
May 1991 UILU -EN G-91-2228
CRHC-91-18

Center for Reliable and High-Performance Computing

THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS
Pohua P. Chang Daniel M. Lavery
Wen-mei W. Hwu

Coordinated Science Laboratory
College o f Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

UNCLASSIFI RD__________
SECURITY CLASSIFICATION fu is PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

U n c la ss if ie d
2a. SECURITY CLASSIFICATION AUTHORITY

1b. RESTRICTIVE MARKINGS

None

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2228 (CRHC-91-18)
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6c ADDRESS (Gty, Sfai*, and ZIP Cod*)

1101 W. Springfield Avenue
Urbana, IL 61801

6b. OFFICE SYMBOL
(If applictbl*)

N/A
7a. NAME OF MONITORING ORGANIZATION

NSF, NCR, AMD, NASA, CSRD, IBM

ayhohw
IP Cod*)

Langley VA
8a. NAME OF FUNDING/SPONSORING

ORGANIZATION ya
8b. OFFICE SYMBOL

(If applicata*)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-91-J-1283 NASA NAG 1-613
8c. AODRESS (City, Siate, and ZIP Cod*) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK7b ELEMENT NO. NO. NO.
WORK UNIT
ACCESSION NO.

11 TITLE (Includ* S*currty

The Importance of Prepass Code Scheduling for Superscalar, and Superpipelined Processors
12. PERSONAL AUTHOR(S) n, „ ,Chang, Pohua P., Daniel M. Lavery, and Wen-Mei Hwu
13a. TYPE OF REPORT

T echnical
16. SUPPLEMENTARY NOTATION

13b. TIME COVERED
FROM______ TO

14. OATE OF REPORT (Y*»r, Month, Day)
I____________ 91-05-28 I5. PAGE COUNT

47

17 COSATI COOES
FIELD GROUP SUB-GROUP

19 ABSTRACT

18- SUBJECT TERMS (Continu* on r*v*n* if necessary and ichntify by block numb*r)
Code Scheduling, control-intensive programs, optimizing
compiler, register allocation, superpipelined processors,

and superscalar processors

Superscalar and superpipelined processors provide hardware that has the ability to execntp
many instructions in parallel. In order for this potential to be translated into the speedup o f real
p ograms, the compiler must be able to schedule instructions so that they can be overlapped

mter ° ck deIays 811,1 ^source conflicts. Previous work has shown that prepass rade scheduling helps to produce a better schedule for scientific programs. But the importance of
prescheduling has never been demonstrated for control-intensive non-numericalP programs
These programs are significantly different from the scientific programs because they « S
quent branches and they require global scheduling in order to find enough independent instruc-

UNCLASSIFIED

UNCLASSIFIED
•tCUftlTY CLAMIFICATIOH OF TMH FAO I

19. continued

In this paper, the code scheduler o f the EMPACT-I C compiler is described and used to study the
importance o f prepass code scheduling for a set of production C programs. It is shown that, in
contrast to the results previously obtained for scientific programs, prescheduling is not important
for compiling control-intensive programs to the current generation of superscalar and superpipe­
lined processors. However, if the some of the current restrictions on upward code motion are
removed in future architectures, prescheduling substantially improves the execution time of this
class o f programs on both superscalar and superpipelined processors.

I

*

UNCLASSIFIED____________
S E C U R I T Y C L A S S I F I C A T I O N O F T H IS P A G E

The Importance of Prepass Code Scheduling for

Superscalar and Superpipelined Processors

Pohua P. Chang Daniel M. Lavery Wen-mei W . Hwu*

May 24, 1991

Abstract

Superscalar and superpipelined processors provide hardware that has the ability
to execute many instructions in parallel. In order for this potential to be translated
into the speedup of real programs, the compiler must be able to schedule instructions
so that they can be overlapped without interlock delays and resource conflicts.
Previous work has shown that .prepass code scheduling helps to produce a better
schedule for scientific programs. But the importance of prescheduling has never
been demonstrated for control-intensive non-numerical programs. These programs
are significantly different from the scientific programs because they contain frequent
branches and they require global scheduling in order to find enough independent
instructions.

In this paper, the code scheduler of the IMPACT-I C compiler is described and
used to study the importance of prepass code scheduling for a set of production
C programs. It is shown that, in contrast to the results previously obtained for
scientific programs, prescheduling is not important for compiling control-intensive
programs to the current generation of superscalar and superpipelined processors.
However, if some of the current restrictions on upward code motion are removed
in future architectures, prescheduling substantially improves the execution time of
this class of programs on both superscalar and superpipelined processors.

Index terms - Code scheduling, control-intensive programs, optimizing compiler,
register allocation, superpipelined processors, superscalar processors.

‘ The authors are with the Center for Reliable and High-Performance Computing, University of Illinois,
Urbana-Champaign, Illinois, 61801. Daniel Lavery is also with the Center for Supercomputing Research and
Development, University of Illinois, Urbana-Champaign, Illinois, 61801.

1

1 Introduction

Current high-performance processors use hardware techniques to exploit instruction-level paral­

lelism. Pipelining is common, and many designs are capable of executing nearly one instruction

per cycle. Performance can be boosted further either by executing more than one instruction

per cycle, or by reducing the length of the clock cycle. Superscalar processors fetch, decode, and

execute more than one instruction per cycle by providing multiple functional units and datap­

aths. Superpipelined processors divide the pipeline into smaller segments that have less delay,

allowing the clock cycle to be shortened. In order for the full performance to be extracted from

these parallel microarchitectures, some method must be used to minimize the stalls caused

by the control and data dependencies between instructions. As the pipelining depth or the

instruction issue rate increases, these stalls become more costly.

Code scheduling is a technique that tries to rearrange the instruction sequence to minimize

the execution time. Usually, code scheduling is performed after register allocation (postpass

or postscheduling). However, the register allocator introduces extra dependencies whenever it

reuses registers. These extra dependencies restrict the ability of the code scheduler to move

instructions to their desired positions. On the other hand, if code scheduling is performed

before register allocation (prepass or prescheduling), the register lifetimes may be lengthened,

which may increase the amount of spill code added by the register allocator.

In previous work, Goodman and Hsu [1] showed that a prepass scheduler can keep track of

the number of available registers to avoid introducing excessive spill code. Hwu and Chang [2]

showed that a prescheduling, register allocation, postscheduling sequence extracts more perfor­

mance from scientific benchmarks than postscheduling alone. Both of these results apply to

2

scientific programs with code scheduling and register allocation performed within large basic

blocks. The importance of prescheduling has never been demonstrated for control-intensive

non-numerical programs.

For the study reported in this paper, code scheduling is performed before and after register

allocation. As it reorganizes the instructions, the prescheduler tries to control the increase

in the register lifetimes, helping the register allocator to minimize the number of registers

used. We compile a set o f production C programs using the IMPACT-I C compiler in order

to examine the effectiveness o f prescheduling for control-intensive non-numerical programs. It

is important to evaluate prescheduling on this class of codes for two reasons. First, compared

to the scientific applications studied earlier, these C programs have frequent branches, creating

small basic blocks in which there is only a little parallelism. Code scheduling and register

allocation are performed globally in order to find more parallelism and to reduce the register

save and restore overhead. It is not clear that the results based on local scheduling and register

allocation for scientific codes are directly applicable here. Second, even with global scheduling

and register allocation, these control-intensive programs have less inherent parallelism than

scientific applications. The advantage of prescheduling for programs with limited parallelism

needs to be demonstrated.

This paper also empirically evaluates the advantages of prescheduling for the superscalar

and superpipelined implementations of current and future architectures. We compile the set of

C benchmarks to several different parallel implementations of a base architecture and calculate

the execution time and the number of dynamic memory references from the schedule. For each

case, we compile once with both prescheduling and postscheduling turned on and once with

only postscheduling turned on in order to compare the two methods. In order for these parallel

3

microarchitectures to speed up the execution of control-intensive programs, the compiler must

be able to generate efficient code with sufficient parallelism to utilize them. The study done

in this paper shows that for architectures that relax the current restrictions on upward code

motion, prescheduling helps to achieve this goal.

In other related work, Hennessy and Gross [3] provided a good description of the code

scheduling problem and a scheduling algorithm. Fisher [4] and Ellis [5] described a very effective

global scheduling algorithm called trace scheduling. A paper by Chaitin [6] presented the graph­

coloring-based register allocation algorithm on which our global register allocator is based.

This paper is organized as follows. Section 2 gives the necessary background on preschedul­

ing and postscheduling, our C compiler, and its register allocator and scheduler. The experi­

mental methodology and the results are discussed in Section 3. The conclusion is presented in

Section 4.

2 Background

2.1 Prepass vs. Postpass Code Scheduling

The code scheduler has one primary goal: to rearrange the instructions so that the code sequence

is executed in the smallest number of cycles. For example, to avoid stalls due to an instruction

with a long latency (such as a load or a multiply), the scheduler will try to move it upward in the

code so that its result is ready in time for use by a subsequent instruction. While reorganizing

the code, it must preserve the correctness of the original program with respect to the data and

control dependencies. In this work, it is assumed that there is no dynamic code scheduling,

but the hardware does have interlocks and register renaming to handle pipeline hazards. All

4

of the instruction latencies and the type and number of functional units are visible to the code

scheduler.

The dependencies are expressed in the form of a dependence graph. Prior to register allo­

cation, the only dependencies expressed in the graph result from the operations necessary to

implement the computation specified by the source program 1. Because temporary variables

are written only once, the only dependencies related to them are flow (read-after-write) depen­

dencies. For the user level variables, there may be flow, anti- (write-after-read) [7], or output

(write-after-write) dependencies.

During register allocation, dependencies resulting from the reuse and spilling of registers are

added to the dependence graph. When a register is reused, anti- and output dependencies are

created because the last read or write of the variable currently occupying the register is followed

by the write o f the new variable. When a register is spilled, the same kinds of dependencies are

created because of the register saves and restores. In addition, flow and anti- dependencies are

created because of the memory read and write.

Code scheduling can be performed either before or after register allocation, or both. No

matter when it is done, the dependencies in the initial code sequence constrain the code sched­

uler, in some cases preventing it from moving an instruction to its desired location. If code

scheduling is performed after register allocation, it is additionally restricted by the extra depen­

dencies resulting from the reuse and spilling of registers described earlier. As a consequence,

the instructions may not be moved around as effectively as they could be.

One way around this is to perform prepass code scheduling. Then the scheduler can move

^ h i s assumes that the single assignment rule is used for compiler generated temporaries. Depending on the
amount of optimization performed by the compiler before code scheduling, the number of instructions used and
the dependency pattern created may vary. In any case, there is some given dependency pattern that the code
scheduler must work with.

5

the instructions close to their desired positions without the hindrance of the register recycling

dependencies. However, if the prepass code scheduler is not careful about moving instructions,

it can greatly increase the register lifetimes. For example, in order to avoid delays due to a

load instruction the code scheduler tries to insert useful operations between the load and the

instruction which uses the value loaded. This increases the lifetime of the destination register of

the load, increasing the chance that the register will have to be spilled. If the scheduler inserts

too many instructions, then the value loaded will be available sooner than it needs to be and

will take up space in the register for a longer time than is necessary. This is a disadvantage

of prescheduling, but it can be minimized by an intelligent scheduler. The prepass scheduler

should insert no more instructions than are necessary to avoid delays. Temporary values should

be produced as late as possible and used as early as possible. It is shown later in this paper that

if the scheduling is done intelligently, the benefits of the increased code movement flexibility

outweigh the cost of the extra register spilling.

There is another disadvantage to prescheduling if postscheduling is not also done. During

register allocation, the optimized sequence of instructions is perturbed by the spill code added,

and there is no code motion opportunity to reduce the effects of this. If code scheduling is

performed before and after register allocation, then the postpass scheduler can make the final

adjustments to account for the extra code and dependencies added during register allocation.

Because most of the code motion is already completed, the postpass scheduler is less hindered

by the extra dependencies.

Figure 1 shows a code sequence (A) as it progresses through register allocation (B) and then

postscheduling (C). For each instruction, the first operand is the destination, and the next one

or two operands are the sources. Id is a load instruction and st is a store. The base-register-plus-

6

A

B

C

1 Id tl,_chr 1
2 add t2,tl,l 3
3 st _chr,t2 4
4 Id t3,_f!lel 5
5 Id t4,0(t3) 7
6 add t5,t4,-l 9
7 st 0(t3),t5 10

1
2
3
4
5
7
8

1 Id rO,.d u ­ 1
2 add ri ,rO,l 3
3 st _chrjl 4
4 Id r0,_filel 5
5 Id rl,0(rO) 7
6 add r2 jl,- l 9
7 st 0(r0),r2 10

1 Id tl,_chr
4 Id t3,_filel
2 add t2,tl,l
3 st _chr,t2
5 Id t4,0(t3)
6 add t5,t4,-l
7 st 0(t3),t5

POSTSCHEDULING REGISTER
ALLOCATION

1 Id rO,.d u ­ 1
2 add ri ,rO,l 3
4 Id rO,_filel 4
3 st _chr,rl 5
5 Id rl,0(r0) 6
6 add r2,rl,-l 8
7 st 0(r0),r2 9

1 Id rO,du­ 1
4 Id ri,file 1 2
2 add r2,rO,l 3
3 st _chr,r2 4
5 Id r0,0(rl) 5
6 add r2,r0,-l 7
7 st 0(rl),r2 8

Figure 1: Examples of postpass and prepass code scheduling.

7

displacement addressing mode is similar to that o f the MIPS R2000. For example, the memory

address for the instruction Id rl,x(rO) is generated by adding x to the contents of rO. The

number to the right of each instruction is the cycle in which the instruction is issued assuming

that loads have a latency of 2 cycles and all the other instructions shown have a latency of 1

cycle.

In Figure 1 (C), instruction 4 cannot be moved ahead of instruction 2 because of the reuse

of register 0 by the register allocator. This results in a stall when the operand for instruction 1

is not available in time because of the memory access delay. The corresponding sequence with

prescheduling (D) and then register allocation (E) is also shown. The postscheduled version

takes 1 cycle longer to execute than the prescheduled version. Both use the same number of

registers, but the average register lifetime for the prescheduled sequence is slightly longer. Both

of these examples are extracted from the most frequently executed block of code generated by

our compiler for the Unix utility cmp.

2.2 IM P A C T -I C C o m p iler

The IMPACT-I C Compiler [8] is a retargetable, optimizing compiler designed to generate

very efficient code for pipelined and multiple-instruction-issue processors. High quality code

generators have been built for the MIPS R2000 [9], the Sun SPARC [10], the AMD 29K [11], and

the Intel i860 [12] processors. Code generators are under construction for the IBM RS/6000 [13]

and the Intel i486 [14]. IMPACT-I is used to study the effectiveness of new code optimization

techniques and to study alternative approaches in the design of processors that exploit fine-grain

parallelism.

The IMPACT-I C compiler currently performs a wide variety of machine-independent and

8

machine-dependent code optimizations. The machine-independent optimizations include the

classic local and global code optimizations [15], inline function expansion [16], instruction

placement optimization [17], loop unrolling, intelligent generation of switch statements [18],

and jump optimization. Machine-dependent optimizations include profile-based branch predic­

tion [19], constant preloading, graph-coloring-based register allocation [6], and code scheduling.

IMPACT-I also contains a profiler to target the most frequently executed program sections for

optimization.

2.3 Register Allocation

The IMPACT-I global register allocator is based on the graph-coloring algorithm described

in [6]. The algorithm constructs an interference graph in which each node represents a variable

(either a temporary or a user-defined variable). An arc is added between two nodes if they are

ever simultaneously live. Two adjacent nodes cannot be allocated to the same register. The

algorithm tries to color the graph using r colors, where r is the number of available registers.

If the graph cannot be colored in r colors, then a register must be spilled, and the coloring

attempted again.

A natural result o f this algorithm is that two variables which do not have overlapping live

ranges (i.e. are not adjacent in the interference graph) are often allocated the same register.

This register reuse introduces dependencies that prevent the code scheduler from overlapping

otherwise independent instructions which read or write the two variables. Because the algorithm

does not take into account the cost of instructions that cannot be overlapped, it may allocate

registers in a way that handicaps the code scheduler.

9

2 .4 S u p erb lo ck S ch ed u lin g

This section describes the IMPACT-I code scheduler, which is based on a new variation of

trace scheduling [4, 5] that we call superblock scheduling. The idea is to select frequently exe­

cuted paths through the code and optimize them, perhaps at the expense of the less frequently

executed paths. Instead of inserting bookkeeping instructions where two traces join, we dupli­

cate part o f the trace and optimize the original copy. This method is especially useful for the

control-intensive benchmarks studied in this paper because it provides an easier way to find

parallelism beyond the basic block boundaries. We describe the scheduler here because the re­

sults presented in this paper are based on this kind of global scheduling. Superblock scheduling

is performed in the six-step process shown below:

1. Trace selection

2. Superblock formation and enlargement

3. Classic code optimization

4. Dependence graph construction

5. Dependence graph optimization

6. List scheduling

When a program is compiled with the prescheduling option turned off, steps 1 through 3

are completed, followed by register allocation. Then the dependence graph is constructed and

optimized, and the code is scheduled. When the prescheduling option is turned on, steps 4

through 6 are also performed just before register allocation. The next subsection describes

the program representation used and the modifications to the code prior to scheduling. Later

subsections describe each step of the process.

10

2.4.1 Program Representation and Preparation

In our C compiler, a function is represented as a weighted control flow graph. A control flow

graph is a directed graph where each node is a basic block, and each arc is a possible control

transfer path between two basic blocks. A weighted control flow graph is derived from an

ordinary control flow graph by annotating each node (arc) with the average execution count

of the corresponding basic block (control transfer path). The average execution count is the

arithmetic mean of the execution counts for all the profiled runs of the program 2.

Several steps are taken to prepare the program for optimization and code scheduling. First,

the control flow graphs are generated for each function. Then the compiler performs a few

optimizations such as constant folding, dead code removal, and jump optimization to form

larger basic blocks. Probes are inserted into all the basic blocks to collect the execution counts,

and the program is profiled several times with different inputs. The results from all the runs are

averaged and used to assign weights to the nodes and arcs of the graphs. Frequently executed

function calls are then expanded inline if possible [16].

2.4.2 Step 1: Trace Selection

The goal o f trace selection is to divide the function into a set o f traces such that for each block X ,

if there is a block Y immediately following (preceding) X in a trace, Y is the block most likely

to be executed after (before) block X when the program is run with real data 3. The block most

likely to be executed after (before) block X is determined by examining the execution counts

of all the arcs leaving (entering) block X . The trace becomes the unit in which instructions are

2 Each run uses different inputs, and the profiling is performed by the built-in profiler in our compiler.
3The real data are represented by the inputs used during profiling.

11

rearranged. As a result, code movement across basic block boundaries is automatically done in

such a way as to optimize the more frequently executed paths. When the schedule along one

path can be improved at the expense of the schedule along another path, the decision is made

in favor o f the more frequently traveled path (i.e., the one in the trace).

The formation of a trace begins with the selection of a seed block. Then the trace is grown

forward as far as possible by adding the most likely successor of the last block to the end of

the trace. Similarly, the trace is also grown backward as far as possible. This heuristic was

first proposed by Ellis [5] and improved by Chang and Hwu [20]. A node is not added to a

trace unless its execution count is higher than a minimum count and the probability of entering

it from its predecessor or leaving it for its successor in the trace is greater than a minimum

probability 4.

Figure 2 shows a weighted control flow graph and four traces (surrounded by the dotted

lines) produced by trace selection. Two features of the trace selection algorithm are visible

in Figure 2 . First, each block appears in only one trace. Traces distinguish the frequently

executed paths along which the schedule should be optimized. If a block were to appear in

more than one trace, the optimizations along the various paths may have conflicting results.

Second, if a block X is in one trace, and the block most likely to follow X is already in another

trace, then block X is the last one in its trace, even if it has other possible successors. We do

not want to optimize a path between block X and one of these other successors, because it may

have an adverse effect on the schedule for the path between X and its most likely successor. In

the example, block F is not added to the trace containing block E because the path from block

E to block D is executed much more often than the path from block E to block F.

4In the experiments done for this paper, the minimum count is 50 and minimum probability is 70%.

12

Figure 2: An example of trace selection.

13

Once the traces have been selected, the basic blocks of each trace are laid out sequentially

in memory [17]. Then superblocks are formed and enlarged as described in the next subsection.

2.4.3 Step 2: Superblock Formation and Enlargement

We define a side exit as a branch from any block X in the trace except the last one to a block

Y (Y can be in or out o f the trace) where Y does not immediately follow X in the trace. A

side entrance is defined as a branch from a block X (X can be in or out o f the trace) to any

block Y in the trace except the first one, where X does not immediately precede Y in the

trace. We define a superblock as a trace that has no side entrances and zero or more side exits.

The goal of superblock formation is to convert a trace that has side entrances and exits into a

superblock. The motivation and method for doing this is explained in the following paragraph.

In the traces formed in step 1, there may be many side exits and entrances. In the trace

in Figure 2, there are side exits from blocks A and B and several side entrances at block

D. The side entrances especially increase the difficulty of code scheduling because complex

bookkeeping must be done when code is moved above and below these entrances [4]. These

complex repairs could be avoided if side entrances could be removed from the trace. One way

to do this would be not to add a block to a trace if it produces a side entrance. However,

for control-intensive programs, this would limit the size of the traces and the effectiveness of

trace scheduling. Instead we chose to remove the side entrances using a technique called tail

duplication (essentially a more aggressive but simple form of bookkeeping). A copy is made of

the tail portion of the trace from the side entrance to the end and is appended to the end of

the function. Each block copied forms a new superblock. All side entrances into the trace are

then moved to the corresponding duplicate basic blocks. At this point, the trace, with only a

14

single entrance remaining, becomes a superblock that can be optimized with special handling

only for the side exits.

Trace selection, superblock formation, and tail duplication can be applied to the newly du­

plicated basic blocks to form larger superblocks. The existing traces can also be reexamined

to see if one of the newly created blocks should be added to a trace. In some cases, a small

superblock created by tail duplication can be copied and merged with one or more of its pre­

decessors. For this to be profitable, the small superblock must be the most likely successor

of its predecessor and must satisfy the minimum execution count and probability thresholds.

Figure 3 shows the effect of the superblock formation step on the weighted control flow graph

from Figure 2. In this example, block D* can be copied and merged with its predecessor E.

Tail duplication adds to the code size, which is one reason why a block is not added to

a trace if its execution count is below the threshold value. If the block is not executed often

enough, optimizing the path to that block is not worth the cost of the increased code size

and compilation effort. Also note that the profile information is scaled during tail duplication.

For example, in Figure 3, block D is now executed 6993 times instead of 7949. Therefore, the

weights for each of its outgoing arcs are multiplied by the fraction 6993/7949 and rounded to the

nearest integer value. This reduces the accuracy of the profile information. For optimizing the

code, the approximate information is good enough. For accurate analysis of the final schedule

however, the transformed program must be reprofiled.

An added benefit of tail duplication is that the classic code optimizations can be more easily

applied to superblocks than to traces [21]. The IMPACT-I compiler uses the superblock as a

common foundation for both classic optimizations and code scheduling.

At this point, several code transformations are performed that enlarge the size of the su-

15

7948(956/7949) 956/7949

Figure 3: An example of superblock formation.

16

perblocks and reduce the depth of critical paths. Superblocks that are contained in loops can

profit from some loop-based transformations. For loops that are usually executed only a few

times, a few iterations can be peeled off and added to the superblock before the loop. For loops

that iterate a larger number of times, the loop can be unrolled. In either case, only the part of

the loop that is in the superblock needs to be replicated. Infrequently executed paths through

the loop are not duplicated. The transformations performed to reduce the depth of critical

paths include induction variable expansion, operation combining, and operation folding [8].

2.4.4 Step 3: Classic Code Optimization

Next, many classic code optimizations are performed that take advantage of the profile informa­

tion encoded in the superblock structure and clean up the code after all of the transformations

performed in step 2. In both local and global versions, these include: constant propagation,

copy propagation, common subexpression elimination, redundant load and store elimination,

dead code removal, and constant folding. Local strength reduction, local constant combining

and global loop invariant code removal, loop induction strength reduction, and loop induction

elimination are also performed [21]. At this point, the program is reprofiled if the final schedule

is to be analyzed.

2.4.5 Step 4: Dependence Graph Construction

In this step, a conservative dependence graph is built for each super block. Data dependence

arcs are added as if the superblock were a basic block. However, unlike basic blocks, superblocks

may contain branches. For each conditional branch instruction I, we define live.out(I) as the set

of variables that may be used before they are defined when I is taken. A data dependence arc is

17

added from an instruction to a conditional branch I below it if the instruction writes a variable

that is in live.out{I) or if the instruction may cause an exception. A control dependence arc is

added from a conditional branch I to an instruction below it in the superblock if the destination

variable of the instruction is in live.out(T) or if the instruction may cause an exception.

Each flow dependence arc has a length associated with it that is equal to the latency of

the instruction that is the source of the dependency. The anti- and output dependence arcs

have length 1. It is assumed that these dependencies are handled by the hardware register

renaming. The side exits in the superblock are predicted to not be taken, so there is no delay

for a control dependence and the length of the arc is 0 5. No memory disambiguation is done

before adding the dependence arcs. Some of these arcs can later be removed as discussed in the

next subsection.

2.4.6 Step 5: Dependence Graph Optimization

In this step, the dependence graph is optimized by removing some of the dependence arcs.

Memory disambiguation is performed and dependence arcs are removed for any memory ac­

cesses that can be resolved. During the list scheduling step (described in the next subsection),

the instructions are reordered to improve the execution time within the constraints of the de­

pendencies. Instructions are moved upward and downward across branches. There are two

major restrictions on moving an instruction upward across a branch I:

1. The instruction must not write a variable that is in live.out{I).

2. The instruction must not cause an exception that terminates the program execution.

5 For the superscalar processors, multiple branches can be issued in a cycle and the architecture uses a squashing
branch scheme [19].

18

As an example of the second restriction, it is not safe to move a division or floating-point

instruction above a branch because of the possibilities o f a division by zero or a floating-point

exception, respectively. It is also not safe to move a memory load instruction above a branch

because of the possibility of a memory access violation. Page faults are not a problem, because

they do not cause the execution to terminate. However, moving loads from below to above

branches may increase the number of page faults.

We have implemented two different code scheduling models for the purpose of experimenta­

tion. The first model enforces both of the restrictions and is called restricted percolation. This

model is necessary for the current generation of commercial architectures where a subset of

the instructions can cause traps. When this model is used, no additional dependence arcs are

removed after memory disambiguation. The second model allows the second restriction to be

avoided. This model is called general percolation. In this model, the architecture provides non­

trapping versions of the instructions that can cause exceptions [22]. Whenever an instruction

is moved upward across a branch, the non-trapping version is used.

If an exception occurs during a non-trapping instruction, the exception is simply ignored

(except for page faults, which are handled normally). An invalid value is placed in the desti­

nation register for loads and arithmetic operations. Instructions that use a (possibly invalid)

value generated by a non-trapping instruction can also be percolated. This can make error

conditions that normally cause traps harder to detect. Also, some programs require all traps

to be detected and so do not allow general percolation. Moving a load from below to above a

branch increases the total number of memory accesses made by the program, because the load

is now always executed regardless of which path is taken. Because the load is moved up from

the most frequently executed path, the number of extra references should be moderate. When

19

the general percolation model is used, any control dependence arcs which result only from the

second restriction can be removed.

An instruction can always be moved downward across a branch. However, if it may cause

a trap, that exception is only detected when the branch is not taken. The ability to move such

instructions from above to below a branch does not improve the schedule very much and we

prefer not to lose the exception. Therefore, we do not move an instruction downward across

branches if it may cause an exception.

If an instruction is moved from above to below a conditional branch I and it writes a vari­

able that is in live-out(T), the instruction must also be inserted between I and its target. In our

compiler, for ease of implementation, code motion of this type is done during the code opti­

mization phases prior to list scheduling. Therefore, the scheduler does not move an instruction

below a branch if it writes a variable that is in live.out(T).

2.4.7 Step 6: List Scheduling

In this step, the dependence graph is scheduled. Because the code is scheduled before register

allocation as well as after, the scheduling algorithm is careful to keep the register lifetimes to

a minimum while trying to optimize the code for the pipeline. Temporary values are produced

as late as possible and used as soon as possible, shortening the register lifetimes and reducing

the amount of spilling. The algorithm also tries to control the number of simultaneously live

registers to reduce spilling.

The general idea of the list scheduling algorithm is to pick, from a set of nodes (instructions)

that are ready to be scheduled, the best combination of nodes to issue in a cycle. A node is

ready if all of its parents have been scheduled and the result produced by each parent is available

20

(i.e. since the time that the parent node was scheduled, enough cycles have passed to cover

its latency). When a node is ready, it is placed in a set o f nodes called the active set. There

are a set of instruction templates for the processor that specify the possible combinations of

instructions that can be issued in a cycle. For each cycle, the scheduler finds the best set of

nodes from the active set to fill each template. Then it issues the best instruction template and

marks the nodes in the template as scheduled. The best node is determined by examining the

priority o f each node in the active set. The priorities o f all the nodes in a template are added

together to determine the best template. If there are no nodes in the active set, the scheduler

does not have to issue no-ops. In this case, the flow dependencies are enforced by the hardware

interlocks. The scheduler simply advances the cycle count and checks to see if nodes become

ready to be scheduled. The list scheduling algorithm that we use is shown in Figure 4.

algorithm list.schedule(dependence graph D) begin
for (each node N in graph) begin

compute priority(N);
add N to unscheduled.set;

end.for
while (unscheduled.set is not empty) begin

active.set = the set of nodes in unscheduled.set
that are ready to be scheduled;

sort active.set according to node priority;
for (each instruction template) begin

find the best set of nodes from active.set to fill it;
priority of each instruction template = the sum of the

priorities of nodes in the instruction template;
end.for
issue the best instruction template;
remove nodes in the issued instruction template from

unscheduled.set;
end.while

end.algorithm

Figure 4: The list scheduling algorithm.

21

The priority for each node is computed statically before scheduling begins. It is the weighted

sum of the values returned by several heuristic functions. Each heuristic function F?(N) (where

N is a node) returns a priority value between 0 and 1. For a given node, one heuristic function

may return a high value, and another a low value. Each function is assigned a weight W i to

resolve these kinds of conflicts. The function priority(N) returns (sum i= l to n, F*(N)*W i).

Some of the heuristic functions used are described below beginning with the highly weighted

ones:

slackness(N) This heuristic function assumes that resources are unlimited and that the best

schedule length is equal to the depth of the dependence graph. It finds the latest time

that node N can be issued without increasing the length of the best schedule and then

assigns a priority between 0 and 1 based on that. Nodes that can be postponed without

increasing the length of the schedule receive a lower priority. Issuing nodes as late as

possible reduces the register lifetimes.

exec_cou n t(N) Nodes above a branch (including the branch) are given higher priority than

nodes below the branch. This is because the nodes above the branch are executed more

times than the nodes below the branch. We do not want to move an operation with a

lower execution count upward across a branch, if it will delay the issuing of the branch.

register_use(N) This function gives a high priority to nodes that are the last to use a variable,

because they free registers. It gives a low priority to nodes that write a variable because

they require a new register. This reduces the number of simultaneously live registers.

u n cov er(N) High priority is given to nodes that have many children. Once a node like this is

issued, many nodes are added to the active set. Branches, loads, and stores are favored

22

by this heuristic.

orig_order(N) If two nodes can be scheduled in any order, the node which appears first in

the original code sequence receives a higher priority.

The weight given to each of these heuristic functions can be tailored to the target architec­

ture. For example, if the architecture has a small number of registers, the register_use(N)

and slackness(N) heuristics might be given more weight. The uncover(N) heuristic might

be emphasized for a microarchitecture with lots o f parallelism and a large register file. In this

paper, we use the same set of weights for all of the experiments.

3 Experiments

3.1 M e th o d o lo g y

This section presents an empirical evaluation of the importance of prescheduling for the su­

perscalar and superpipelined versions of existing and future architectures. Each experiment

consists of compiling and optimizing a set o f control-intensive, production C programs as de­

scribed in Section 2.4. In each experiment, the benchmarks are compiled for several different

implementations of a base architecture. For each case, we compile once with both preschedul­

ing and postscheduling turned on and once with only postscheduling turned on. For each

compilation, the program execution time, and the number of dynamic memory references are

calculated (assuming a 100% cache hit rate) using the schedule for each superblock and the

profile information. The number of dynamic references gives an indication of the amount of

register spilling. It is also affected by the number of loads moved from below to above branches.

The time for each execution of a superblock depends upon whether or not a side exit is

23

taken. The profile information indicates how many times each path is taken, and this quantity

is multiplied by the execution time of that path to get the total time spent executing that

path during the measured run of the program. The totals for all the paths are then added to

get the total execution time for the superblock. The number of dynamic memory references is

calculated in a similar manner.

The execution time result for each compilation is reported as a speedup relative to the com­

pilation for the base microarchitecture. The speedup for benchmark B running on processor

implementation I is equal to the execution time of the benchmark on the base implementation

divided by the execution time of the benchmark on microarchitecture I. Numbers greater than

one indicate that benchmark B ran faster on microarchitecture I than on the base implemen­

tation. For the register spilling results, we define a metric called the memory reference ratio

(M RR). The memory reference ratio is the number of dynamic memory references issued for

benchmark B running on implementation I divided by the number of dynamic memory accesses

for the benchmark on the base microarchitecture. Numbers greater than one indicate that more

memory accesses were made when the benchmark ran on implementation I than when it ran on

the base microarchitecture. The memory reference ratio is an indication of the demands placed

upon the memory system. In a real system where the cache hit rate is not 100%, extra mem­

ory accesses may cause the speedup reported here to be reduced. The speedup and memory

reference ratio shown in Section 3.5 for each combination of microarchitecture and compilation

options are both the arithmetic means of the speedups and memory reference ratios for all the

benchmarks on that combination.

24

3.2 P r o c e sso r A rc h ite c tu r e

In addition to the benchmark, the scheduler takes as input a machine description file that

characterizes the instruction set, the microarchitecture (including the number of instructions

that can be issued in a cycle and the instruction latencies), and the code scheduling model

and options (this is where prescheduling is turned on and off). The base microarchitecture is a

pipelined, single-instruction-issue processor that supports the restricted percolation model. Its

instruction set is a superset of the MIPS R2000 instruction set. Table 1 shows the instruction

latencies. Instructions are issued in order and it is assumed that there is hardware register

Table 1: Instruction latencies.

Function Latency

integer ALU 1
barrel shifter 1
integer multiply 3
integer divide 25
load 2
store -
FP ALU 3
FP conversion 3
FP multiply 4
FP divide 25

renaming to eliminate write-after-read and write-after-write hazards. Read-after-write hazards

are handled by stalling the instruction-unit pipeline. The microarchitecture uses a squashing

branch scheme [19] and profile-based branch prediction. One branch slot is allocated by the

compiler for each predicted-taken branch. The processor has 32 integer registers and 32 floating­

point registers 6. Of the 32 integer registers, 8 are reserved as special registers (for the stack

6The code for these benchmarks contains very few floating point instructions. In the experiments, whenever
we change the integer register file size, we also change the floating-pont register file size by the same amount.

25

pointer, frame pointer, parameter passing registers 7, etc.) and are not available for use by the

register allocator. All the speedups and memory reference ratios reported in Section 3.5 are

relative to this base microarchitecture.

The superscalar version of this processor fetches multiple instructions into an instruction

buffer and decodes them in parallel. An instruction is blocked in the instruction unit if there is

a flow dependency between it and a previous instruction. All the subsequent instructions are

also blocked. All the instructions in the buffer are issued before more instructions are fetched.

The maximum number of instructions that can be decoded and dispatched simultaneously is

called the issue rate. The superscalar processor also contains multiple functional units. Each

functional unit can be a single unit such as an ALU, or a group of different units such as a

cache interface, an ALU, and branch logic. The capabilities of the functional units determine

how many of a particular class of instructions can be executed in parallel. For example, if only

one of the functional units contains a store unit, then only one store can be issued in a cycle.

For the processors in this paper, all the functional units contain a load unit, an integer ALU,

a floating-point ALU, and branch logic. Only one of the functional units contains a store unit

because the ability to do multiple loads and branches [19] is more important than the ability

to do multiple stores [8]. When the issue rate is greater than one, the number of branch slots

increases [19].

The superpipelined version of this processor has deeper pipelining for each functional unit.

If the number of pipestages is increased by a factor P , the clock cycle is reduced by that

same factor. The latency in clock cycles is longer, but in real time it is the same as the base

From this point on, we will simply refer to the register file size, meaning the integer register file size.
7The parameter passing registers are used as temporary registers for leaf-level functions.

26

microarchitecture. The throughput increases by up to the factor P. We refer to the factor P

as the degree o f superpipelining. The instruction fetch and decode unit is also more heavily

pipelined to keep the microarchitecture balanced. Because of this, the number of branch slots

allocated for the predicted-taken branches increases [19].

For the superscalar processor, the additional datapaths, functional units, and instruction

decoding logic may increase the cycle time. For the superpipelined processor, the cycle time

is actually reduced by less than the factor P because of the latch delays. This paper reports

speedups based on ideal cycle times and leaves the reader with the task of scaling the speedups

to account for the above effects.

3.3 Benchmarks

The benchmarks used are shown in Table 2 along with the inputs with which each one is

profiled prior to optimization. The Size column specifies the size of each program in number of

lines of code. After superblock formation and the classic code optimizations, each benchmark is

profiled again with one input that is not in the set shown in Table 2. Recall that after superblock

formation, the profile information is only approximate. The benchmarks must be reprofiled in

order to accurately measure the execution time and the number of dynamic memory references.

In most cases, a compiled production program will not be run with exactly the same inputs*

that it is profiled with. By using an input which is not in the set that was used for optimization,

we get a more realistic estimate of how well the benchmark was optimized for general inputs.

27

Table 2: The benchmarks.

Benchmark Size Benchmark Description Input Description

cccp 4787 GNU C preprocessor 20 C source files (100 - 5000 lines)
cmp 141 compare files 20 similar/dissimilar files
compress 1514 compress files 20 C source files (100 - 5000 lines)
eqn 2569 typeset math formulas 20 ditroff files (100 - 4000 lines)
eqntott 3461 boolean minimization 5 files o f boolean equations
espresso 6722 boolean minimization 20 original espresso benchmarks
grep 464 string search 20 C source files with search strings
lex 3316 lexical analyzer generator 5 lexers for C, lisp, pascal, awk, pic
li 7747 lisp interpreter 5 gabriel benchmarks
mpla 38970 pla generator 20 boolean functions
qsort 136 quick sort Built-in input
tbl 2817 format tables for troff 20 ditroff files (100 - 4000 lines)
wc 120 word count 20 C source files (100 - 5000 lines)
yacc 2303 parser generator 10 grammars for C, pascal, pic, eqn

3 .4 C o m p iler C alib ratio n

It is important to measure the effectiveness o f prescheduling using a compiler that produces

highly optimized code prior to code scheduling. Code that is not well optimized can contain

redundant instructions that change the dependency pattern and allow the prescheduler to pro­

duce deceptively parallel code. On the other hand, some dependencies may not be removed by a

poor optimizer, restricting the ability o f the prescheduler to move code. To calibrate the quality

of the code generated by IMPACT-I, the execution time of its output code has been compared

to that of the commercial MIPS C compiler8, which is well known for its excellent code opti­

mization capabilities. For the benchmarks described earlier, the performance of IMPACT-I is

slightly better than that of the MIPS C compiler [21]. Thus, the evaluation of prescheduling

reported in this paper is based on well optimized sequential code.

8MIPS Release 2.1 using the (-0 4) option.

28

3.5 Results

3.5.1 The Importance of Prescheduling for Existing Architectures

In this section, two experiments are performed to investigate the effect o f prescheduling on the

performance of the superscalar and superpipelined implementations of the current generation

of commercial architectures. The goal is to find out whether or not these processors require

prescheduling in order to exploit the fine-grain parallelism in the C benchmarks. Some instruc­

tions in these architectures can cause traps, so all the compilations for these two experiments

adhere to the restricted percolation code scheduling model.

In the first experiment, the benchmarks are compiled for superscalar processors with issue

rates from 1 to 8 instructions per cycle. These processors have 32 registers and the instruction

latencies given in Section 3.2. For each case, the benchmarks are compiled once with preschedul­

ing and once without it. The speedups and memory reference ratios are calculated with respect

to the single-instruction-issue base architecture described in Section 3.2. Prescheduling is turned

off for this 32-register base architecture.

The results are shown in Figure 5. The speedup and memory reference ratio (M RR) numbers

show the effect of the increase in issue rate over the base processor. The two curves show the

performance with and without prescheduling. Notice that the speedup for the single-instruction-

issue processor without prescheduling is 1. This is the base case. Prescheduling extracts a little

more performance for every issue rate, but the performance increase is limited by the restricted

percolation code scheduling model. We have observed that loads are often in the critical path.

This was illustrated in the code segment that was shown in Figure 1. However, with the

restricted percolation model, loads cannot be moved from below to above branches, limiting

29

M
R
R

1.1

1.05 -

Without prescheduling
With prescheduling

- B -

0.95 -

0.9
4 5
Issue Rate

Figure 5: The performance of prescheduling for the superscalar versions of existing architectures.
The base architecture is the single-instruction-issue processor with no prescheduling. All the
processors have 32 registers.

30

the ability o f the prescheduler to optimize the critical path.

The changes in the amount of memory references for this experiment are purely due to

spilling because loads cannot be moved above branches. For issue rate 1, there are less memory

references with prescheduling than without it. Before code scheduling, the instruction sequence

is not optimized. Some temporaries are produced too early, resulting in register lifetimes that

are longer than they have to be. Prescheduling has more freedom to rearrange the code to

shorten the register lifetimes and reduce spilling. As the issue rate increases, the prescheduler

tries to take advantage of the parallelism. More temporaries are simultaneously live, demanding

more registers and increasing the amount of spilling

In the second experiment, the benchmarks are compiled for superpipelined processors with

the degree of superpipelining varied from 1 to 3. We refer to these as IX -, 2X-, and 3X-

superpipelined processors respectively. These processors have 32 registers. For each case, the

benchmarks are compiled once with prescheduling and once without it. The speedups and

memory reference ratios are calculated with respect to the same single-instruction-issue base

architecture as for the first experiment.

The results are shown in Figure 6. Prescheduling again maintains a small advantage in

speedup for all the processors and reduces register spilling for the single-instruction-issue pro­

cessor. Prescheduling does not increase the register spilling until the parallelism in the mi­

croarchitecture is increased by a factor of six (for the two-instruction-issue 3X-superpipelined

processor). Even then the increase is only 1%.

The results of this section show that prescheduling is not important for compiling control­

intensive programs to today’s architectures. The frequent branches in the C programs we used

combined with the restrictions on code movement imposed by trapping instructions hinder

31

M
R
R

1.1

1.05 -

Issue rate = 1, no prescheduling -B—
Issue rate = 1, prescheduling -X—

Issue rate = 2, no prescheduling A r -
Issue rate = 2, prescheduling -<>—

0.95 -

Degree of Superpipelining

Figure 6: The performance of prescheduling for the superpipelined versions of existing archi­
tectures. The base architecture is the single-instruction-issue lX-superpipelined processor with
no prescheduling. All the processors have 32 registers.

32

the code scheduler so much that the extra dependencies added by register allocation don’t have

much additional effect. In order to obtain more speedup from these benchmarks using processors

that exploit fine-grain parallelism, some way must be found to eliminate or work around the

restrictions imposed by trapping instructions. The next subsection presents the results obtained

by doing just that. It is shown that once this restriction is removed, prescheduling becomes

critical to exploiting the newly obtained code movement opportunities.

3.5.2 The Importance of Prescheduling for Future Architectures

In this section, two experiments are performed to study the effect of prescheduling on the

performance of the superscalar and superpipelined implementations of an architecture that

supports the general percolation code scheduling model. The goal is to demonstrate that these

processors require prescheduling in order to exploit the extra parallelism in the C benchmarks

made available by general percolation.

In the first experiment, the benchmarks are again compiled for superscalar processors with

issue rates from 1 to 8 instructions per cycle. These processors have 32 registers and the

instruction latencies given in Section 3.2. For each case, the benchmarks are compiled once

with prescheduling and once without it. This time the compiler makes use of the general

percolation model. The speedups and memory reference ratios are calculated with respect to

the single-instruction-issue base architecture described in Section 3.2. Prescheduling is turned

off and restricted percolation is used for this 32-register base architecture. This way, the speedup

and change in memory references due to both prescheduling and the general code percolation

model is shown. The change in memory references is due to both spilling and to loads that are

moved from below to above branches.

33

The results are shown in Figure 7. Notice that the speedup for the single-instruction-

issue processor without prescheduling is greater than 1. This is the speedup over the base

architecture due to general percolation. The performance advantage of prescheduling is now

much more pronounced. For issue rate 8, the advantage is 17%. The hardware that supports

the general percolation model provides richer opportunities for parallelism, but prescheduling

is required to take advantage of them. Prescheduling now increases the amount of spilling even

for the single-instruction-issue processor as it exploits the opportunities provided by the general

percolation model. The speedup with prescheduling increases faster than without it in spite

of the spilling, which also increases faster with prescheduling. At the high issue rates, there

are more unused instruction slots to hide the spill code, and the extra parallelism exploited

overcomes any loss due to spill code that cannot be hidden.

The memory reference ratio is constant without prescheduling. The slight increase over

the base microarchitecture is due only to loads that are moved from below to above branches.

Without prescheduling, the register allocation algorithm provides the same number of registers

for all issue rates even though that may not be enough to support the parallelism available in

the hardware. With prescheduling, the increase in memory references is small when the issue

rate is low. The scheduler moves instructions only enough to satisfy the pipeline constraints

and exploit the available parallelism. This keeps the register lifetimes to a minimum, reducing

the spilling. As the issue rate increases, the scheduler takes advantage of the opportunities to

issue instructions in parallel and as a result is forced to increase the number of registers used.

In second experiment, the benchmarks are compiled for superpipelined processors with

the degree of superpipelining varied from 1 to 3. These processors have 32 registers. For

each case, the benchmarks are compiled once with prescheduling and once without it. Again,

34

M
R
R

Issue Rate

Figure 7: The performance of prescheduling for the superscalar versions of architectures that
support general percolation. The base architecture is a single-instruction-issue processor with
no prescheduling and restricted percolation. All the processors have 32 registers.

35

the compiler uses the general percolation model. The speedups and memory reference ratios

are calculated with respect to the familiar single-instruction-issue base architecture with 32

registers. Prescheduling is turned off and the restricted percolation model is used for the base

processor.

The results are shown in Figure 8. The increases in performance for prescheduling with

the general percolation model are similar to those described for the superscalar processors.

Prescheduling can exploit both the superscalar and superpipelined microarchitectures very

well. Note that for the 3X-superpipelined processors, the single-instruction-issue version with

prescheduling outperforms the two-instruction-issue version that does not have prescheduling.

This section demonstrated that for control-intensive benchmarks, the general percolation

code scheduling model provides more code motion opportunities, but these opportunities have

to be taken advantage of before register allocation. Once the restrictions imposed by trapping

instructions are removed, the dependencies added during register allocation become the major

impediment to reorganizing the code. Without prescheduling, the added dependencies prevent

the code scheduler from taking advantage of the general percolation model to the point that

there is little or no advantage to providing non-trapping instructions. Both general percolation

and prescheduling are required to obtain good speedup from control-intensive programs.

3.5.3 The Effect of Register File Size on the Performance of Prescheduling

In this section, an experiment is performed to study how the advantage of prescheduling varies

with the register file size. We also want to see the extent to which larger register file sizes

decrease the extra memory referencing that results from prescheduling. For the experiment, we

pick a middle-of-the-road superscalar processor with issue rate 4, and vary its register file size

36

Figure 8: The performance of prescheduling for the superpipelined versions of architectures
that support general percolation. The base architecture is a single-instruction-issue processor
with no prescheduling and restricted percolation. All the processors have 32 registers.

37

from 16 to 64 registers (recall that 8 of these registers are reserved as special registers). We

use the general percolation code scheduling model since it represents the class of architectures

for which prescheduling is important. For each case, the benchmarks are compiled once with

prescheduling and once without it. The speedups and memory reference ratios are calculated

with respect to the single-instruction-issue base architecture with 32 registers. Prescheduling

is turned off and the restricted percolation model is used for the base processor. The speedup

and memory reference ratio numbers show the combined effect of the 4-instruction issue rate,

the general percolation model, and the register file size. The two curves show the performance

with and without prescheduling. For this experiment, the change in the number of memory

references is due purely to register spilling.

The results are shown in Figure 9. The execution time decreases as the number of registers

increases, because there is less spill code and fewer dependencies due to the reuse of registers.

When the register file size is 16, there is no advantage to prescheduling. There are too few

registers and there is quite a bit more spill code when prescheduling is used. (There is a

lot of spilling in general; without prescheduling there are 80% more memory accesses with 16

registers than with 32.) Whatever improvement prescheduling can make by rearranging the

instructions is lost when the spill code is added. For the current register file sizes of about 32

and future sizes of 48 and larger, prescheduling has a performance advantage of approximately

14%. Prescheduling’s advantage does not diminish as the register file size increases because

the register allocator reuses registers in a similar way (when there is no spilling) regardless of

the number of available registers. As the number of registers is increased, the register allocator

may still allocate the same register to two nodes that are not adjacent (adding a dependency),

when it might be able to use a different register (since there are so more) to avoid adding a

38

Figure 9: The performance of prescheduling for processors with various register file sizes. All the
processors except the base architecture have issue rate 4 and support the general percolation
model. The base architecture is a single-instruction-issue processor with no prescheduling,
restricted percolation, and 32 registers.

39

dependency.

As the register file size increases, the difference in spilling with and without prescheduling

diminishes, because the register set has more space to support the longer register lifetimes. For

register file sizes 32 and larger, the difference is less, than 4%. When the register file size is

reduced from 64 to 32, there is almost no change in the amount of spilling, and therefore no

change in speedup.

3.5.4 The Effect of Register Allocation on Code Scheduling

In this section, an experiment is performed to study how much the extra dependencies added

during register allocation hinder the code scheduler given an ideal architecture. This gives an

indication of how much register allocation changes the dependency graph for control-intensive

programs. The effects of the hardware constraints are minimized as much as possible. We

model a processor that has an unlimited instruction issue rate for all instructions, and unit

instruction latencies. Unit instruction latencies were chosen so that each dependency produces

the same delay and has a similar effect on the results. The processor supports the general

percolation code scheduling model. We vary the register file size from 16 to 64 because this has

a direct effect on the amount of register recycling and the extra dependencies added. For each

case, the benchmarks are compiled once with prescheduling and once without it. The speedups

and memory reference ratios are calculated with respect to the single-instruction-issue base

architecture with 32 registers. Prescheduling is turned off and the restricted percolation model

is used for the base processor. The speedup and memory reference ratio numbers show the

combined effect of the unlimited issue rate, the general percolation model, and the register file

size.

40

The results are shown in Figure 10 and are similar to the those for the previous experiment.

The speedup over the base single-instruction-issue processor is higher due to the unlimited

issue rate. Prescheduling’s performance advantage for the larger register sizes increases to

approximately 20% because the hardware can exploit more parallelism. The difference in the

memory reference ratio is also larger because the scheduler moves instructions more to take

advantage of the unlimited issue rate. For register file sizes of 32 and larger, the register

allocator clearly handicaps the code scheduler by adding dependencies. The register allocator

reuses registers without regard for its effect on the final schedule.

4 Conclusion

This paper discussed the interaction between register allocation and code scheduling and the

importance of performing prepass as well as postpass code scheduling. The register allocator

introduces extra dependencies between the instructions whenever it reuses registers and adds

spill code. If code scheduling is performed only after register allocation, these extra dependen­

cies restrict the ability o f the code scheduler to move instructions to their desired positions. On

the other hand, if code scheduling is done only before register allocation, the register lifetimes

may be lengthened, increasing the amount of spill code added by the register allocator. There

is also no opportunity to optimize the code added by the register allocator. If both prepass

and postpass scheduling are performed, and the prescheduler is careful to minimize the use of

registers by moving code only as much as necessary to minimize delays, better performance can

be achieved and spilling can be controlled.

The IMPACT-I C compiler’s code scheduler was described in detail. It is used for both

41

M
R
R

Figure 10: The performance of prescheduling for an ideal processor with various register file
sizes. The ideal processor has an unlimited issue rate, unit instruction latencies and supports
the general percolation model. The base architecture is a single-instruction-issue processor with
no prescheduling, restricted percolation, and 32 registers.

42

prescheduling and postscheduling. It finds the most frequently executed paths in the functions

and lays the basic blocks of the paths out sequentially in memory. Code movement and register

allocation is done across basic block boundaries in order to find more fine-grain parallelism.

This is especially useful for the non-numerical C programs studied in this paper because they

have frequent branches.

Experimental results showed that prescheduling is not important for compiling control­

intensive programs to today’s architectures. Prescheduling extracts slightly more performance

from each processor studied, but the frequent branches in the C programs we used combined

with the inability to move loads above branches hinder the code scheduler so much that the

extra dependencies added by register allocation do not create too many additional problems.

This is in contrast to the results previously obtained for scientific codes. In those programs

branches are less frequent, making the restrictions on code percolation less problematic and

increasing the importance of prescheduling.

If the restrictions imposed by trapping instructions are removed, but prescheduling is not

used, performance does not improve much for the benchmarks we looked at. The dependencies

added during register allocation become the major hindrance when reorganizing the code. In

order to obtain more speedup from these benchmarks using processors that exploit fine-grain

parallelism, both general code percolation and prescheduling must be used. Using an intelligent

scheduler, we have shown experimentally that prescheduling, combined with the general perco­

lation code scheduling model, can substantially improve the execution time of control-intensive

programs on both superscalar and superpipelined processors.

43

Acknowledgments

The authors would like to thank John Andrews, Dave Lilja, and Merle Levy for their comments

on this paper. They would also like to acknowledge Scott Mahlke and all the members of the

IMPACT research group for their support. This research has been supported by the National

Science Foundation (NSF) under Grant MIP-8809478, Dr. Lee Hoevel at NCR, the AMD 29K

Advanced Processor Development Division, and the National Aeronautics and Space Adminis­

tration (NASA) under Contract NASA NAG 1-613 in cooperation with the Illinois Computer

Laboratory for Aerospace Systems and Software (ICLASS). Daniel Lavery is also supported

by the Center for Supercomputing Research and Development at the University of Illinois at

Urbana-Champaign under Grant DOE DE-FG02-85ER25001 from the U.S. Department of

Energy, and the IBM Corporation.

References

[1] J. R. Goodman and W .-C. Hsu, “ Code Scheduling and Register Allocation in Large Basic

Blocks,” in Proceedings o f the 1988 International Conference on Supercomputing, pp. 442-

452, July 1988.

[2] W . W. Hwu and P. P. Chang, “Exploiting Parallel Microprocessor Microarchitectures with

a Compiler Code Generator,” in Proceedings of the 15th Annual International Symposium

on Computer Architecture, pp. 45-53, June 1988.

[3] J. L. Hennessy and T. Gross, “ Postpass Code Optimization of Pipeline Constraints,” ACM

Transactions on Programming Languages and Systems, vol. 5, pp. 422-448, July 1983.

44

[4] J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction,” IEEE

Transactions on Computers, vol. c-30, pp. 478-490, July 1981.

[5] J. R. Ellis, “ Bulldog: A Compiler for VLIW Architectures,” Ph.D Thesis, MIT Press,

Cambridge, MA, 1986.

[6] G. J. Chaitin, “ Register Allocation and Spilling Via Graph Coloring,” ACM SIGPLAN

Notices, vol. 17, pp. 98-105, June 1982.

[7] D. Padua and M. J. Wolfe, “Advanced Compiler Optimizations for Supercomputers,” Com­

munications o f the ACM , vol. 29, pp. 1184-1201, Dec. 1986.

[8] P. P. Chang, S. A. Mahlke, W . Y. Chen, N. J. Wärter, and W. W. Hwu, “IMPACT: An

Architectural Framework for Multiple-Instruction-Issue Processors,” Center for Reliable

and High-Performance Computing Report, University of Illinois at Urbana-Champaign,

Jan. 1991.

[9] G. Kane, MIPS R2000 RISC Architecture. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

[10] Sun Microsystems, “The SPARC Architecture Manual,” Part No. 800-1399-07, Revision

50, Mountain View, CA, Aug. 1987.

[11] Advanced Micro Devices, “Am29000 32-Bit Streamlined Instruction Processor,” Users

Manual, Sunnyvale, CA, 1988.

[12] Intel, “ i860 64-bit Microprocessor,” Order Number 240296-002, Santa Clara, CA, Apr.

1989.

45

[13] H. S. Warren, Jr., “Instruction Scheduling for the IBM RISC System/6000 Processor,”

IBM Journal o f Research and Development, vol. 34, pp. 85-92, Jan. 1990.

[14] Intel, “i486 Microprocessor,” Order Number 240440-001, Santa Clara, CA, Apr. 1989.

[15] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools.

Reading, MA: Addison-Wesley Publishing Company, 1986.

[16] W. W . Hwu and P. P. Chang, “Inline Function Expansion for Compiling Realistic C Pro­

grams,” in Proceedings of the ACM SIG PLAN 1989 Conference on Programming Language

Design and Implementation, pp. 246-257, June 1989.

[17] W . W . Hwu and P. P. Chang, “Achieving High Instruction Cache Performance with an

Optimizing Compiler,” in Proceedings of the 16th Annual International Symposium on

Computer Architecture, pp. 242-251, June 1989.

[18] P. P. Chang and W . W . Hwu, “ Control Flow Optimization for Supercomputer Scalar

Processing,” in Proceedings of the 1989 International Conference on Supercomputing, July

1989.

[19] P. P. Chang and W . W . Hwu, “ Forward Semantic: A Compiler-assisted Instruction Fetch

Method for Heavily Pipelined Processors,” in Proceedings of the 22nd International Work­

shop on Microprogramming and Microarchitecture, pp. 188-198, Aug. 1989.

[20] P. P. Chang and W. W. Hwu, “Trace Selection for Compiling Large C Application Pro­

grams to Microcode,” in Proceedings of the 21st International Microprogramming Work­

shop, pp. 21-29, Nov. 1988.

46

[21] P. P. Chang, S. A. Mahlke, and W . W. Hwu, “Using Profile Information to Assist Clas­

sic Code Optimizations,” Center for Reliable and High-Performance Computing Report,

University of Illinois at Urbana-Champaign, Apr. 1991.

[22] R. P. Colwell, R. P. Nix, J. J. O ’Donnell, D. B. Papworth, and P. K. Rodman, “A VLIW

Architecture for a Trace Scheduling Compiler,” in Proceedings o f the 2nd International

Conference on Architectural Support for Programming Languages and Operating Systems,

pp. 180-192, Oct. 1987.

47

