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abs t r a c t

The calculus of variations is applied to the problem of finding the optimum 
control for a completely controllable nth order stationary linear system with quad­
ratic performance index. A simple procedure, which involves only factoring a 2nth 
order even polynomial into a product of anti-Hurwitz and Hurwitz polynomials, 
emerges from the first variation. Moreover, an easily performed test for the suf­
ficiency of such solutions as optimal is obtained from the second variation. Con­
ditions under which the closed loop system is stable for the optimum control law 
are discussed. The examples illuminate the versatility of such an approach — among 
them being an application to the problem of obtaining singular solutions when the 
cost of control does not enter into the performance index.
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INTRODUCTION

Since the introduction of the maximum principle, classical calculus of 
variations has been usually relegated to the secondary status of proving the max­
imum principleo However, the calculus of variations is still a powerful tool, and 
for problems to which it is applicable it can often yield solutions in an appre­
ciably simpler manner than other methods,, In particular, the Euler equations — the 
fundamental necessary condition arising from the first variation — can be used to 
determine simply the control laws for linear stationary plantse Moreover, the 
Legendre condition, a consequence of the second variation, may demonstrate the suf­
ficiency of such solutions»

Certain advantages to the theoretical study of optimal systems behavior are 
also to be found in the calculus of variations approach» Because the system variable 
is always in evidence, it is often easy to assay the significance of certain terms 
in the performance index or the system equations themselves» To this end condition 
under which a closed loop optimujn system will be stable, or when it will require 
a singular solution (i»e», not all of the boundary conditions can be independently 
specified) will be discussed»

FORMULATION OF THE PROBLEM

The stationary system to be considered will be assumed to be characterized 
by the n-dimensional state equation

x = A x + b u, (1)

Moreover, under the assumption that the system is completely controllable, the 
matrices A and b in (1) can always be put in the canonical form"*"

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0 1

ao -al -a2 "a3 »» » -an-2 -an-

A (2a)
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and

(2b)

li 2Hence, (1) is completely equivalent to the n order scalar differential equation

n
^  ai x (l) = b u, (3)
i=0

where a^ = 1 and the remaining coefficients are arbitrary.

The general problem to be treated is that of finding the control law u which 
takes the system (1) from a given arbitrary initial state

x(0) = x (4a)— —o

to the final state

x(oo) = o, (4b)

while simultaneously minimizing the performance index

oo
I = [ (XT Q x + P u^) dt. (5)

Jo ”

Here, Q is a constant nonnegative definite matrix and P is a positive number.

THE CONTROL LAW FROM THE EULER-POISSON EQUATION

Before we can take the first variation of the performance index, it must
be put in a form more amenable to such a treatment. We recognize from (1) and (2)

2that the state vector x can be written
/f
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(1 )
(2)

x = (6)

x(n-2) 
. ( n-1)

while, from (3),
n

u [ I ai x<1)] (7)
i=0

Thus, if the elements of Q are denoted by q. . (q.. = q..), in view of (6) and (7)J ^ J J1
the performance index (5) can be rewritten

^  n ; n+1■-J [ I  ̂I V ,  «• (8)
i,d=l b . 'i,j=l

From the calculus of variations, the fundamental necessary condition for an extremum 
is that the integrand in (8),

F ( x , x ^ , . ,.,x^n >̂ =
n+1

I
4,d=i

(Q + R .  a a ) x(i"1)x(J"1) (qij 2 i-1 j-l}b
(9)

(where
q. , = q .. . = 0i,n+l n+l,j (10)

for all i or j), satisfies the Euler-Poisson equation :
n

I
k=0

( - 1 )
dt

3f
ax (k)l

= 0.

From (9)
n+1

9f
9x00

= 2 I (V i , i
i=l

+ —  a a ) x^1”1  ̂2 k i-l' b

(11)

(12)
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hence, the Euler-Poisson equation is 

n n+1

2 I  Ï  [ ( - 1)k V i  + LJv  ^  x<K +i' 1 ) ]  « 0 <13 >
k=4) i=l

or

2 Ï  [ (-1)k (\ + i , i + i + f 2
k,i =0

a a ) xk r
(k+i > ] = 0 . (14)

We see that all terms whose indices sum to an odd number, i.e.,

k + i  = 2 v - 1, v = 1,2,...,n, (15)

drop from consideration. This occurrence is not surprising since these terms were
coefficients of exact differentials in (9), and hence do not figure in the optimal

4solution although they do figure in the ultimate value of the performance index . 
Consequently, insofar as obtaining an optimum control law is concerned, the most

5general matrix Q might as well take the form

form

« u 0 qi3 0 qi5 • • 0

Q =
0 q22 0 q24 0 • • •

«13 0 q33 0 939 • • •

0 q24 0 q44 0 • • •
- - - - - -

Euler-Poisson equation , we see that

m

n

E<*
=0

n m 1) cm
(2m)X = 0p

(16)

(17)

where the coefficients c are given bym

f
c = 2 m I

k,i
k+i =2m

(V l , M  + ¡2 \  V ’ “=°> . ,n, (18)
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. v stSince (17) is a linear differential equation, x = e . will yield an algebraic
expression for s:

n
P(s2) = y  <-l)m c S2m = 0. (19)

m=0

It is well-known in circuit theory that if this even polynomial in s has no purely 
imaginary roots (the exceptional case where imaginary roots occur will be discussedg
in the next section), its roots occur in quadrantal symmetry in the s-plane ; con­
sequently, half of the solutions go to zero at infinity while the other half increase
without bound. Because of the end-point boundary condition (4b), the unbounded

2solutions must be discarded. The polynomial P(s ), when it has no purely imaginary
roots, can always be factored into a unique product of an anti-Hurwitz and a Hurwitz 

7polynomial :

P(s2) = H(-s) H(s). (20)

It is this Hqrwitz polynomial which represents the desired solution; suppose
n

H(s) = £  h. s1, (21)
i=0

then the differential expression governing the optimal x is
n

. X(i) = 01
i=0

or

But, from (3),

(n)
n-1

<n)
n-1

(i) + bu;
i=0

(22)

(23)

(24)

therefore, upon combining (23) and (24), we obtain an expression for the optimum 
control u in terms of x,

n-1

u (ai • t t > x<1)] » (25)
i=0
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or, from (6), in terms of the state variables,

(26)

To this point a solution for u has been obtained which satisfies but one of 
the necessary conditions for an extremum. Before we continue to a simple sufficiency 
condition for minin\a, it is well to review the method of solution for u. For this 
solution, divorced from the accompanying theory, is of an extremely simple nature. 
Steps in the solution for u(x):

1) Given
x = A x + b u (27a)

in the form (2) and
oo

I = |* ( x ' Q x + P  u2)dt, (27b)
Jo

solve for the coefficients

Cm = 2 Z  (qK+l,i+l
MK+i =2m

+ ~ 2 aK aP >  m=0, ,..,n; (27c)

2) Form the even polynomial

2X V  / i\n 2m
P(s > - I  <'l> °m S > (27d)

m=0

and factor it into the unique product of an anti-Hurwitz 
and a Hurwitz polynomial,

P(s2) = H(s) H(-s); (27e)

f

3) Use the coefficients h^ of s in the Hurwitz polynomial 
H(s) to form the expression for u,

n-1

= J  -
i=0

u (27f )
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STABILITY AND SINGULARITY OF THE CLOSED LOOP SOLUTION

In the preceding section we saw that an optimum solution may be obtained
2so long as the polynomial P(s ) has no purely imaginary roots. If there are

2imaginary roots in P(s ), they given rise the terms of the form

K sin cot + K cos cot,

neither of which satisfy the boundary condition (4b) at t = oo. Hence, the only 
way one might employ such a system would be by picking a very special set of initial 
conditions on x such that these oscillatory modes are not excited. In such a case 
since x q is no longer completely arbitrary we might say that we have a singular 
solution (or none at all).

Although in general it requires a Sturm test to ascertain whether the poly- 
2 8nomial P(s ) has any purely imaginary roots , there are some simple sufficient con­

ditions under which the absence of imaginary roots can be guaranteed. To find
2these conditions we must investigate the polynomial P(s ), (19), for s = jco;

n
2V ^  2mP(-co ) = ) c co . (28)Lj m

m=0

It is obvious that either

c > 0 ,  m=0,.,..n (29a)
or

c <0 ,  m=0,...,n (29b)m 7 7 7

is a sufficient (though by no means necessary) condition for no imaginary roots of 
2P(s ). It is under this condition — which does not necessarily exclude unstable 

plants — that the driven plant will be stable. The kind of stability about which 
we have been talking is of course strictly mathematical; the stability of the final 
physical system depends on the implementation of the control law. If right half 
s-plane poles of the original system have been "moved" into the left half plane in 
the final system, we might expect stability; if, on the other hand, right half

/ s-plane poles have been cancelled in the final system by right half s-plane zeros, 
we would be naive to expect such a state of affairs to persist.
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SUFFICIENT CONDITION FOR THE SOLUTION OF THE EULER-POISSON 
EQUATION TO PROVIDE A MINIMUM

Ordinarily, to guarantee that the solution to the Euler-Poisson equation 
(17 and 18) provides a local minimum, we would have to investigate the conditions

9of Jacobi and Weierstrass or Legendre . However, there is a sufficient condition 
for a strong minimum (an extension of one usually found in elementary treatments of 
the calculus of variations10*11), which, although it is quite stringent, is easily 
tested. Moreover, this condition does hold in most cases of interest.

Consider the problem
t 2

min I = f F(t,x,x^^, .. .,x^n^)dt; (30)
\

if x (t) is the minimizing function, we take the varied function o

x(t) = XQ (t) + € 7j(t) (31a)
where

?7(l)(t1) = 77(l) (t2) =0, i=0, ..., n-1, (31b)

and the second variation is given by

62 I = €2
d€2 6=0

(32)

or

(33)

The second variation is a quadratic form in if it were a positive definite
quadratic form, the second variation would be positive for any manner of variation 

. This condition guarantees a strong minimum; however, it is quite stringent, 
and, if it does not hold, we must apply the more difficult tests mentioned above.

For the problem we are considering the coefficients in the quadratic form
are constant and are given by
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r\2a F
8x(i) 3x(J) iJ -2

“ + 2  ai-l aj_i> i-l,...in+l,

where

and
li,n+l qn+l,j °’

a = 1. n

(34a)

(34b)

(34c)

Moreover, because of the boundary conditions on 7J Xt) (31b), we can integrate out
12all of the terms for which i ^ j . All terms for which the sum of the indices is 

an odd number integrate out entirely, while all terms for which the sum of the 
indices is an even number become the integrals of squares;

n r 1 rt2r (i9i) 2

when

J „<*> „<J> dt = (-D 2 J [„ '2 '] dt,
t _ t,

i + j = 2v, v = 0, . . •,n,

(35a)

(35b)

Thus, the integrated quadratic form (33) becomes, in our problem,

06 n
62 1 = e2 J Y dt>

k=o

where
n+1 i-J

dk =  I  2 (qij
i,J=l

i+j=2k+2

V i

(36a)

(36b)

Consequently, the sufficient condition for a strong minimum becomes
j

d. > 0. (37)

where d,, is given by (36b) .. K
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EXAMPLES

To show the simplicity of the present approach, we will examine a second
order example which has been previously treated in the literature by the maximum 

13principle . Consider the second order system characterized by the equation

x + x = u (38)

with the performance index
oo

1 , 2 *2 2X ^= — J (x + x + u ) dt

consequently, we have

and

and p=b=l

Hence the coefficients c (18) arem

and the polynomial P(s ) (19) is

lll 2

12 0 , 

1
‘22 2

%  = ° >

\  = 1 »

a2 = 1 »

C0 = 1 '

C1 = 2 »

C2 “ 1 -

4 2s - 2 s  + 1 = 0
f

The Hurwitz factor of this polynomial is

(39)

(40a)

(40b)

(40c)

(41a)

(41b)

(41c)

(42a)

(42b)

(42c)

(43)
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H(s) = s + 2 s + 1; (44)

thus, the desired linear control law is

u = - x - x. (45)

The reader can easily verify that this example satisfies the sufficient condition 
for a strong minimum (37).

For a second example we consider the third-order system where

x + x + x + x =  u
and

(46)

1 p , 2 .2 0.2 2
= — J (3x + lOx + 7x + u )dt. (47)

The polynomial P(s ) (19) is

6 4 2- s  + 6 s  - 9 s  + 4 = 0 , (48)

and its Hurwitz factor is
3 2H(s) = s + 4 s  + 5  s + 2. (49)

Consequently, the optimum control law is

•• •u = - 3x - 4x - x, (50)

THE SINGULAR CASE: AN EXAMPLE

To show how the classical calculus of variations might be applied to find
the so-called singular solutions of the optimal control problem, we will reconsider
an example for which the singular solutions have been partially obtained by Johnson 

14and Gibson . The system state equations as given are

Xx = x2 + u, (51a)

f  x2 = u, (51b)

and the performance index is
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To use these equations, 
transformation

and

pT 1 2
I = J 2 X1 dt' (52)o

we must convert them to the canonical form (2) via the

y = y]. = \  + v (53a)

y = yx = y2 = *2; (53b)

hence, in the new coordinates the system equation is
©oy = - u

and the performance index is

'T 1 . 2  
2 (y -y )

O

(54)

r i  . 2
I - J  2 (5" y) d t - (55)

So long as u is within its prescribed bounds (here |u|<l) it does not append con­
straint relations to the performance index. Consequently, the singular arc can be 
solved for directly by a well-known theorem of the calculus of variations which 
states that so long as the integrand

F(t,y,y) = \ (y-y)2 (56)

is explicitly independent of t, the Euler equation has a first integral given by

(57)3f 1 „ 2 .2, 
df

F - y -^ = 2 (y -y ) = K>

15where K is a constant . In the original coordinates (57) becomes

x (x1 + 2x 2) = 2 K = C; (58)

this is the equation of the singular arcs, the constant K depends on the initial 
point on the singular arc (note: K need not be zero). Moreover, on these singular 
arcs we have

u = — x1 - x2. (59)
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A graphical presentation of the family of singular arcs and the limitations on 
and x2 through u appears in Figure 1.

This has been but a prelude to what can be done with the calculus of vari-s-
16ations in the investigation of singular solutions

CONCLUSIONS

The qalculus of variations has provided an extremely simple technique for 
finding the optimum control law for a linear, stationary plant under quadratic per­
formance index. Moreover, it has provided a degree of insight sometimes unobtain­
able when more powerful techniques are employed. The examples have indicated that 
the classical calculus of variations might be a tool well worth resurrecting for 
the investigation of some of the subtle points of control theory.
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Figure 1. The Singular Arcs with Limits |u|<1; in the
Admissible Regions = x + x1 ^
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