ON A ROOT - DISTANCE RELATION FOR ARITHMETIC CODES

R. T. CHIEN
S. J. HONG

ON A ROOT-DISTANCE RELATION FOR ARITHMETIC CODES

R. T. Chien and S. J. Hong Coordinated Science Laboratory University of Illinois Urbana, Illinois

This work was supported in part by the Joint Services Electronics Program (U.S.Army, U.S. Navy, and U.S. Air Force) under Contract DAAB-07-67-C-0199, and in part by the National Science Foundation under Grant No. GK-2339.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This Document has been approved for public release and sale; its distribution is unlimited.

Other CSL Reports in Information Science include:

1. Kasami, Tadao, "An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages," March, 1966, R-257.
\square 2. Barrows, J. T., Jr., "A Topological Technique for Analysis of Active Networks," August, 1965, R-266.
2. Barrows, J. T., Jr., "A New Method for Constructing Multiple Error Correcting Linear Residue Codes," January, 1966, R-277.
3. Lum, Vincent, "A Theorem on the Minimum Distance of BCH Codes over GF (q)," March, 1966, R-281.
4. Preparata, Franco P., "Convolutional Transformations of Binary Sequences: Boolean Functions and Their Resynchronizing Properties," March, 1966, R-283.
5. Kasami, Tadao, "Weight Distribution Formula for Some Class of Cyclic Codes," April, 1966, R-285.
6. Kasami, Tadao, "A Note on Computing Time for Recognition of Languages Generated by Linear Grammars," April, 1966, R-287.
7. Lum, Vincent, "On Bose-Chaudhuri-Hocquenghem Codes over GF (q)," July, 1966, R-306.
8. Bah1, Lalit Rai, "Matrix Switches and Error Correcting Codes from Block Designs," August, 1966, Thesis, R-314.

9. Kasami, Tadao, 'Weight Distributions of Bose-Chaudhuri-Hocquenghem Codes," August, 1966, Thesis, R-317.
\square 11. Preparata, F. P., Metze, G., and Chien, R. T., "On the Connection Assignment Problem of Diagnosable Systems," October, 1966, R-322.
10. Chien, R. T. and Preparata, F. P., "Topological Structures of Information Retrieval Systems," October, 1966, R-325.
11. Heller, James Ernest, "Decoding Procedures for Convolutional Codes," November, 1966, R-327.
12. Lum, Vincent and Chien, R. T., "On the Minimum Distance of Bose-Chaudhuri-Hocquenghem Codes," November, 1966, R-328.

\square
15. Hsu, Hsung Tsao, "Error Correcting Codes for Compound Channels," December, 1966, R-331.
\square 16. Hong, Se June, "On Minimum Distance of Multiple Error Correcting Arithmetic Codes," January, 1967, R-336.
\square 17. Gaddess, Terry G., "A Study of an Error Detecting Parallel Adder," January, 1967, M.S. Thesis, R-337.
\square 18. Preparata, Franco P., "Binary Sequence Convolutional Mapping: The Channel Capacity of a Non-Feedback Decoding Scheme, March, 1967, R-345.
19. Preparata, F. P. and Chien, R. T., "On Clustering Techniques of Citation Graphs," May, 1967, R-349.
20. Lipovski, Gerald J., "Compatibility and Row-Column Minimization of Sequential Machines," May, 1967, R-355.
21. Lipovski, Gerald J., "An Improved Method of Finding all Largest Combinable Classes," August, 1967, R-362.
22. Chow, David K., "A Geometric Approach to Coding Theory with Application to Information Retrieval," October, 1967, R-368.
23. Tracey, Robert J., "Lattice Coding for Continuous Channels," December, 1967, R-371.
24. Preparata, Franco P., "A Study of Nordstrom-Robinson Optimum Code," April, 1968, R-375.
25. Preparata, Franco P., "A Class of Optimum Nonlinear Double-Error-Correcting Codes," July, 1968, R-389.
26. Kisylia, Andrew Philip, "An Associative Processor for Information Retrieval," August, 1968, R-390.
27. Beach, Edward J., "A Study of a Feedback Time-Sharing System," September, 1968, R-391.
28. Weston, P., and Taylor, S. M., "Cylinders: A Data Structure Concept Based on Rings," September, 1968, R-393.
29. Bah1, Lalit Rai, "Correction of Single and Multiple Bursts of Error," October, 1968, R-397.

CSL Reports (continued)
\square 30. Carroll, D. E., Chien, R. T., Kelley, K. C., Preparata, F. P., Reynolds, P., Ray, S. R. and Stah1, F. A., "An Interactive Document Retrieval System," December, 1968, R-398.
\square 31. Biss, Kenneth, "Syntactic Analysis for the R2 System," December, 1968, R-399.
32. Tzeng, Kenneth Kai Ming, "On Iterative Decoding of BCH Codes and Decoding Beyond the BCH Bound," January, 1969, R-404.
33. Kelley, K. C., Ray, S. R. and Stah1, F. A., "ISL-A String Manipulating Language," February, 1969, R-407.
34. Lombardi, Daniel Joseph, "Context Modeling in a Cognitive Memory," February, 1969, R-408.
35. Chien, R. T., Hong, S. J. and Preparata, F. P., "Some Results in the Theory of Arithmetic Codes," May, 1969, R-417.
36. Hong, Se June, "On Bounds and Implementation of Arithmetic Codes," October, 1969, R-437.
37. Chien, R. T. and Hong, S. J., "Error Correction in High Speed Arithmetic," October, 1969, R-438.

For copies of these reports please complete this form and send to
Professor R. T. Chien
Coordinated Science Laboratory University of Illinois Urbana, Illinois 61801

My name and address is \qquad
\qquad
\qquad
\qquad

ON A ROOT-DISTANCE RELATION FOR ARITHMETIC CODES

Arithmetic codes are of the form AN where A is a fixed integer called the generator and $N=0,1, \ldots, B-1 . B$ is the number of code words. An error pattern E is called t-fold if the arithmetic weight of E is t, that is at least t non-zero (± 1) coefficients are needed to express E in modified binary form allowing ± 1 or 0 as valid coefficients. The arithmetic distance between two integers I_{1} and I_{2} is defined as the arithmetic weight $W\left(\left|I_{1}-I_{2}\right|\right)$. It is we 11 known that this distance function is metric and the minimum distance of an AN code is the weight of the minimum weight nonzero codeword. The arithmetic code corrects errors up to t if the minimum distance, $d_{m} \geq 2 t+1$. The parallelism between arithmetic codes and polynomial codes does not end here. The complete analogy between single error correcting Brown codes [1] and single error correcting Hamming codes, and many other similarities have been observed and summarized by Massey in 1964 [2].

In 1966, Barrows [3] and Mandelbaum [4] simultaneously discovered a class of multiple error correcting arithmetic codes. These codes are since generalized by Chien, Hong and Preparata $[5,6]$ and Chang and Tsao-Wu [7] to include a larger spectrum of codes between the two extremes: Brown codes are analogous to Hamming Codes and Barrows-Mandelbaum codes are analogous to maximal Length-Sequence Codes [8]. These codes have the form $A=\left(2^{e}-1\right) / B$ where e is the exponent of 2 modulo B. When B has 2 as its primitive root, the minimum distance becomes $d m=\left[\frac{B+1}{3}\right]$, which was first proven by Barrows [3]. For the composite B 's the minimum distance is to be found by the procedures described by Chien, Hong and Preparata [6].

The fact that these codes are cyclic immediately poses a question, what is the analogy between these codes and cyclic polynomial codes such as BCH codes [8]? We answer this question with a conjecture on the rootdistance relationship in arithmetic codes. First, notice that $A B=2^{n}-1$ for some n which is the length of the code. To be an error correcting code $\left(d_{m} \geq 3\right)$, it is well known that the exponent of 2 modulo A must be n. A BCH code has generator $g(x)$ for which the exponent of x modulo $g(x)$ equals n, the code length. The $B C H$ theorem states that the minimum distance generated by $g(x)$ is $d_{m}>$ the number of consecutive roots of $g(x)$. Now we look at the roots of $\mathrm{X}^{\mathrm{n}}-1$ in the complex field. A primitive $n^{\text {th }}$ root of unity in this case would be $\alpha=e^{\frac{2 \pi}{n} i}$. We have

$$
\begin{equation*}
x^{n}-1=\prod_{i=1}^{n}\left(x-\alpha^{i}\right) \tag{1}
\end{equation*}
$$

A cyclotomic polynomial $\mathrm{Qh}(\mathrm{x})$ is defined as

$$
\begin{equation*}
Q_{h}(x)=\prod_{(i, h)=1}\left(x-\beta^{i}\right) \tag{2}
\end{equation*}
$$

where β is a primitive h th root of unity. It is well known [see for instance Ref. 9] that a cyclotomic polynomial has all integer coefficients and

$$
\begin{equation*}
x^{n}-1=\prod_{h \mid n} Q_{h}(x) \tag{3}
\end{equation*}
$$

Hence for all $h \mid x, Q_{h}(x)$'s are unrepeated factors of $x^{n}-1$. Each $Q_{h}(x)$ contains a set of disjoint $n^{\text {th }}$ roots of unity as its roots, i.e.,

$$
\begin{equation*}
Q_{h}(x)=\prod_{i \in I_{h}}\left(x-\alpha^{i}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=\left\{i \mid 1 \leq i \leq n,(i, n)=\frac{n}{h}\right\} \tag{5}
\end{equation*}
$$

As we replace x with 2 in the above equations, we have $A_{n}=Q_{h}(2)=\prod_{i \in I_{h}}^{\left(2-\alpha^{i}\right) \text {, }}$ the integer factors of $2^{n}-1$. Each A_{h} may or may not be a prime, but has a definite relation with the $n^{\text {th }}$ roots of unity given by Eq. (5). Any further decomposition of A_{h} preserving the root relationship is impossible because $Q_{h}(x)$ is always irreducible in the field of rationals [10].

Table 1. A_{h}

Q_{h}	A_{h}	h	A_{h}	h	A_{h}	h	A_{h}
1	1	7	127	13	8191	20	$5 \cdot 41$
2	3	8	17	14	43	21	$7 \cdot 337$
3	7	9	73	15	151	22	683
4	5	10	11	16	257	24	241
5	31	11	$23 \cdot 89$	17	131071	30	331
6	3	12	13	18	$3 \cdot 19$	36	37.109

Dickson [11] has shown that $A_{h} \neq A_{k}$ for all $h \neq k$ except $A_{2}=A_{6}=3$ and that every A_{h} (except A_{6}) has the exponent of 2 modulo A_{h} equal to h. Now for given A a divisor of $2^{n}-1$, we find the number of positively consecutive roots as follows. First, choose only those A_{h} 's in A which are clearly the A_{h}, and then count the number of the longest consecutive roots using Eq. (5). This is best illustrated by an example: $n=18$
has $A_{2}, A_{3}, A_{6}, A_{9}$ and A_{18}. Among them, ambiguous A_{h} 's are $A_{2}=A_{3}=3$ and $A_{18}=3 \cdot 19$.
roots: $\alpha^{\mathrm{i}} ; \mathrm{i}=\begin{array}{llllllllllllllllll}1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Factors: $\quad A_{h}=3 \cdot 1973 \begin{array}{llllllllllllllll} & 73 & 73 & 3.19 & 7 & 3.19 & 73 & 3 & 73 & 3.19 & 7 & 319 & 73 & 3 & 73 & 3.19\end{array}$

$$
\begin{array}{ll}
A=3 \cdot 19 \cdot 73 & \rightarrow \text { positive factors }\{73\} \rightarrow 1 \text { consecutive roots } \\
A=3^{3} \cdot 19 \cdot 7 & \rightarrow \text { positive factors }\{3,3,3 \cdot 19,7\} \rightarrow 3 \text { consecutive roots } \\
A=19 \cdot 73 & \rightarrow \text { positive factors }\{73\} \rightarrow 1 \text { consecutive root }
\end{array}
$$

Conjecture: If A has d positively consecutive roots, $\mathrm{d}_{\mathrm{m}}(\mathrm{A}) \geq \mathrm{d}+1$.
We define weakly consecutive roots of A as the following. In case some A_{k} divides A_{h} and $A_{k} \neq A_{h}$, the factor of A_{h} is recognized as A_{h} even in the absence of A_{k}. Again the illustration with $n=18$;
$A=3 \cdot 19 \cdot 73 \rightarrow$ weak factors $\{3 \cdot 19,73\} \rightarrow 2$ consecutive roots
$A=3^{2} \cdot 73 \rightarrow$ weak factors $\{3,3,73\} \rightarrow 3$ consecutive roots
$A=3 \cdot 3 \cdot 19 \rightarrow$ weak factors $\{3 \cdot 19\} \rightarrow 1$ consecutive root

It is empirically discovered that if A has d weakly consecutive roots, $d m \geq d+1$ for all A 's up to length $n=36$ with only two exceptions. (See the * entry in the table 2) Table 2 shows the exhaustive proof of the above statement. This is achieved by listing all possible A's of different weakly consecutive roots without any superflows non-recognized factors. If any A has non-recognized factors, obvious $l y d_{m}(A) \geq d_{m}\left(A^{\prime}\right)$
where A^{\prime} is without those non-recognized factors (Example $A=3 \cdot 3 \cdot 19$, $\left.A^{\prime}=3 \cdot 19\right)$. Also, for a given A, one can easily verify that the number of positively consecutive roots is less than or equal to the number of weakly consecutive roots. Hence, table 2 also provides an empirical proof for the conjecture except for the two starred exceptions. The proof for these two cases are as follows.
(1) $\mathrm{n}=20, \mathrm{~A}=3 \cdot 31 \cdot 5^{2} \cdot 41$ has 7 positively consecutive roots and the actual $d_{m}=8=7+1$.
(2) $n=36, A=3^{3} \cdot 5 \cdot 73 \cdot 37 \cdot 109$ has 6 positively consecutive roots and the actual $d_{m}=8>6+1$.

The actual d_{m} 's in the following table was obtained by the method described in [6].

Table 2

n	A	B	weak $\mathrm{d}+1$	actual dm
8	$5 \cdot 17$	3	4	4
	$3 \cdot 17$	5	4	4
9	73	7	3	3
10	$3 \cdot 31$	11	4	4
	$11 \cdot 31$	3	5	5
12	$3 \cdot 3 \cdot 5$	$7 \cdot 13$	3	3
	$5 \cdot 7$	$3 \cdot 3 \cdot 13$	3	3
	$7 \cdot 13$	$3 \cdot 3 \cdot 5$	3	3
	$3 \cdot 3 \cdot 13$	$5 \cdot 7$	4	4
	$3 \cdot 3 \cdot 5 \cdot 7$	13	4	4
	$5 \cdot 7 \cdot 13$	$3 \cdot 3$	4	4
14	$3 \cdot 127$	43	4	4
	$43 \cdot 127$	151	$7 \cdot 31$	7
15	$7 \cdot 31$	151	3	7
	$31 \cdot 151$	$7 \cdot 257$	$5 \cdot 17$	3

Table 2 (continued)

	$5 \cdot 43 \cdot 127$	$3 \cdot 29 \cdot 113$	4	4
	$3 \cdot 29 \cdot 113$	5-43.127	4	4
	$43 \cdot 127 \cdot 29 \cdot 113$	$3 \cdot 5$	7	7
	Rest*	3	14	14
	Rest	5	14	14
30	$331 \cdot 151$	$3 \cdot 3 \cdot 11 \cdot 7 \cdot 31$	3	3
	3-3.31	$7 \cdot 151 \cdot 11 \cdot 331$	3	3
	$7 \cdot 11$	$9 \cdot 31 \cdot 151 \cdot 331$	3	3
	$7 \cdot 331$	$9 \cdot 11 \cdot 31 \cdot 151$	3	3
	$3 \cdot 3 \cdot 151$	$7 \cdot 11 \cdot 31 \cdot 331$	4	4
	$11 \cdot 151$	$7 \cdot 9 \cdot 31 \cdot 331$	4	4
	$31 \cdot 331$	$7 \cdot 9 \cdot 11 \cdot 151$	4	4.
	$7 \cdot 11 \cdot 151$	$9 \cdot 31 \cdot 331$	4	4
	$7 \cdot 11 \cdot 331$	$9 \cdot 31 \cdot 151$	4	4
	$11 \cdot 151 \cdot 331$	$7 \cdot 9 \cdot 31$	5	5
	7.31.331	9.11.151	5	6
	$31 \cdot 151 \cdot 331$	$9 \cdot 7 \cdot 11$	5	5
	$3 \cdot 3 \cdot 31 \cdot 151 \cdot 11$	$7 \cdot 331$	6	6
	$7 \cdot 11 \cdot 151 \cdot 331$	$9 \cdot 31$	6	6
	$7 \cdot 11 \cdot 31 \cdot 331$	$9 \cdot 151$	6	7
	$7 \cdot 31 \cdot 151 \cdot 331$	$9 \cdot 11$	6	6
	$3 \cdot 3 \cdot 151 \cdot 331$	$7 \cdot 11 \cdot 31$	6	6
	$11 \cdot 7 \cdot 31 \cdot 151 \cdot 331$	9	10	10
	$3 \cdot 3 \cdot 31 \cdot 151 \cdot 331$	$7 \cdot 11$	10	10
	Rest	11	12	12
32	257.65537	3-5.17	4	4
	$17 \cdot 65537$	$3 \cdot 5 \cdot 257$	4	4
	5.65537	$3 \cdot 17 \cdot 257$	4	4
	$3 \cdot 65537$	$5 \cdot 17 \cdot 257$	4	4
	17.257.65537	$3 \cdot 5$	8	8
	$5 \cdot 257 \cdot 65537$	3.17	8	8
	$3 \cdot 257 \cdot 65537$	$5 \cdot 17$	8	8
	Rest	3	16	16
	Rest	5	16	16
33	599497	7-23-89	3	3
	7.23.89	599479	3	4
	Rest	7	11	11
34	3-131071	43691	4	4
	Rest	3	17	17
35	$31 \cdot 127$	$71 \cdot 122921$	3	4
	$31 \cdot 71 \cdot 122921$	127	5	5
	$127 \cdot 71 \cdot 122921$	7	7	7
36	$37 \cdot 109 \cdot 3 \cdot 19$	$5 \cdot 7 \cdot 3 \cdot 3 \cdot 13 \cdot 73$	3	3
	$13 \cdot 3 \cdot 19$	$3 \cdot 3 \cdot 7 \cdot 5 \cdot 73 \cdot 37 \cdot 109$	3	3
	$13 \cdot 73$	$5 \cdot 3 \cdot 3 \cdot 7 \cdot 3 \cdot 19 \cdot 37 \cdot 109$	3	4
	$73 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 3 \cdot 19 \cdot 5 \cdot 13$	3	3
	$5 \cdot 73$	$3 \cdot 3 \cdot 7 \cdot 3 \cdot 19 \cdot 13 \cdot 37 \cdot 109$	3	3
	$5 \cdot 3 \cdot 19$	$3 \cdot 3 \cdot 7 \cdot 73 \cdot 13 \cdot 37 \cdot 109$	3	3
	$3 \cdot 19 \cdot 13 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 5 \cdot 73$	4	4
	$3 \cdot 19 \cdot 13 \cdot 73$	$3 \cdot 3 \cdot 7 \cdot 5 \cdot 37 \cdot 109$	4	4

[^0]
Table 2 (continued)

n	A	B	weak d+1	actual d_{m}
36	$13 \cdot 73 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 5 \cdot 3$	4	4
	$3 \cdot 3 \cdot 37 \cdot 109$	$5 \cdot 13 \cdot 7 \cdot 73 \cdot 3 \cdot 19$	4	4
$5 \cdot 73 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 3 \cdot 19 \cdot 13$	4	4	
$5 \cdot 3 \cdot 19 \cdot 73$	$3 \cdot 3 \cdot 7 \cdot 13 \cdot 37 \cdot 109$	4	4	
$5 \cdot 3 \cdot 19 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 13 \cdot 73$	4	4	
$7 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 5 \cdot 13 \cdot 3 \cdot 19 \cdot 73$	4	4	
$3 \cdot 19 \cdot 13 \cdot 73 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 5$	6	6	
$3 \cdot 3 \cdot 73 \cdot 37 \cdot 109$	$7 \cdot 3 \cdot 19 \cdot 5 \cdot 13$	6	6	
$5 \cdot 3 \cdot 19 \cdot 73 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 7 \cdot 13$	6	6	
$7 \cdot 3 \cdot 19 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 73 \cdot 5 \cdot 13$	6	6	
$3 \cdot 3 \cdot 5 \cdot 73 \cdot 37 \cdot 109$	$3 \cdot 19 \cdot 7 \cdot 13$	$7 *$	6	
$5 \cdot 7 \cdot 3 \cdot 19 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 73 \cdot 13$	7	8	
$13 \cdot 7 \cdot 3 \cdot 19 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 5 \cdot 73$	7	8	
$5 \cdot 7 \cdot 13 \cdot 3 \cdot 19 \cdot 37 \cdot 109$	$3 \cdot 3 \cdot 73$	8	8	
$3 \cdot 3 \cdot 73 \cdot 13 \cdot 37 \cdot 109$	$5 \cdot 7 \cdot 3 \cdot 19$	8	9	
Rest	$7 \cdot 13$	9	9	
	Rest	$3 \cdot 3 \cdot 13$	9	9

We now prove the conjecture for a special case of two adjacent roots which should give actual $d_{m} \geq 3$. First a well known lemma.

Lemma 1 For code length $n, d_{m}(A) \geq 3$ if $e(A)=n$ and $2^{e / 2}+1 \not \equiv 0 \bmod A$.

Lemma 2 (See [11]) e $\left(A_{h}\right)=h$ except $h=6$.

Theorem 1 If A clearly contains two weakly consecutive roots of unity, then $d_{m}(A) \geq 3$.

Proof Case 1) A is composed of a single A_{h}, i.e., $A=A_{h}$ for some h. From the adjacency we have

$$
\left.\begin{array}{rl}
(i, n) & =\frac{n}{h} \\
(i+1, n) & =\frac{n}{h}
\end{array}\right\} \quad \text { Can happen only if } h=n=\text { odd }
$$

By lemmas 1 and 2, the theorem is true.

Case 2) A is composed of $A_{h_{1}}$ and $A_{h_{2}}$ each contributing one root and perhaps some unrecognized factors, ie, $A=A_{h_{1}} \cdot A_{h_{2}} \cdot C$. From the adjacency we have,

$$
\left.\begin{array}{rl}
(i, n) & =\frac{n}{h_{1}} \\
(i+1, n) & =\frac{n}{h_{2}}
\end{array}\right\} \rightarrow\left(\frac{n}{h_{1}}, \frac{n}{h_{2}}\right)=1 \rightarrow \operatorname{LCM}\left(h_{1}, h_{2}\right)=n
$$

But $e\left(A_{h_{1}} \cdot A_{h_{2}}\right)$ is divisible by

$$
\operatorname{LCM}\left(e\left(A h_{1}\right), e\left(A_{h_{2}}\right)\right)=\operatorname{LCM}\left(h_{1}, h_{2}\right)=n
$$

Thus $e(A) \mid n$ and $n \mid e(A)$, resulting $e(A)=n$. If n is odd the theorem follows. If n is even, $\left(2^{n}-1\right)=\left(2^{n / 2}-1\right)\left(2^{n / 2}+1\right)$; and every odd root is from $2^{n / 2}+1$ and every even root is from $2^{n / 2}-1$. Hence $A_{h_{1}}$ and $A_{h_{2}}$ can not both divide $2^{2 / n}+1$ for $\left(2^{n / 2}-1\right)$ and $\left(2^{n / 2}+1\right)$ are relatively prime.
Q.E.D.

Unfortunately, this theorem does not lend itself for a generalization. For a general proof, the method introduced by Pierce [12] and the study on the coefficients of the cyclotonic polynomials by Lehmer [13] will be of invaluable help.

Mandelbaum [4] shows a simple extension of these codes as the following. If $e(B)=n$ and $A=\left(2^{n}-1\right) / B$ gives minimum distance d_{m} over the codelength n, then $A^{\prime}=\left(2^{k n}-1\right) / B$ gives minimum distance $k d_{m}$ over the
code length kn . The conjecture we have shown is entirely compatible with this theorem. Consider $\mathrm{n}^{\text {th }}$ roots of unity occupied by B. There must be at least $d_{m}-1$ length gap which is equivalent to a gap of $\mathrm{kd}_{\mathrm{m}}-1$ in kn th roots of unity. Hence, by the conjecture the new minimum distance is kd_{m}.

From the empirical evidence and some facts we presented here, we conclude that the conjecture is very strong. For all practical purposes, now we can synthesize codes of given length and minimum distance by a simple root-distance relation. This gives the strong relation between the arithmetic code and the $B C H$ code. The decoding technique using this approach should be the subject of further research.

References

[1] D. T. Brown, "Error Detecting and Correcting Binary Codes for Arithmetic Operations," IRE Trans. Vol. EC-9, 1960; pp. 333-337.
[2] J. L. Massey, "Survey of Residue Coding for Arithmetic Errors," International Computation Center Bulletin, UNESCO, Rome, Italy, Vol. 3, No. 4, Oct. 1964; pp. 195-209.
[3] J. T. Barrows, Jr., "A New Method for Constructing Multiple Error Correcting Linear Residue Codes," Report R-277, Coordinated Science Laboratory, Urbana, Illinois, January, 1966.
[4] D. Mandelbaum, "Arithmetic Codes with Large Distance," IEEE Trans. on Information Theory, Vol. IT-13, No. 2, April, 1967.
[5] R. T. Chien, S. J. Hong and F. P. Preparata, "Some Contribution to the Theory of Arithmetic Codes," Proceedings of the First Annual Hawaii International Conference on Systems Sciences, January, 1968.
[6] R. T. Chien, S. J. Hong and F. P. Preparata, "Some Results in the Theory of Arithmetic Codes," Submitted for publication in Information and Control, Report R-417, Coordinated Science Laboratory, Urbana, Illinois, May, 1969.
[7] S. H. Chang and N. T. Tsao-Wu, "Discussion on Arithmetic Codes with Large Distance," IEEE PGIT-14, January, 1968.
[8] W. W. Peterson, Error Correcting Codes, The MIT Press, Cambridge, Mass., 3rd Ed., July, 1965.
[9] E. R. Berlekamp, Algebraic Coding Theory, McGraw Hill Book Company, New York, 1968; pp. 87-118.
[10] Van del Waerden, Modern Algebra, 3rd printing, Frederick Ungar Publishing Company, New York, 1964, pp. 111-115.
[11] L. E. Dickson, "On the Cyclotomic Function," American Math. Monthly, Vol. 12, 1905, pp. 86-89.
[12] T. A. Pierce, "The Numerical Factors of the Arithmetic Forms, $\pi\left(1+\alpha_{i}^{m}\right), "$ Annals of Math., Vol. 18, Series 2, 1916, pp. 53-64.
[13] E. Lehmer, "On the Magnitude of the Coefficients of the Cyclotomic Polynomial," Bull. Am. Math. Soc., Vol. 42, 1936, pp. 389-392.

Distribution List as of 1 October, 1969

Hq ESD (ESTI) L.G. Hanscom Field Bedford, Massachusetts 01730 (2 copies)	Commanding General U.S. Army Materiel Command Attn: AMCRD-TP Washington, D.C. 20315
Professor J. J. D'Azzo Dept of Electrical Engineering Air Force Institute of Technology Wright-Patterson AFB, ohio 45433	Technical Director (SMUFA-A2000-107-1) Frankford Arsenal Philadelphia, Pennsylvania 19137
Dr H.v. Noble (CAVT) Air Force Avionics Laboratory Wright-Patterson AFB, Ohio 45433	Redstone Scientific Information Center Attn: Chief, Document Section U.S. Army Missile Command Redstone Arsenal, Alabama 35809
Director Air Force Avionics Laboratory Wright-Patterson AFB, Ohio 45433	Cormanding General U.S. Army Missile Cormand Attn: AMSMI-REX Redstone Arsenal, Alabama 35809
AFAL (AVTA/R,D. Larson Wright-Patterson AFB, Ohio 45433	Commanding General U.S. Army Strategic Communications Command Attn: SCC-CG-SAE
Director of Faculty Research Department of the Air Force U.S. Air Force Academy	Fort Huachuca, Arizona 85613
Colorado Springs, Colorado 80840 Academy Library (DFSLB) USAF Academy Colorado Springs, Colorado 80840	Commanding Officer Army Materials and Mechanics Res. Center Attn: Dr H. Priest Watertown Arsenal Watertow, Massachusetts 02172
Director Aerospace Mechanics Division Frank J. Seiler Research Laboratory (OAR) USAF Academy Colorado Springs Colorado 80840	Commandant U.S. Army Air Defense School Attn: Missile Science Division, CsS Dept P.O. Box 9390 Fort Bliss, Texas 79916
Director, uSAF PROJECT RAND Via: Air Force Liaison Office The RAND Corporation Attn: Library D 1700 Main Street	Coumandant U.S. Army Coumand \& General Staff College Attn: Acquisitions, Library Division Fort Leavenworth, Kansas 66027
Santa Monica, California 90045	Commanding officer U.S. Army Electronics R\&D Activity White Sanda Missile Range, New Mexico 88002
Los Angeles, California 90045 Det 6, Hq OAR Air Force Unit Post office Los Angeles, California 90045	Mr Norman J. Field, AMSEL-RD-S Chief, Office of Science \& Technology Research and Development Directorate U.S. Army Electronics Cormand Fort Monmouth, New Jersey 07703
	Commanding officer
AULL3T-9663 Maxwell AFB, Alabama 36112	Attn: Dr Berthold Altman (AMXDO-TI) Connecticut Avenue and Van Ness St N.W. Washington, D.C. 20438
AFETR Technical Library (ETV,MU-135)	
Patrick AFB, Florida 32925 ADTC (ADBPS -12)	Director Walter Reed Army Institute of Research Walter Reed Army Medical Center Washington, D.C. 20012
Eglin AFB, Florida 32542	
Mr B.R. Locke Technical Adviser, Requirements USAF Security Service Kelly Air Force Base, Texas 78241	Commanding officer (AMXRD-BAT) U.S. Army Ballistics Research Laboratory Aberdeen Proving Ground Aberdeen, Maryland 21005
Hq AMD (AMR) Brooks AFB, Texas 78235	Technical Director U.S. Army Limited War Laboratory Aberdeen Proving Ground Aberdeen, Maryland 21005
USAFSAM (SMKOR)	
Brooks AFB, Texas 78235 Commanding Generai	Human Engineering Laboratories Aberdeen Proving Ground Aberdeen, Maryland 21005
Commanding General Attn: STEWS-RE-L, Technical Library White Sands Missile Range	Aberdeen, Maryland 21005
New Mexico 88002 (2 copies)	U.S. Army Munitions Command Attn: Science \& Technology Br. B1dg 59 Picatinny Arsenal, smupa-VA6
Hq AEDC (AETS) Attn: Library/Documents	Dover, New Jersey 07801
European Office of Aerospace Research APO New York 09667	U.S. Army Mobility Equipment Research and Development Center Attn: Technical Document Center, B1dg 315 Fort Belvoir, Virginia 22060
Phsical \& Engineering Sciences Division U.S. Army Research Office 3045 Columbia Pike Arlington, Virginia 22204	Director U.S. Army Eng ineer Geodesy, Intelligence \& Mapping Research and Development Agency Fort Belvoir, Virginia 22060
Commanding General U.S. Army Security Agency Attn: IARD-T Arlington Hall Station Arlington, Virginia 22212	Dr Herman Robl Deputy Chief Scientist U.S. Army Research office (Durham) Box CM, Duke Station Durham, North Carolina 27706

Richard 0. U1sh (CRDARD-IPO) U.S. Army Research Office (Durham) Box CM , Duke Station Durham, North Carolina 27706	Naval Electronic Systems Command ELEX 03, Room 2046 Munitions Building Department of the Navy Washington, D.C. 20360 (2 copies)	
Mr Robert O , Parker, AMSEL-RD-S	Commander	
Executive Secretary, JSTAC	Naval Electronics Laboratory Center	
U.S. Army Electronics Coumand	Attn: Library	
Fort Monmouth, New Jersey 07703	San Diego, California 92152 (2 copies)	
Coumanding General	Deputy Director and Chief Scientist	
U.S. Army Electronics Coumand	Office of Naval Research Branch office	
Fort Monmouth, New Jersey 07703	${ }_{\text {Pasen }}^{1030 \text { Est Gree Street }}$	
Attention:AMSEL-SC$\mathrm{RD}-\mathrm{GF}$		
${ }_{\text {RD-MT }}$	Library (Code2124)	
xL-D	Technical Report Section	
xL-E		
${ }^{\mathrm{XLL}-\mathrm{C}}$	Monterey, California 93940	
${ }_{\text {XLS }}^{\text {XL-ST-D (}}$ (Dr R. Buser)		
HL-CT-R		
1 copy to HL-CT-L (Dr W.S. McAfee)	Assoc Professor of Elec. Engineering	
	Naval Postgraduate Schol	
	Monterey, California 93940	
individu- $\mathrm{NLL}^{\text {- }}$		
${ }_{\text {addressed }}^{\text {ally }}$ NL-A	Coumanding officer and Director	
addressed, ${ }^{\text {NLP-P }}$	U.S. Naval Underwater Sound Laboratory	
	Fort Trumbul1	
$\stackrel{\text { NL-S }}{\text { KL }}$		
${ }_{\text {KLL }}^{\text {KL- }}$		
	Naval Avionics Facility	
KL-SM (Drs Schiel/Hies 1mair)	Indianapolis, Indiana 46241	
$\begin{aligned} & \text { LL-T }-\mathrm{D} \end{aligned}$		
${ }_{\text {WL-D }}^{\text {VL-F }}$ (Mr R.J. Niemela)	Dr H. Harrison, Code Rre	
	Chief, Electrophysies Branch	
	National Aeronautics \& Space Admin Washington, D.C. 20546	
Dr A.D. Schnitz ler, AMSEL-HL-NVIINight Vision Laboratory, USAECOM		
Fort Belvoir, Virginia 22060	NASA Lewis Research Center Attn: Library	
	${ }_{20}^{\text {Attn: }}$ Liooo brookpark Road	
Dr G.M. Janney, AMSEL-HL-NVOR	cleveland, Ohio 44135	
Night Vison Laboratory, USAECOMFort Beivoir, Virginia 22060		
	Los Alamos Scientific Laborato	
	P.O. Box 1663	
Atmospheric Sciences Laboratory	Los Alamos, New Mexico 87544	
White 3ands Missile RangeNew Mexico 88002		
	Federal Aviation Administration Attn: Admin Stds Div (MS-110)	
	800 Independence Ave s.w.	
Project Manager Coumm Positioning \& Navigation Systems Attn: Harold H. Bahr (AMCPM-NS-TM), B1dg 439 U.S. Army Electronics Cormand	Head, Technical Services Naval Investigative Service Headquarter 4420 North Fairfax Drive Arlington, Virginia 22203	
	Commander	
	U.S. Naval Or dnance Laboratory Attn: Librarian	
Attn: Code 427	White Oak, Maryland 21502 (2 copies)	
Department of the Navy Washington, D.C. 20360		
	Cormanding officer	
Commander	Box 39 YPO	
3801 Nebraska Avenue Washington, D.C. 20390		
	Commanding officer	
	Office of Naval Research Branch Office 219 South Dearborn Street	
DirectorNaval Research Laboratory		
Wash ington, D.C. 20390		
Attn:Code 2027 Dr W.C. Hall, Code 7000 copies	Commanding Officer Office of Naval Research Branch Office	
Dr A. Brodizinsky, Sup.Elec Div. 1 copy	Office of Naval Research Branch Office 495 Summer Street	
	Boston, Massachusetts 02210	
Dr G.M,R. Winkler		
Director, Time Service Division	Cormander (ADL)	
U.S. Naval Observatory Washington, D.c. 20390	Naval Air Deve lopment Center Johnsville, Warminster, Pa 18974	
Naval Air Systems CormandAIR 03	Cormanding officer	
	Naval Training Device Center	
Wash ington, D.C. 20360 2 copies	Orlando, Florida 32813	
Naval Ship Systems CormandShip 031	Commander (Code 753)	
	Naval Weapons Center	
Washington, D.c. 20360	Attn: Technical Library	
Nava1 ship Systems Cormand		
	Commanding off icer	
	Naval Weapons Center Corona Laborator ies	
	Corona Laboratories	
U.S. Naval Weapons LaboratoryDahigren, Virginia22488	Corona, California 91720	

```
The John Hoplins University
Applied Physics Laboratory 
l
Raytheon Company
Bedford, Massachusetts 01730
Raytheon Company Library
l
Dr Sheldon J. We11s
Electronic Propertie
Hughes Aircraft Company 
Mr Robert E. Fontana 
001 Indian Ripple Road
Nuclear Instrumentation Group
M1dg 29, Room 101 Laboratory
University of California
Berkeley, California 9472
Sy1vania Electronic Systems
Applited Research Laboratory
Attn: Documents Librarian
Waltham, Massachusetts 02154
Hollander Associates
M.0. Box 2276
Illinois Institute of Technology
Mept of Electrical Engeneering
The University of Arizona
Dept of Electrical Eng ineering
Tucson, Ar izona 85721
Utah State University
Lept Of Electrical
Case Institute of Technology
#ngineering Division
University Circle 
Hunt Library 
Carnegie-Mellon University
\
Mr Leo Youns 
Menlo Park, California 94025
School of Engineer ing Sciences
Mrizona State University
Eng ineer ing & Mathmatical Sciences Library
University of California at Los Angeles
405 Hilgred Avenue 
The Library
Government Publications Section
University of Callfornia
Carnegie Inst itute of Technology 
*)
Professor Joseph E. Rove
Chairman, Dept of Electrical Engineering
MAn Arbor, Mich igan 481044
New York University 
New York, New York 10019
Syracuse University
Sept of Electrical Eng\mathrm{ Ineer ing}
```


ERRATUM

```
Mr Jerome Fox, Research Coordinator Polytechnic Institute of Brooklyn 55 Johnson St (should be 333 Jay St) Brook1yn, N. Y. 11201
```


DELETE

```
Mir Morton M. Pavane, Chief
AFSC Scientific \& Tech. Liaison Office 26 Federal Plaza, Suite 1313
New York, New York 10007
Commanding Officer
Office of Naval Research Branch Office Box 39 FPO
New York, N. Y. 09510
```

Yale University
Eng ineer ing Department
New Haven, Connect ict
New Haven, Connect icut 06520
Arborne Instruments Laborator
Deerpark, New York 11729
Raytheon Company
Attn: Librarian
Bedford, Massachusetts 01730

Lincoln Laboratory
Massachusetts Institute of Technology
Lex ington, Mas sachusetts 02173
Lexington, Massachusetts 02173
The University of Iowa
The University Libraries
Lenkurt Electric Co, Inc
San Carios, California 94070
Attn: Mr E.K. Peterson
Phileo Ford Corporation
Communications \& Electronics Div.
Union Meeting and Jolly Rods
Blue Bell, Pennsylvania 19422
Union Carbide Corporation
Electronic Division
P.O. Box 1209 , California 94041

Electromagnetic Compatibility Analysis Center
(ECAC), Atten:
Annapolis, Maryland 21402
irector
J. S. Army Advanced Mater iel Concepts Agency
Wash ington, D.C. 20315

Dept of Electrical Engineering
Rice University
Houston, Texas 77001
Research Laboratories for the Eng. Sc.
School of Engineering \& Applied Science
University of Virginia
Charlottesville, Virginia 22903
Dept of Electrical Engineering
College of Engineering \& Technology
Ohio University
Athens, Ohio 45701
Project Mac
Document Room
Massachusetes Institute of Technology
545 Technology Square
Cambridge, Massachusetts 02139
Lehigh University
Dept of Electrical Engineering
Bethelem, Pennsylvania 18015
Commander Test Command (TCD-)
Defense Atomic Support Agency
Sandia Base
Albuquerque, New Mexico 87115
Materials Center Reading Room 13-2137
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Professor James A, Cadzow
Department of Electrical Engineering
State University of New York at Buffalo
Buffalo, New York 14214
Director, Naval Research Laboratory
Attn: Library, Code 2029 (ONRL)
Washington, D.C. 20390
Commanding Officer (Code 2064)
Navy Underwater Sound Laboratory
Fort Trumbul1
New London, Conrecticut 06320

[^0]: *"Rest" means $A=\left(2^{n}-1\right) / B$, i.e., all other factors

