthesis of 

large scale systems [l5,17] are presented below.
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3. Perturbation of Uncertain Parameters

A first order expansion is used here to approximate the optimum 

control in the presence of a small perturbation in some parameters q1 s
which cannot be determined prior to the operation of the system. We now

consider q as an s-dimensional vector and Aq as its deviation from q .o
Define the first order near-optimum control (see Definition 2) as

1 . . du* .u = u*(t,qo) + 5^- Aq.

This control may be expressed in feedback form as [15]

u 1 = u*(t,q ) - h "1[h ' + f ' p +  (H +f'G) (§*,§*)”1§*,]Ax(t,q)O UU UX U qu u 1 1 1 v ,n/

where P and G satisfy

(17)

(18)

and

P + PA + A'P - PSP + Q = 0; P ( 0  = rrf xx'

G - PSG + A'G + PW - Z = 0; G(t _) = ttf qx

t=t

t=t

(19)

(20)

A = f ■ f H ' VX U UU UX
S = f H~ 1f'U UU u
Q = H - H H~1h 'XX UX UU UX
W = f - f H_1Hq u uu qu
Z = -H + H H-1H .qx ux uu qx

where
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Ax( t, q) is

Ax(t,q) = x (t , q) - x*(t,qQ). (21)

It is assumed that (§*'§*) has an inverse for te(tQ ,t^]. Otherwise,

(§*'§*)  ̂ is taken as the pseudo inverse. The case where the measurement 

of x is noisy is discussed in [17]. Similar expansion for initial state 

uncertainty is discussed in [2,3,10].

From Theorem 2, it is seen that this first order near optimal 

control yields a performance index which approximates the optimum one to 

third order.

4. Application to Linear State Regulator

The following corollary is an application of Theorem 1 to the 

optimum linear state regulator. Let (1) and (3) be

x = Ax + Bu (22)

T
J = \  J (x'Qx + u*Ru)dt (23)

o

where A, B, Q, and R are continuously differentiable with respect to a 

parameter q in the neighborhood of q = qQ up to order (N+l). With the usual 

assumption of the linear state regulator problem [18] the optimum feedback 

control is

u = -R”1B ,Px (24)
P P

where P satisfies
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P = -PA - A'P + PSP - Q; P(T,q) = 0 (25)

S = BR ^b ', and x^ is the state of the optimum system

x = (A - SP) x 
P P (26)

Define the control

u. = -r ' V m x  m m (27)

where

M(t,q) = .
dLP(t,qo) ( q - q ^ 1

i=0 dq, 11 (28)

and x is the state of the system m J

x. = (A - SM) x . m ' m (29)

t hCorollary 1. The control is an r order near optimum control

and hence

dlJ(up) dLj(um)

dq dq’
, i = 0,1,...,(2r+l). (30)

Proof of Corollary 1. Differentiating (26) and (29), it is seen

that

sJxm _
dq'* dq~*

, j = 0,1,...,r. (31)

Differentiating (24) and (27), and comparing, it is seen that u^ is an r 

order near-optimum control, and hence (30) holds.

th

This corollary and a proof independent of Theorem 1 appears in [13].
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5. Regular Perturbation of a Coupling Parameter

In this application the control expansion is used to simplify the 

design of a large scale linear system in which q plays the role of a 

coupling parameter e

x = Ax + Bu =

— -
x.1
2 6 A,21

eA12 +
B.

SB21
eB 12

u, (32)

where x^ and x^ are n^- and ^ “dimensional substates, u^ and u^ are r^- and 

^ “dimensional subcontrols, e is a scalar coupling parameter, and A^, A ^ j

A21’ A2 j Bl* B12s B215 B2 do not dePend on e •
The performance index is (16) with

A =
eQ12

12
; R = Ri 0

0 Ro2
(33)

Instead of the optimum control (24), we use the near-optimum control (27) 

where P is the solution of (25), and M is given by (28) where q is replaced 

by the coupling parameter e. When the coupling parameter is zero, the 

system decouples into two lower order subsystems» By expanding P at e = 0 

the coefficients of the series (28) can be obtained from decoupled equations 

Theorem 3 » [l4]

The even order partial derivations of P are block diagonal

2i
S2iP
be 2i

0

2i (34)

and the odd order partial derivatives of P are block antidiagonal
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,2i+l

3e2i+l
P =

0

(P2i+1) ’ 
K 12 '

,2i+l
12

0
(35)

Theorem 4 [l4].

from

and

(a) The zero order submatrices P^(t,0) and P^CtjO) are obtained

Px = A1P1S1P1- Q p  P1(T,0) = 0

P2 = -P2A2- A^P2 +  P2S2P2- Q2 ; P2(T,0) = 0

(36)

(37)

where

S = S 1 S 12 

Si2 S2 = BR B' (38)

2^ 2 jL
(b) The even order submatrices P^ and P^ for i = 1,2, are

obtained from

,21 _ 
1 -p21g - P1 G1 g 'p 21Gr i - F21"1- r l -i1

,21 _ -p2ir - G* p2i - F21“1- p2i2 " P2 G2 G2P2 F2 5 P2

(39)

(40)

where

G =

-j-,2 i** 1 ,and 2i-l

Gi G12

_G21 G2_

l on

= A - SP

.2i

(41)

(c) The odd order submatrices P ^ +  ̂= (P^**"^) for 1 = 0,1,..

are obtained from
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(42)

where F ^  does not depend on P^2+^‘

In applications the parameter e may be a physical parameter or it 

may be introduced for computational simplification. In view of Theorem 3,

by solving only two lower order uncoupled Riccati equations and a few 

uncoupled lower order linear equations. By Corollary 1, this control yields 

a near-optimum performance index which approximates the optimum performance 

index up to order (2r+l) .

6. Singular Perturbation of a Coupling Parameter

In this application the system reduces to a lower order dynamic 

subsystem and a nondynamic subsystem when the coupling parameter X is zero. 

Although the subsystems are still coupled, the lowering of the dynamic order 

reduces computation in the design. For this case, the system description is

vector, z is an m-dimensional vector and u is an r-dimensional vector. The 

performance index is

an r order near-optimum control for a large scale system may be obtained

Q Y  r+s rs/ ^

—  = AlX  + V  + Bl u 

x d t  = V  + V  + V

(43)

(44)

where X is a given small positive constant and where x is an n-dimensional

T

o
(45)
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where Q is positive semidefinite and R is positive definite. Under the 

assumptions that A^, A^s A^, A^, B^, and are continuous functions of t 

for any given X > 0, the optimum matrix P, for X > 0 may be obtained from

where

P = -PA - À'P + PBR“1B'P - Qq, P(T,X) = 0

A =
A, A„ B- r- — |
1 2 1 OO'

A_ A, , B = ÌL > =3 4 2 oo

X X X

(46)

(47)

The optimum control is

where

u = -K^x - K^z

K = [K1 K ] = R~1§'P

(48)

(49)

It is shown in [l6] that it is possible to expand K in a series in X about 

X = 0. Conditions which guarantee the existence and differentiability of 

K as X 0+ are given in Theorem 5 below. It is assumed that symbols

without the tilde (~) are evaluated at X = 0:

Theorem 5 . [16]. <If in the system (43) and (44) with the performance 

index (45) s

(a) A^ is negative definite

(b) A^,A2 , and B^ have continuous partial derivatives with respect

to X and

(c) A^,A^, and B^ have continuous second partial derivatives with 

respect to X
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lim K and lim ^  
0+ X “♦ 0+

exists and given by

K x(0+) = r "1(B1-A2A"1B2) 'm

k 2 (0+) = 0

ax x=o+
= R_1(PXM + BXW X+ P2L2 +  B2W2)

and
*K,
sT x=o+

= r ‘1(b ^l 2 + b2w 3) .

M is the solution of the Riccati equation

dM -1~  = -MF - F'M + MGR G'M - Q; M(T) = 0

and is given by

L2 = -MA2A4 •

W^, W2> and are the solutions of 

dW
—  = + W lZl + Z-W* + W2Z2 + Y r  W l(T) = 0

0 = -WxA2- W2A4 + (MN + L£N2 - A3)W3 

dL
- < d T  + + L2*4 + Ai V  MNL2" W

0 = W3A4 + A4W3 + L2A2 + A2L2

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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Z1 = (-^ + NXM + NL̂ ) (59)

Z2 = (-A3 + N.'m + N ^ )  (60)

Y 1 = C^M - L2C*3- ^ L 2 + M r xM + MrL2 + L ^ ' m  + (61)

where

5. = 3A./3X, i = 1,2,3,4, g. = 5B./SX, i = 1,2,

N. = ( B . R ' V )  , 1 = 1,2, N = T. = 3S./3X, i = 1,2,

• ■ • f  = 5S/SX, F = A j-  Aj A ^ ^ ,  G = B1-  A2A^1B2 .

For details of the proof, see [l6]. Note that all the calculations 

are for a reduced order system.

It can be shown that a result similar to Corollary 1 applies to 

the singular perturbation case. For example, if we use an approximation

K(X) = = K(0) + f~ X

the near optimum performance index approximates the optimum performance index 

to third order.
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