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COMPUTER-AIDED DESIGN OF BROAD-BAND AMPLIFIERS 
WITH COMPLEX LOADS

T. N. Trick and J. Vlach

I. INTRODUCTION

In this paper a computer-aided design approach is developed for 

the broad-band matching of complex generator and load impedances to a 

network containing active elements. Both lumped or distributed elements 

can be used without difficulty, but herein only the distributed case is 

presented.

It is well known that at higher frequencies there is a point at 

which the lumped elements are no longer well defined and distributed models 

must be used. The mathematical description of these distributed parameter 

elements is complicated, and transcendental functions are involved in their 

description. For instance, a lossless transmission line is described by 

functions containing tanh(is/c) where s is the usual complex ftequency- 

variable and i/c is the ratio of the length of the transmission line element 

to the phase velocity of the wave in such an element. To eliminate the 

tanh function, a new variable can be introduced [l]

t = tanh(is/c) ,

but this requires that all lines in the network have the same ratio i/c and 

the price of losing one parameter per line is paid for the convenience of 

describing the network by a rational function of the complex variable t.
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Similar transformations can be applied for waveguides and RC distributed 

lines. This approach was and still is extensively used [2-5] because not 

only can the well-developed theory of lumped filters be applied, but also 

extensive tables are available. However, the synthesis is still quite 

complicated and elements not having direct lumped counterparts (unit elements) 

must be incorporated. To the knowledge of these authors, this approach was 

not used for matching problems and is probably unsuitable for networks 

containing transistors.

Some work has been done in matching a transistor to a resistive 

source and load by LC lossless transmission lines or by L and C lumped 

elements. In [6], a Smith Chart, lumped elements, and measured data of a 

transistor are used, whereas [7] attacks the problem by using a very simple 

mixed computer-aided graphic approach to match the transistor to a resistive 

load and source by means of LC lossless transmission lines. Minimization of 

the reflection coefficient was described in [8] to match a transistor to 

resistive source and load by means of lossless lines.

The method described in this paper is an optimization method 

allowing the use of several transistors, LC transmission lines (need not 

be lossless), lumped L, C, R elements and complex generator and load 

impedances. It has two parts?

1. The analysis of a special class of active distributed networks 

in terms of scattering parameters (cascade connection of series 

lines, stubs and transistors)

2. Optimization using Rosenbrock's minimization procedure which 

does not require knowledge of any derivatives.
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The analysis of a cascade of networks with complex terminations 

requires a special redefinition of the transfer scattering parameters. This 

is done in the next section. In Section three the analysis program is 

discussed. Section four discusses the optimization criterion in which the 

lengths and characteristic impedances of the lines are adjusted within 

constrained bounds until the reflection loss is minimized and/or the power 

gain is flat over the specified frequency range. We conclude with several 

typical design problems, one of which is the matching of a slot antenna to 

a distributed line over a 2:1 frequency range.

H o  TRANSFER SCATTERING PARAMETERS WITH COMPLEX NORMALIZATIONS

Basic Definition

The usual definition [9] of the scattering parameters for a two- 

port network normalized to complex loads is

where

a . 
1 1 ÜV.+ I.Z.]

2\/ReZ. 1 1 1
1

b.1 2VReZ.
I.Z*] 1 1

(la)

kDenotes complex conjugate.

(lb)
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Hit i

The above definitions can easily be extended to include n-port networks. 

However, in this paper we will only be concerned with two-ports.

We now wish to define a new set of parameters called the transfer 

scattering parameters which have the property that if T is the transfern.
scattering matrix for network A and if is the transfer scattering

matrix for network B in Figure 1, then the transfer scattering matrix for

the cascade connection is

Tc ■ t a  V (2)

Let us write the transfer scattering parameters for network A as

--
--

1
>

Jz!
__

i at11 A2

_Bi

II

_‘21
at22 _B2

and for network B as

A3 tb11 ‘n A4

_B3 H 
rO OJ^ 

1

tb22 B4

(3)

(4)

We begin by defining the left hand quantities in (3) and (4) as being equal 

to the usual incident and reflected scattering waves, that is,

and

A 1 al 1
1 z i V 1

B1 bl 2\/ReZ1 1 -Z* L

A3 a3 1
1 Z3 V3

B3 b3 2\/ReZ 1 -Z3 Z3

(5)

( 6)
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Now requirement (2) demands that

A2 A3 1 1 Z3

h i 2s/ReZ3 }  -Z3_

However, in the cascade connection

and we must require

so that

A2 1 i N N3 
.

V 2

_B2 2\/ReZ2 _1 Z*
h

Note that in cascading two networks in order for relationship (2) to be valid

the connection ports must be normalized to the same complex impedance (Z = Z ) . 

Hence, the complex normalized transfer scattering incident and reflected 

waves are defined as

A1 1 1 z i v i

_B1 2s/ReZ 1 1 -Z*
h

A2 1 1 ‘ Z2 V2

B2 27ReZ2 1 z*1 L  2 X2

(7)

( 8)

Relation to S-parameters

To obtain the relation of the complex-normalized transfer scattering 

parameters to the usual scattering parameters, we first express a^ and b^ as
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a function and

1 S22
S21 S21

= 1 S 12S2l“ S11S22

i—iCM
CO

S21

Since by definition (5)

A, an1 1
B, = hi1 1

we have

but from (lb)

n — - -i

>

1
S21

_ 111
S21 b2

Bx
= S12S21 “ S11S22

S21 S21
a~2

b_ 1 -z*2 1 2 2
a2 2jReZ2 h

and from (8)

V2 1
Z*Z2 Z2 A2

_Z2 2s/ReZ2 -1 1 B2

(9)

( 10)

(ID

( 12)

(13)

Substituting (13) into (12) we obtain

b2 1
1 -z* z*2 Z2 A2

a2 2ReZ2 1 Z2_ -1 1 _B2
(14)
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and with the substitution of (14) into (11)

7 * _ 7¿2 ¿2
(15)

The quantity constrained in the large brackets is the T matrix for the two- 

port in terms of the S“parameters. Note that if is real (a special case)

then
b„ A„2 2
an B „2 2

, and

1 S22
S21 S21
sn S12S21~ S11S22
S21 S21

which is essentially the definition given in [ 9 1 -

(16)

Renormalization of the Transfer Scattering Parameters

We see that the transfer scattering parameters are convenient for 

the analysis of a cascade connection of two-ports, since the transfer 

scattering matrix for the entire system is simply the resultant matrix 

product. However, ones ultimate goal is the acquisition of the S-parameters 

normalized to the complex terminating impedances and Z^ since these 

parameters have a definite meaning to us in terms of reflected and incident 

power. Thus, the analysis of a typical cascade of two-ports might proceed as 

follows: First we find the transfer scattering parameters of the two-ports

all normalized to some arbitrary impedances Z^ and Z O n e  usually picks
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some convenient value, such as 50C2's. We then find

[ r ]  = [t ;][t *] ... [t 'L1 l n

Thus,

(17)

We now wish to relate T' to the S matrix normalized to the acutal port 

impedances and Z^. This is accomplished below.

Using (5) we have for the first port with primed normalizing

impedances

1
_Bi 2\/ReZ^

The same network, normalized to Z^, Z^ 

scattering parameters, is described at

and expressed in terms of the usual 

port 1 by (lb)

ai 1 1 +z'± V1
_bi 2N/ReZ1 1 -z'* h

Because the voltage and current V^, 1^ must be the same

vector results in

elimination of the

V R e Z 1 i-
1 

1 

IN
I

(—
* 

-
__

__
__

__
1

1  Z 1

- 1

a l

5 .
V R e Z ^ 1  -z'* 1  - z *

b l _

(18)
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We proceed similarly for the second port. From (6), in terms of the primed 

impedances

4 1 1 -Z2 V2
_B2 2v/ReZ^ 1 z'* _ 2 \

and from (lb) in terms of the unprimed impedances 

b.

2\/ReZ2

1 -z* vrt2 2
1 z „ T2 2

Elimination of the vector results in

4 VReZ2 1 'Z2 1 -z* _b2
_B2 VReZ^ 1 z'* Z2 Z2_ _a2

Insert now (18) and (19) into (17): 

VReZ,

^ReZ. _7 1 *

This can be rewritten as

ai b_1 = Cu] 2

bl a2

where

U =
z’*+zi zi - zi Z2+Z2 Z2~Z2

2v/ReZ1 VReẐ 7'*_7* 1 1 zj+z*
LT J

2VReZ2 /y/ReZ'_ z -z1 * Z2 Z2 Z2+Z2*

(19)

1 Z 1
-1 a1 VReZ_ 1 _Zo 1 -Z*

-1
bn1 1 = C T 1 ] 2 2 2 2

1 -z* _bl_ VReZ^ Z2* -1 Z2 a2

( 20)

(21)
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At this point it is very important to note from (9) that

11
1

S21
S22

u io = -----
12 S21 (22)

sn S12S2l" S11S22
21 " rHCMCO U22 ■ s21

and these S-parameters are now normalized to the complex terminating 

impedances Z^jZ^. One could use (5) and (15) to obtain the new T-matrix, 

normalized to Z^ and Z^, but we are actually interested in the S'-parameters 

which have the usual connotation of power for matched terminations, that is,

sJk

JJ

2 power delivered to Zj
max power available from port k *

2 _ power reflected from port i

(23)

(24)

For the two-port we note that

and

sn  =
U21
U 11

(25)

iir-HCMCO

1
U 11

(26)

S22
_ ^12 

U 11
(27)

U l TU-2-2 " U21U T2 (28)S12 ' U 11

Therefore Equations (25) - (28) are the quantities which will be optimized in

some sense.
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III. ANALYSIS OF CASCADED NETWORKS

In this particular work we are interested in finding the power 

delivered to a complex load through a cascade connection of series lines, 

shorted stubs, transistors, and possibly lumped elements. Thus, we will 

be concerned with finding the transfer scattering parameters for the above 

two-ports (series line, shorted stubs, etc.) and finding their product in 

the sequence in which they are connected. As we mentioned in Section II 

the normalizing impedances and are completely arbitrary; hence we 

will choose Z^ = Z^ = R, a real number. In particular we set R = 50ü's. 

Then the final matrix can be renormalized to the complex terminating 

impedances Z^ and Z^ by the expression

[u] = [m l ][t '][m r ] (29)

where from (21)

[m l ] =
2\/R ReZ

and

[MR] =
2\/r  ReZ,

(26) and (23).

R+Z1 R-Z i
R-Z* R+Z*

Z„+R Z*-R2 2

V R Z*+R

to the load

(30)

(31)

The T-matrices for some typical networks are given in Figures 2 

and 3. Figure 2 shows the results for two basic lumped sections, and 

Figure 3 gives the T-parameters for two typical distributed sections. The
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scattering parameters for the transistors are measured for a 500 normalization, 

and a subroutine converts them to transfer scattering parameters normalized to 

50Q.» s .

IV. DESIGN OF BROAD-BAND AMPLIFIERS

A typical design problem might be to match an antenna to a 

transistor over a 2:1 frequency range. A certain cascade connection of series 

lines, shorted stubs, and transistors is chosen to do the job. One does not 

know whether or not this particular topology is the best suited for the 

task at hand; one can only guess. Some initial lengths and characteristic 

impedances are chosen for the transmission lines. The network is analyzed 

for these initial conditions at a finite number of frequencies CD , i=l,2,...,n 

where and C3 is the frequency range of interest. At each frequency

the scattering parameters and the augmented admittance matrix of the network 

are computed. The augmented admittance matrix is used to check the 

stability of the two-port. In addition the error function

E = i = l ^ a ^ Sl l ^ 2 + l s 2 2 ^  + b ( l s 2 l | 2 “ l s 2 l J 2  ̂  ̂ (32)

is formed, where s ^  and are the reflected losses and is

the deviation of the power gain from some predetermined average value 

The quantities a, b, and d are weighting factors. For example, if a ^ 0 

and b = 0, then in minimizing E we are trying to obtain a good match.

However, if a = 0, and b ^ 0, then we are trying to achieve a flat power 

gain over the frequency range . These two criteria are not necessarily
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the same when transistors are present that have a gain characteristic which

is not constant in fi .o
E is minimized using a modified version of Rosenbrock's minimization 

procedure„[10]. Thus we do not need to use any finite difference techniques 

to compute the rate of change of E with respect to the various parameters.

The characteristic impedances and lengths of the lines are simply varied 

in the direction of the maximum rate of change of E and directions orthogonal 

to it. The parameters are constrained to lie within certain bounds. For 

example, the characteristic impedance might be required to lie in the range 

300 to 1300 so that the design is practical. Some typical design examples 

follow.

V. RESULTS

Resistive Source and Load

Figure 4 illustrates a typical broad-band matching problem. The 

network consists of an L-section, a transistor, and a T-section. The 

generator and load impedances are both 500's in this example. The problem 

is to adjust the length (Lp and the characteristic impedance (Z^) of each 

line to achieve flat power gain or the best match over a certain frequency 

range. In this paper we will restrict ourselves to the 2;1 range of 150 MHz 

to 300 MHz. The selection of the circuit topology was arbitrary, and one 

could have any reasonable number of series lines, stubs, and transistors, 

and in any order.

The results of our computer-aided design are illustrated in Table I 

and Figures 5 through 9. In Table I the result of the initial guess is shown



Table I

L*1 Z01
T*L2 Z02 L*L3 Z03 T*

\ Z04 Z05
Average
Gain(dB)

Ripple
(dB)

Initial
Result 0.50 500 0.50 500 0.50 500 0.50 500 0.50 500 7.0 8.5

Optimized 
Result IA .086 280 .982 550 0.444 840 .799 900 .462 1040 11.3 0.2

Sens itivity 
Result IB .080 250 1.00 500 0.420 770 .800 800 .452 950 11.0 0.2

Sensitivity 
Result IC 0.50 500 1.00 500 .420 770 .800 800 .450 950 11.1 0.4

Optimized 
Result II 0.95 360 .978 790 .845 1000 .595 600 .997 400 12.5 0.45

Optimized 
Result III .136 670 .94 640 .999 1290 .983 900 .059 340 14.5 5.6

Optimized 
Result IV .897 370 .873 970 .620 1000 .523 870 0 - 11.3 0.25

Optimized 
Result V .722 290 .458 1250 .730 1330 .496 920 0 - 12.4 0.25

L.^ 1 L„ is the normalized length of the line. The actual length i. = — ---—— —  where
1 1 fN

212 MHz.
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first. Initially the normalized lengths were set equal to 0.5 and the 

characteristic impedances were set equal to 500's. Note that the average 

gain was quite lowr(7.0 dB) and the variation in gain from the highest gain 

to the lowest gain was very large (ripple = 8.5 dB) . Rosenbrock's minimi­

zation procedure was then applied to the function (32) for a variety of 

different weights. Optimized Result IA was obtained by trying to achieve 

a flat power gain with a reasonable minimization of the reflection losses, 

and Optimized Result II was obtained by weighting the reflection loss term a 

little heavier, and thus, sacrificing some of the flatness in gain. Optimized 

Result III was achieved by only minimizing the reflection losses. All four 

of these results are illustrated in Figure 5. An experimental comparison with 

Optimized Result IA is shown in Figure 6 on an exaggerated scale. Note that 

the experimental results are within approximately 0.5 dB of the computed 

result. Since the measurement of the S-parameters for the transistor appear 

to be the only weak link in our analysis procedure, the transistor was 

removed from the circuit and a comparison made between the experimental and 

computed results. Figure 7 shows that this suspicion was correct. The gain 

in the experimental circuit was slightly below the computed results; but 

this is to be expected, since we were assuming lossless lines in our program.

Other errors that might effect the results could be due to 

inaccuracies in the actual length of the lines and in the characteristic 

impedance of each line. A sensitivity study was done on Optimized Result IA 

and these results are denoted in Table I as Sensitivity Results IB and IC.

A graphical comparison is shown in Figure 8. We note that the optimized 

result is fairly insensitive, that is, the local minimum seems to be fairly 

flat; a fact that we noted consistently throughout our studies.
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Finally, Optimized Results IV and V illustrate the effect of 

changing the network topology. Note that the last series line was deleted, 

and yet the consequences are almost negligible. The reason that Optimized 

Result V appears to be so good is that we constrained the characteristic 

impedance to be less than 1500's, whereas in most of the other results we 

constrained it to be less than 1000’s or 1300*s. These results are compared 

to Optimized Results I and II in Figure 9.

Resistive Source and Complex Load

Next, the renormalization scheme in Section II was applied in an 

attempt to match a slot antenna to a strip line containing one or more 

transistors over the frequency band 150 MHz to 300 MHz. The antenna 

impedance is plotted in Figure 10. Note that its impedance varies 

considerably in this band, so it appears that we have an impossible task.

The generator impedance was assumed to be 50Q's.

The optimized results are illustrated in Figures 11 and 12.

Figure 11 presents the results for one common-emitter transistor stage.

The comparison between the experimental and the computed results is very 

good except at the high frequency end of the scale. It was found that 

different transistors in the circuit could shift the gain curve by one dB or 

more. However, the shape of the gain characteristic did not change 

significantly. Therefore, it was felt that the discrepancy at the end of 

the line must be due to an error in the measurement of the load impedance 

or inaccuracies in the manufacture of the line. Note that the output 

section consists of a rather long narrow line with a characteristic impedance
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of 130Q’s. This line was difficult to cut accurately without the aid of 

precision tools which we lacked. Figure 13 appears to support the latter 

hypothesis. The transistor was removed from the line and the line was 

terminated in 50^'s. A comparison of the experimental and computed gain 

curves in Figure 13 shows that initially the experimental loss was slightly 

greater than the computed loss, as it should be since we assumed lossless 

lines in our program. However, at 220 MHz the lines cross and the computed 

loss becomes greater than the experimental loss. Such is the case in 

Figure 11. Figure 12 presents the matched results for two common-emitter 

stages. The gain variation is only + 1.5dB about the average of 28 dB.

This is an extremely good result considering the given load impedance.

It should be noted that the network configurations in Figures 11 and 12 were 

arrived at by trial and error. Various other configurations were tried and 

they gave poor and sometimes unstable results.

V I . COMMENTS

Additional problems being studied are the design of broad-band 

low noise receivers and the design of distributed filters. Also, other 

minimization techniques which use gradient techniques are being studied.

It should be noted that the single stage designs with ten or less parameters 

were very straightforward. However, amplifiers with two or more stages and 

with ten or more parameters become increasingly difficult to design, and 

it appears that for any large problem more network theory needs to be 

brought to bear on the problem; or, perhaps each stage needs to be
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adjusted separately (something we did not try). Each of our designs took 

from 2 to 5 minutes of 360/75 time.
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Figure 1. Cascade connection of two-ports.
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R T =

1 +
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1 -  &  1 2
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Figure 2. Transfer-scattering parameters for some lumped two-ports.
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h---- A ---- H

R ■0 R T =

Z  ̂+ R ̂
cosy&l + j -°2Z R sin/3/ Z02- R 2

j 2Z0R sin/ ^
2 _ d 2. Zn ~Ro —1 ' z 2+R 2

T z0r sin^  c o s /3 /- j - | ZqR sin/3/ 

(a) Lossless Series Line

T =

R1 - j 2 zZ cot/3/ R

Rj 2z^ C0t/3/

(b) Lossless Shorted Line

j 2 ^  cotf3A

1 + j 2Z^ co\(3A

FP-1961

Figure 3. Transfer-scattering parameters for some distributed two-ports
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Figure 4. Typical matching configuration. FP-1934
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Figure 5. Initial gain and the dependence of the optimal gain 
on the weighting factors.
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Frequency (MHz)
FP-1933

Figure 6. A comparison of experimental and computed results.
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Frequency (MHz)

Figure 7. A comparison of experimental and computed results 
without the transistor.



Frequency (MHz) FP-1930

Figure 8. Variation of gain with parameters.
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Figure 9. Gain comparison for different output sections.
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Antenna
Load

Figure 11. Comparison of experimental and computed optimal gains 
for an antenna load and one transistor.
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Frequency (MHz)
F P -1965

Figure 12. Optimal gain for an antenna load and two common-emitter stages.
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Frequency (MHz)
FP-1994

Figure 13. Comparison of experimental and computed loss for the line in 
Figure 11 without the transistor and with a 50ft load.
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