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Somewhat over a decade ago certain problems in the physics 

laboratory instigated a major step forward in vacuum technology. These 

problems were in the fields of atomic collision processes and surface 

physics in which it was impossible to obtain either high gas purity or 

atomically clean surfaces with the experimental techniques available. For

example, at a pressure of 10“^ Torr (1 Torr is approximately = 1 mm Hg) of
*

molecular gas, a surface which had been previously cleaned would adsorb a 

complete monolayer of gas in a matter of seconds. The combined efforts of 

a number of physicists^ resulted in a new set of tools which made it 

possible to achieve and measure pressure two or three orders of magnitude 

lower than was previously possible, among them Nottingham of MIT and 

groups at three major laboratories including Apker at General Electric, 

Lander and Becker at Bell Telephone Laboratories, and several of us at 

Westinghouse Research Laboratories. That is, pressures down to 10 or 

somewhat lower.

While we immediately recognized the significance of the ultra- 

high vacuum for the fields in which we worked, for example we could now 

maintain and therefore investigate atomically clean surfaces for hours, 

days or even weeks, we could not have anticipated the much wider implica

tions of the new vacuum technology in such fields as plasma physics, high 

voltage accelerators, vacuum metallurgy, semiconductor surfaces and many 

other applications. Nor could we anticipate, for example, that within a 

few years we would be talking seriously of sending a man to the moon and 

of directly studying the properties of the low pressure region in between. 

As it has turned out, it seems that in every application, if high vacuum 

is good, ultra-high vacuum is far better, and it is quite commonplace
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for vacuum equipment manufacturers to vie with each other as to who holds 

the record for low pressure attainment. It should not surprise us, there

fore, if at times the claims for certain instruments or pumps should re

flect a commercial enthusiasm rather than a candid appraisal* In a number 

of cases the stakes are scientific rather than commercial; the validity of 

a given experiment may hinge on the reliability of the instruments used 

for pressure measurement. Since the last several years have witnessed not 

only a number of advances in the state of the art but also a new recogni

tion of the limitations of our knowledge in the field, it should not be 

surprising if people not experts in the field are confused as to where the 

limits of low pressure attainment stand today. It is therefore my intent 

to try to summarize what has happened in this decade of technological de

velopment. This is a very ambitious project, and I cannot hope to do jus

tice to all the contributors in the field; however, I will try to outline 

the major directions of activity. I will also try to identify some of the 

problems of low pressure physics and chemistry which are currently tied 

in with these questions.

To review for a moment: what were the principle advances of a

decade ago which introduced ultra-high vacuum? First of all, there was a
-8

recognition that the limitation which prevented us from going below 10 

lay in the measuring instruments and not in the means for producing high 

vacuum. This soon led to the invention of at least three gauges for mea

suring lower density. Secondly, there was a recognition of the principle
/

sources of gas in a vacuum system. These were (1) the desorption of gases 

from contaminated surfaces, (2) the diffusion of gas through the solid 

walls of the enclosure, and (3) and perhaps most painful, the backstreaming
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of gases and vapors into the vacuum system from the diffusion pumps, used 

almost universally to achieve high vacua. The third set of advances in

volved what I call “system techniques'1. These included new vacuum com

ponents such as all-metal valves, traps, demountable seals, and mano

meters as well as a method of putting them together which made it possible 

to reproduce ultra-high vacuum conditions in a straightforward manner. An 

example of a typical system of the early type is shown in Figure 1. Many 

of them are, of course, in use today.

What has happened since 1953? Among the truly impressive contri

butions has been the development of all-metal system techniques which are 

flexible, demountable and capable of almost any size you can pay for. 

Whereas the size of such systems as shown in Figure 1 are obviously 

limited by the glassblowers'art, systems of the type shown in the next 

figure, Figure 2, can be built in almost any size, and ultra-high vacuum 

systems are being built in which you can place an entire satellite for 

test, and in some cases the whole rocket vehicle as well. The develop

ment of these techniques was strongly accelerated by the needs of the 

Sherwood plasma physics program, and particular credit should be given to
2g

Don Grove and John Mark of the Prineeton-Westinghouse-RCA group; * but
3

there were many other contributors, among them, Lange at Westinghouse,
¿j.

Bills of Granville-Phillips, Wheeler, Lloyd and Zaphiropolous of Varian 

Associates,^a,^,c and others. During these years there have also been 

very significant contributions in pumping methods, both in standard 

approaches and in new ones. For example, among the standard approaches, 

the design of diffusion pumps, both oil and mercury pumps, has been siejr 

nificantly improved, to reduce backstreaming. Primarily, these advances



k

have been due to the application of good common sense and ingenuity.

There have also been developed new organic fluids with less cracking into 

molecular contaminants. We also have new traps, particularly so-called 

molecular sieve traps proposed by Biondi,^ which operate at room tempera

ture to reduce the backstreaming of oil.

Among the new approaches, perhaps not new in principle but cer

tainly new in broad utilization, are two classes of pumps in which the gas 

is not removed from the system, but is transferred from one part of the 

vacuum chamber to another part of the same enclosure. In one class of 

such pumps, molecular gases are adsorbed on surfaces, either on active 

metals like titanium at room temperature or on any surface at very low 

temperatures. While the pumping speed for such gases is highly selective 

as to the gas and dependent on the nature and condition of the solid sur

face, speeds of several liters per second per square centimeter are pos

sible. This represents a very high rate of gas removal since total speeds 

of hundreds of thousands of liters per second can be achieved in systems 

of modest size.

A second class of more recently developed devices combines the

removal of gases due to chemical attachment with the removal of gases in

ionized form, that is by electrically driving the ionized gas into metal

surfaces. Noteworthy is the sputter-ion pump, now widely used due to the

7 8contributions of Hair and Jepsen.

What are the ultimate pressures which can be achieved with these 

various methods? i have tried to summarize these in Figure 3, though I 

present this listing with some trepidation lest it be misinterpreted as a 

comparison of the absolute merits of the various pumping methods. In
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general, the lowest ultimate pressure which has reliably been reported,

and that is what is listed here, is only one of the parameters used in the

selection of a given system. In every case but one, that of large metal

oil diffusion pumps, the ultimate pressure is at or below the ultimate

limitation of the Bayard-Alpert gauge, the only instrument widely used in

every major laboratory. Hence, the ultimate pressure reported is not

necessarily attributable to the given method of producing low pressures

but rather to the method used for measuring it. For these reasons I have

listed also the type of manometer used. These include, in addition to the
9

Bayard-Alpert gauge, the suppressor ion gauge due to Schuemann, the im

proved omegatron due to Klopfer,^ the Davis and Vanderslice magnetic 

deflection mass a n a l y z e r , a n d  the Lafferty ionization gauge.^ I 

will discuss these in detail in a moment but will comment in passing that 

pressures below 5 x 10 ^  Torr have been reliably measured in only a small 

number of laboratories, and in each of the cases listed here by the person 

who designed the manometer himself.

My summery comments are these: in several instances the lowest

pressures have been achieved by a combination of two or more pumping

-12techniques. For example, Davis reached a total pressure of 10 Torr by

combining the sputter-ion pump with the adsorption pumping of a clean

tungsten surface. It seems reasonable to believe that in combination with

other methods cryogenic techniques offer the possibility of reaching the

13 14lowest pressures of all. Experiments by Gomer and by Hobson, in which 

the entire vacuum chamber was immersed in liquid helium, indicated ex

tremely low pressures as inferred from other measurements such as those of 

field emission. However, the lowest direct measurements of total pressure
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of which I am aware were made by Lafferty, who combined ion pumping with 

refrigeration at liquid nitrogen temperature to achieve a value of appro

ximately 4 x 10 ^  Torr.^

So we see that as was the case a decade ago the state of the 

art has advanced to the limits of the ability of widely accepted gauges 

to measure pressures. Many experiments in ultra-high vacuum demand five 

or six reliable gauges on a single vacuum system, but for some of the new 

gauges I have listed here there do not exist five or six instruments in 

the world. Yet they clearly determine the next steps forward in this 

field, and it is thus desirable to review what has happened in pressure 

measurement since the introduction of the inverted ionization gauge and 

the simplified omegatron by Bayard, Buritz and others of our group in the 

early 1950's.

Let us recall the considerations which led to the Bayard-Alpert 

gauge. Figure k shows a schematic diagram of the old triode ionization 

gauge, commonly used for the measurement of pressure before 1950. In this 

device electrons from a hot filament cathode are accelerated through a 

grid and form ions whose number is proportional to the density of the 

neutral molecules in the grid-collector volume. The ion current to the 

negatively charged collector is thus a measure of the density and hence 

the pressure within the enclosed volume. However, over many years of ex

perience, it was found that no matter how long one outgassed the gauge or

how carefully one designed and prepared the vacuum system, the reading of

-8such a gauge never fell below a value of 10 Torr, and a number of 

workers became aware of the fact that there was a residual current which 

did not seem to be related to the pressure. It was Nottingham who first
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proposed the so-called X-ray hypothesis to explain this residual current.

He suggested that when the ionizing electrons impinge on the grid, they 

produce soft X-rays which in turn release photoelectrons from the collec

tor. The flow of electrons from the collector thus produces a current of 

the same sign as ions arriving at the collector. With the intent of 

verifying the X-ray hypothesis and at the same time reducing the X-ray 

effect, Bayard and I proposed the gauge of the type shown in Figure 5 in 

which the elements are inverted, and the ion collector is a fine wire 

maintained at a negative potential and forming a potential well within 

the positively charged grid. In this case the residual current was reduced 

by the ratio of the geometrical cross-section for the capture of X-rays, 

and a lower limit of approximately 5 or 6 x 1(T^ Torr was achieved. It 

should be obvious that the ultimate pressure which can be measured is 

limited by the ratio of the ion current to the residual electron current, 

which in turn is proportional to the ratio of the gauge sensitivity to the 

X-ray current.

Since the introduction of the inverted Bayard-Alpert gauge, a

number of manometers have been proposed which utilize a magnetic field to

increase the electron path and hence increase the sensitivity of the gauge.

15These include a modified Penning gauge proposed by Houston in 1956, the

16inverted magnetron gauge by Redhead in 1958, and the Lafferty magnetron 

gauge in 1960.^ Of these I wi11 discuss only one, the Lafferty gauge, 

which has been shown to be linear over a much larger range of pressure 

than the others, particularly in the very low pressure regions. In its 

simplified form it is a magnetron operated beyond cutoff. As shown in 

Figure 6, the mean electron path and hence the sensitivity is greatly
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extended over that of the Bayard-A1pert gauge, by approximately a factor 

of 1,000,000 or larger, though the full increase in sensitivity cannot 

be utilized. The electron current must be maintained at a relatively low 

value to prevent nonlinear space-charge effects. To capitalize on the 

low pressure possibilities of his gauge, Lafferty has inserted an electron 

multiplier to amplify the ion current and hence increase the sensitivity 

still further. The sensitive Lafferty gauge is shown in the next figure, 

and it is with such gauges that he has estimated an X-ray limitation below 

lO’1  ̂Torr, In fact, the arrival of individual ions can be detected by 

his sensitive amplification system.

In a certain sense what I have to say hereafter about pressure 

measurement might be considered anti climactic since I will deal with 

devices which do not have a comparable ultimate limitation. However, con

sideration of the complexity of the Lafferty gauge and the related fact 

that it has not as yet reached widespread use both serve to indicate why 

I believe that certain other recent developments deserve equal notice. 

These developments are the results of efforts in several laboratories 

directed toward a reduction or elimination of the X-ray effect while main

taining the basic simplicity of the inverted gauge.

The first of these is a modification of the Bayard-Alpert gauge 

proposed by Redhead, which is shown in the next figure, Figure o. In 

this gauge a second electrode, a so-called modulator, is inserted into the 

grid volume. By alternately placing this electrode at two selected volt

ages, the ion current to the collector is modulated while presumably the 

photoelectric current from the collector remains the same. Thus, by 

calibrating at higher pressures where the ion current predominates, one
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can measure the electrons and ion components separately and hence obtain 

a correct value for pressure even at values comparable to or lower than 

the X-ray 1¡mi t.

One of my colleagues at the University of Illinois, Mr. Don Lee, 

has proposed another elegant and easily used gauge based on a similar prin 

ciple.^ As shown in Figure 9, his modification has two identical col

lector electrodes. Biasing one of the electrodes more negatively than the 

other increases its share of ion current while the X-ray current from . 

both electrodes remains equal. By using a differential electrometer he 

reads directly and on a continuous basis the difference between the two 

collector currents. This gives a value attributable only to the ions 

since the X-ray current is subtracted out to first order. With this gauge 

as with the Redhead modification, pressures at least one order of magni

tude below the X-ray limit can be reached.

Another member of our vacuum group at the University of Illinois
g

Mr. Wilfred Schuemann, has proposed still another gauge, which is shown 

schematically in Figure 10. This gauge, in which the X-ray current is 

electrostatically suppressed, is a major step forward from an earlier pro- 

posal by Metson. In this device ions are formed as usual within the 

grid of the gauge and are then focussed toward the collector by an elec

trostatic lens. By using a negatively charged suppressor grid which is 

hidden behind an optical barrier to prevent a photoelectric current from 

the suppressor, it is possible in principle, and in actual practice, to

prevent electrons from leaving the collector. Using such gauges he has

- 1 2reliably measured pressures as low as 2 x 10 Torr, the lowest he has 

thus far been able to produce.
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Thus, quite a bit has happened in the field of pressure measure

ment. Relatively simple gauges have been devised to measure pressures to 

10~^2 and possibly to lo”^  Torr; more complex gauges have been made with 

a lower limit below 10 ^  Torr.

Does this mean that all the problems of pressure measurement 

have been solved? In a narrow sense, perhaps yes, but in a broader sense 

many questions remain. For example, I have devoted considerable time to 

the description of efforts to eliminate or reduce the X-ray effect in ioni

zation gauges, but even for this effect the physics is not fully under- 

stood. Using his modification of the inverted gauge, Redhead recently 

discovered when the gauge surfaces are contaminated, an effect which he 

interpreted as a very large change in the X-ray effect. I say contaminated 

but I mean that in a broad range of experiments gas is introduced to the 

system either purposely or otherwise. When he introduced either oxygen or 

carbon monoxide into the volume at an appreciable pressure, Redhead dis

covered that the electronic component of the collector current went up by 

one or two orders of magnitude. Ackley, Lothrup and Wheeler indepen

dently observed a similar effect and demonstrated that it was a strong 

function of the ionizing electron current. Experiments which we have 

carried out recently have reproduced both of these effects. The results 

are shown in Figure 11. In the upper curve the electron component is 

plotted as a function of time after gas was first introduced at time t « 0.

It is seen that within a few seconds the electron component of the circuit
-8rose to an equivalent pressure of over 10 Torr. It is not clear at this 

point whether the effect is due to an enhanced photon production at the 

grid, to an enhanced photoelectric effect at the collector or to a third
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alternative hypothesis.* If the ionizing electron current to the grid is

increased, the anomalous effect disappears or is greatly reduced. This

probably explains why the effect was not identified for ten years despite

worldwide use of the gauge in hundreds of laboratories. As a matter of

fact, in the course of our studies at the laboratory in the last few

months we have discovered still another anomalous effect which is clearly

related to the effect observed by Redhead. As shown in the lower part of

the same figure, when the oxygen was introduced and maintained in the

-8system at a background pressure of 10 , one observed not only the anoma

lous electron current from the collector but, simultaneously, an anomalous 

ion current which in most cases was considerably larger in magnitude than 

that due to X-rays. This is shown in the lower portion of Figure 11, in 

which the positive ion current in the same gauge is shown on the same 

time scale as the X-ray current above. For reference is a plot of the 

background pressure as measured on an auxiliary manometer which did not 

exhibit the anomalous effect. Note that these effects do not manifest 

themselves at the very lowest pressures, but do show up at pressures where 

we wish to carry out a number of experiments. Although the explanation 

of these anomalous effects still represents an important unanswered prob

lem, it is one which I feel virtually certain will be solved in the near
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JL
future. The availability of gauges which can differentiate between the 

electronic and ion components now provide the tools with which to inter

pret the readings of our gauges at very low gas densities.

In the course of our studies in low pressure measurement it has 

become evident that a number of other surface effects may take place in

Since this paper was presented, additional experimental observations give 

strong support to the following picture:

(1) The anomalous ion current in a Bayard-Alpert gauge is due to 

surface ionization of gas adsorbed on the molybdenum electron 

collector, the ions are probably atomic 0+ produced by disso

ciation of adsorbed molecules.

(2) The associated anomalous electron component is due to secondary 

electrons ejected from the ion collector by the ions produced 

both at the surface and in the volume. The resulting current may 

be of the order of several percent of the total ion current.

(3) The magnitude of (1) is determined by the surface coverage of ad

sorbed gas and the electron current. In the steady state, the 

value of the surface coverage is established by the equilibrium 

between the adsorption of gas from the volume and the removal of 

adsorbed gas by one or more electron collision processes.

Another result of these observations is that the use of a modi

fied gauge of either the Redhead of Lee type is open to serious question 

when the surface ionization is comparable to the volume ionization.

These results will be presented in detail in a forthcoming publication.
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any measuring device« Each of these must be quantitatively understood 

before one can appreciate whether the gauge is measuring the volume den

sity or is being dominated by other effects, In the next figure, Figure 

12, we have shown in schematic form several more or less related gas 

surface phenomena which may play a significant role in any gauge for mea

suring pressure. First of all, adsorption and desorption of molecular 

gases at a gauge surface can change the volume density either by the 

removal of gas if the surfaces of the gauge are previously clean, or con

versely by the release of gas from contaminated surfaces. This is not a 

trivial effect; even the Bayard-Alpert gauge, with less metal surface 

area than most, is capable of high pumping speeds for certain gases, par

ticularly if the surfaces are atomically clean. A related phenomenon is 

that of substitutional or replacement adsorption, as schematically repre

sented in the second portion of the figure. It has been found experimen

tally that certain gases such as nitrogen or carbon monoxide may prefer

entially adsorb on metal surfaces, displacing previously adsorbed molecules 

or atoms attached with a weaker binding energy. Indeed, one often observes 

with a mass analyzer that upon introducing CO or N into a system the hydro

gen content of the system is greatly increased; thus in some circumstances 

the composition of the gas may be seriously altered although the pressures 

as measured may remain relatively constant. Since it now appears that 

surface effects at the electrodes may dominate at extremely low pressures, 

we must know what gases are most likely to be attached to the surfaces.

We must also know the surface mobility and the binding energy for various 

combinations of gases and metals.

A third surface interaction, which has been experimentally
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21investigated recently by Petermann of the Swiss Batelle Institute, is 

the electronic desorption of molecules or atoms as schematically shown. 

This desorption is due to an electronic interaction rather than a thermal 

heating of the surfaces by the electron bombardment.

The fourth class of surface phenomena which I have indicated 

here is dissociative ionization of atomic ions from surfaces in a process 

analogous to the dissociation of free molecules. In the case shown, the 

molecule represented is carbon monoxide on molybdenum, a system which has 

been studied by Moore. He found a very sizable cross-section for the 

production of 0+ ions due to electron bombardment of the surface; in fact, 

the cross-section for the interacton is so large as to predict an ion 

current larger than the X-ray current of a Bayard-Alpert gauge, even if 

the amount of carbon monoxide on the moly grid were less than 1/100 of one 

percent of a monolayer. For both of the interactions shown which involve 

electron bombardment, the effects may be large unless the surfaces of the 

gauge are kept atomically clean. On the other hand, to determine the 

quantitative cross-section for such a process, it is typically necessary 

to carry out the experiment at pressures considerably above the lowest 

attainable pressures. Hence, to be of value in a broad sense, a gauge 

must also be usable and reliable at pressures well above the ultimate 1imi 

tation.

The surface interactions which I have thus far discussed are 

those which take place at or near room temperatures. In addition, we 

must understand interactions which take place well above and well below 

room temperature. For example, it has been known for years that the 

chemical interactions which take place at a hot cathode may sometimes
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change both the composition and density of the gas during the course of

pressure measurement. With this in mind a large number of research efforts

have recently been directed toward the development of cathodes operating at

lower temperatures. In his magnetron gauge Lafferty utilized a lanthanum

boride cathode which operates at a temperature significantly below that

23of a clean tungsten surface. Lange and Fox are experimenting with a 

cold electron source utilizing electron multipliers, and a number of 

other research workers are considering thin film devices as cold electron 

emitters to eliminate the effects of high temperature surfaces on pressure 

measurement.

This survey of surface interactions indicates that there are 

challenging problems involving a whole realm of surface physics interac

tions comparable to the molecular interactions in gaseous form. It is 

clear that to study these interactions there is an increasing requirement 

for instruments which measure partial pressure, a requirement that has been 

recognized for many years. The past several years have seen the develop

ment of a number of high sensitivity partial pressure mass spectrometers. 

These include the improved omegatron of Klopfer,^ the cycloidal mass spec

trometers which have been used by Lange and Trendelenburg, and a number of

magnetic deflection instruments. Perhaps the most sensitive of these is

11 aan instrument recently reported by W. D. Davis of General Electric.

He has improved an earlier commercial instrument (Davis and Vanderslice,^^ 

capable of'measuring partial pressures down to 10 Torr) to measure par

tial pressures as low as to 10 ^  Torr. This corresponds to a density of 

one molecule per cubic centimeter, comparable to that in outer space. I 

will not give a detailed discussion of these instruments but will restrict
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myself to one or two editorial comments.

We have been making a direct comparison between the Klopfer 

omegatron and the Davis and Vanderslice instrument, and Figure 13 shows 

the experimental arrangement with which one of our people is doing the 

experiment. My editorial comment is that these instruments are so com

plex as to require a trained and talented experimenter. An analogy of 

the relationship of a musical instrument to the performer is quite in 

order. The analogy had nothing to do with the fact that in this case the 

performer's name is Mr. Segovia, one of the few people in our laboratory 

who can operate both instruments. We do not have time for a detailed com

parison of the two mass spectrometers. Suffice to say, they do not give 

identical results. Certain peaks appear on one instrument which are absent 

on the other and vice versa. It is probably more informative to show in 

Figure 14 atypical spectrum observed with one of the instruments, the

Davis and Vanderslice deflection mass spectrometer. This spectrum, taken

-9with a background pressure of approximately 5 x 1 0  Torr, shows evidence 

of a number of the surface effects I have previously discussed; for 

example, the large carbon monoxide peak is probably due to the desorption 

of that gas from the surfaces of the instrument. The size and the struc

ture of the 16 peak suggests that a considerable amount of surface dis

sociation of adsorbed carbon monoxide is taking place, the double peak 

probably representing the volume and surface contributions. In addition, 

there are such peaks as mass 19, attributed to florine, which is also due 

to surface interactions. The mass 20 peak in this case is a so-called 

test gas» in this case neon, for use in calibrating the gauge. With several 

improvements over the gauge used in these experiments, Davis has shown that
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— 16partial pressures as low as 10 may be measured. However, it is clear 

from these results that we must understand the various ways in which sur

face effects may change the size of the peaks in the course of making the 

measurement.

How can we summarize the present situation? First of all, meth

ods for producing low pressures have now caught up with our means of mea

suring them, and pressures down to 10 Torr are standard in a broad tech-

-1 2nological sense. Total pressures as low as 10 Torr at room temperature 

have been achieved in a few laboratory experiments. Two new classes of 

ionization instruments have recently been developed which have ultimate 

sensitivity below lO“11 Torr, one class for the measurement of total pres- 

sure$ with ultimate sensitivities in the 10 to 10 Torr range and a 

second class which involves mass analyzers capable of measuring partial con 

stTtuents as low as lO-16 Torr. However, in the range of pressures below 

¿0“11 Torr (and sometimes considerably higher) the surface effects, that is, 

th^ chemical and physical interactions which take place at the electrode 

sfrffaces of the instruments, begin to be comparable to or to dominate the 

volume effects which they are intended to measure. Since the study of 

these physical and chemical phenomena can only be carried out by using the 

best ultra-high vacuum techniques we can devise, there is a merging of the 

scientific and technological motivations to study and understand these 

processes. The^e include (1) the kinetics of gas surface interactions at 

the interface, (2) the interaction of atomic particles, electrons and pho

tons with surfaces,' and (3) the nature of the electronic bonds between ad

sorbed molecules and surfaces. This field of physics, like many others, 

is one in whiAefh the experimentalist is challenged to design meaningful 

experiments before the fullMalents of the theorist can be brought to bear



18

References

Vor a review of early contributions see D. Alpert, Handbuch der Physik 12, 
39 (1958).

2a
J. T. Mark and W. G. Henderson, 1961 Vacuum Symposium Transactions J_ 
(Pergamon Press, 1962), 31..

2b . .
J. T. Mark and K. Oreyer, 1959 Vacuum Symposium Transactions (Pergamon
Press, I960), 176.

V  J. Lange and D. Alpert, Rev. Sei. Instrum. 28, 726 ( 1957)•

V). G. Bills and F. G. Allen, Rev. Sei. Instrum. 26, 65*+ (1955).

5a ,R. Zaphiropoulos, 1959 Vacuum Symposium Transactions (Pergamon Press,
I960), 307.

5b
W. R. Wheeler and M. Carlson, 1961 Vacuum Symposium Transactions 2 
(Pergamon Press, 1962), 1309*

r
°M. A. Biondi , I960 Vacuum Symposium Transactions (Pergamon Press, 1961), 

28.

V .  L. Hall, 1958 Vacuum Symposium Transactions (Pergamon Press, 1959), ^1. 

^R* Jepsen, J. Appl. Phys. ¿2, 2519 (1961).

V  C. Schuemann, 1962 Vacuum Symposium Transactions (The Macmillan 
Company, 1963), ^28.

10A. Klopfer and W. Schmidt, Vacuum J_0, 363 (I960); also private communica
tion.

lia
W. D. Davis, 1962 Vacuum Symposium Transactions (The Macmillan Company, 
1963), 363.

11b
W. Davis and T. Vanderslice, I960 Vacuum Symposium Transactions 
(Pergamon Press, 1961), 417*

. Lafferty, 1962 Vacuum Symposium Transactions (The Macmillan Company, 
1963), 438.

^ R  « Gomer, Adv. in Catalysis 93 (1955).



19

lifJ. P. Hobson, 1961 Vacuum Symposium Transat ions (Pergamon Press, 1962),
146.

^J. M. Houston, Bull. Amer. Phys. Soc. 2, 301 (1956).

^P. A, Redhead, Rev. Sci. Instrum. jj_, 343 (I960).

17'D. Lee, Rev. Sci. Instrum, (in press),

H. Metson, Br. J. Appl. Phys. 2, 46 (1951).

^P, A, Redhead, Vacuum ^2, 267 (.1962).

20J. W. Ackley, C. F. Lothrup and W. R, Wheeler, 1962 Vacuum Symposium 
Transactions (The Macmî1lan Company, 1963), 452.

210. A. Degras, L. A. Petermann and A. Schram, 1962 Vacuum Symposium 
Transactions (The Macmillan Company, 1963), 497*

22G. Moore, J. Appl. Phys. ¿2, 1241 (1961).

2^H. Riemersma, R. E . Fox and W. J. Lange, I960 Vacuum Symposium Transactions 
(Pergamon Press, 1961), 92.



Figure 1

Glass-Metal Ultrahigh Vacuum System 

(jii Diffusion Pump Used with Zeolite Trap



Figure 2

All-Metal Ultrahigh Vacuum System for Studies of 

Electron Ejection from Surface by Ions. Mercury 

Diffusion Pumps with LN Traps
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Ultimate Pressures Attainable
Method Pressure in Torr Gauge used

1. Hg diff. pumps (LN traps) ~ 5 X I 0 '11 B.A.G.
2. Oil diff.pumps (special fluids)

Large all metal ~ 5 x lO -10 BAG.
Glass,zeolite traps ~ 2 x lO “M S.I.G.

3. Sputter-ion pumps ~ 6 x iO -12 iitron
(Ion pump added) ~ IO -12 D.VM.S.

4. Cryogenic techniques < IO~12 L.I.G.

Figure 3



Fi gure k

Schematic of Conventional Ion Gauge



2k

Figure 5

Schematic of Bayard-A1pert Gauge
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Io n - a c c e le r a to r  grid

Figure 7

High Sensitivity Lafferty Gauge
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Figure 8

Redhead Modification of Bayard-Alpert Gauge
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Fi gure 9

Lee Modification of Inverted Gauge
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Figure 10

Schuemann Suppressor Gauge
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IO'8

IO'9

IO'10

Anomalous electron current

Anomalous ion and electron currents in gauge 
exposed to oxygen at tim e=0.

Figure 11
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Figure 12

Schematic Representation of Significant Gas-Surface Reactions
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Figure 13

Experimental Arrangement for Comparison of Omegatron 

with David & Vandersllce Deflection Mass Spectrometer



33

Figure 14

Partial Pressures Measured by a Davis-Vanderslice Mass Spectrometer
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