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ON MULTITRANSMISSION NETWORKS

Franco P. Preparata

Abstract

This paper considers the problem of designing networks whose 

function is the simultaneous transmission of k independent signals over k 

vertex-disjoint paths (k-transmission). All paths are assumed to consist 

of two edges and to traverse an intermediate vertex (bus). Necessary and 

sufficient conditions are obtained for realizability of a k-transmission, 

which are then used for establishing a lower bound to the number of 

transmission edges for given numbers of stations and busses. The sufficient 

condition is also used for the design of optimal and suboptimal k-transmissions. 

Finally the problem of the realization of multitransmissions is considered 

under the hypothesis of edge failures: conditions, bounds and design methods

are described for the special case of single edge failure.
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1. Introduction

The problem of designing multiple transmission networks arises in 

complex information processing systems consisting of several functional 

units (stations) with a programmable interconnection« The function of these 

networks is the simultaneous transmission of a number of independent signals 

over separate paths« Typical examples are a communication network or a 

restructurable bus system of a large digital computer«

Formally, given two nonempty sets of vertices (stations),

A “ { a^ ,a^ ,. • » »a^} and B = { b^jb^, « • <. ,b^} , and a (possibly empty) set of 

vertices (busses) V = £ »v2 * * * * *vr3 » we must design a graph with vertex 

set AUvU b such that k £ min(n,m) arbitrary vertex-disjoint paths can be 

established between A and B. Such graph is said to realize a k-transmission.

This problem, or closeljr related ones, are certainly not new [1-3], 

and implementations of multiple transmission networks occur in many existing 

systems of the kinds mentioned above« It appears, however, that the structural 

properties of multitransmission networks are not fully understood« It is 

also readily realized that no simple, universal criterion of simplicity can
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University of Illinois.
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be offered as a design guideline« Rather, it is desirable to know which 

are the trade-offs existing among the various design parameters, so that 

specific choices can be guided by an adequate theoretical background« For 

example, the designer should be aware of how many transmission edges can 

be traded off for an extra bus.

In this framework, the purpose of this paper is to investigate 

the capabilities of an interesting class of connections, which were studied 

in [l]« These connections are characterized by the property that edges 

exist only from A to V and from V to B; therefore if the connection must 

transmit at least k signals, the cardinality r of V must be no less than 

k (Figure 1).

A V B

Figure 1. General scheme of a 2-stage connection.

This class of connections, referred to as 2-stage connections, offer 

considerable flexibility and advantages over the trivial connections for 

which V is empty and each vertex of A is connected to each vertex of B.
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We shall first investigate necessary and sufficient conditions 

for 2-stage connections to realize a k-transmission: subsequently we shall

use these conditions to establish a lower bound to the edge-complexity of 

the connection, and we shall show how closely we can approach the bounds 

in specific cases, by presenting some design procedures. Finally we shall 

address ourselves to the design of survivable connections under edge 

failure. In contrast to the formal methods used in [ l], our approach is 

mainly combinatorial rather than graph-theoretic.

2, Necessary and sufficient conditions

Without loss of generality, we assume that m ^ n; if k denotes 

the transmission multiplicity, clearly n m ^ k. The 1-stage connections 

between A and V and between V and B are referred to as the left and right 

connections, respectively.

We describe a connection (left or right) by its incidence binary 

rXn matrix M = ||m_|| , where m = 1 if and only if there is an edge between 

a j^A and v.€v; c^ denotes the j-th column of M. A set of s rows of M is 

called an s-block of M. The s-block B is said to cover a column c if all
-------------  - j

the nonzero entries of £  belong to rows of B . An s-block identifies a 

(possibly empty) sXt submatrix M (B) of M consisting of its intersection 

with the t columns it covers. An s-block is said to be feasible if it 

covers at most s columns. A feasible s-block is said to be complete if it 

covers exactly s columns. A complete s-block is prime if it does not 

contain any other complete s'-block with s' < s. A pXn binary matrix 

M (p ^ k) is k-feasible if no column of M is 0 and every s-block of M is 

feasible for s = 1,2,..., k-1.
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Let and denote the matrices of the left and right connections 

respectively, and let M = 0 We have the following necessary condition

Theorem 1« An rX(n+m) matrix M realizes a k-transmission only if 

it is k-feasible (r^k) « . .= '

Proof ; Assume that M is not k-feasible, i»e«, there is an s-block 

B covering c_ , £. , ««»,£. with p > s and s £ k-1. If M(/9) is contained
J1 J2 Jp

in either or the result is immediate« Indeed, assume If

we select a set of k vertices of A containing q (q£k) members a. ,«##,a.
Li Lq

from a ,«««,a. (p^q>s), then a. ,«««,a. have only s < q outlets on V and
ji Jp L1 \

the k-transmission is irrealizable«

Assume now that M (B) contains columns of both M and M « To with-L r
in column permutations M can be put in the following form, where the 

columns of M are partitioned into four subsets Aq ,A^,Bq ,B^, as shown» If

M =

-ft*

n-p-

-113“'-

— " - PfrH

M(b)
T
s
1

either p^ > s or p^ > s, by the preceding argument M does not realize a 

k-transmission« Therefore, we assume p £ s and p £ s (s^k-1). We first 

claim that p^ £ m-p^« Indeed, if p^ > m-p^, consider the transmission 

pictorially illustrated below, with the cardinalities of subsets of columns
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indicated. This transmission consists of (m-p ) + (p +p - m) + (k-p ) = kR L R 1/
links, and is specifiable because all the cardinalities are nonnegative.

Indeed, m-p > 0 (from p ^s^k-1 and m ^ k), p -(m-p ) > 0 by assumption,

k-p^ > 0 (since p^s^k-1) and m-k ^ 0, n-k S 0 by hypothesis. The selected

k-transmission, however, uses only s £ k-1 vertices of V, a contradiction.

Therefore p £ m-p ; this and n ^ m imply p £ n-p . Let i be a 
Li R R L

set of p links between An and B, and pT links between and A,, and
k  u i  L U 1

consider a k-transmission containing q links of Z (s<q£p +p =p) . This k-R L
transmission is clearly irrealizable since q links must use s<q vertices 

of V. Q.E.D.

As we shall see below, the condition of theorem 1 is alsoI
sufficient for r=k; for r>k, it appears to be not very tight. If, however, 

we restrict ourselves to 2-stage connections whose right connection is 

complete (each vertex of V is connected to each vertex of B), we can obtain 

a necessary and sufficient condition on the left connection. With these 

hypotheses, we say that a (left) connection matrix M realizes a k-trans-Lj

mission if any set of k vertices of A has k distinct outlets in V. First 

we give the following two lemmas.
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Lemma 1. Let M be a q-feasible pXq matrix (p^q) containing a complete 

s-block B for s£q-l. If the rows and columns of M (B) are suppressed from M, 
the resulting (p-s)X(q-s) matrix M' is (q-s)-feasible.

Proof: Assume, with no loss of generality, that M(®) consist of the

intersection of the first s rows and columns of M. After removal of the rows 

and columns of M(/9) , assume that there is a u-block B 1 of M 1 covering v>u

K ” s — v J

M =

T
s

. 4
MO®)

MO®')

l 0 ||

M

columns (of M 1), with 1 £ u £ q-l-s. This means that there is an (s+u)- 

block of M covering (s+v) > (s+u) columns (of M) with (s+u) £ q-1, thereby 

violating the hypothesis that M be q-feasible. We conclude that for any 

1 £ u £ (q-s)-l each u-block of M' covers at most u columns of M'. Q.E.D.

Lemma 2. Let M be a (q-feasible) pXq matrix containing no complete 

s-block for s = l,2,...,q-l. Then the (p-l)X(q-l) matrix M 1 obtained by 

removing from M a row and column whose intersection is 1, is (q-1)-feasible.

Proofs By definition, M is q-feasible, since any s-block of M (s < q) 

is feasible. Let the first column and row be those that are removed. After 

this removal, assume that there is a u-block B ' of M ’ covering v > u columns 

of M', with 1 £ u ^ q-2. This means that there is a (u+l)-block of M 

covering v columns (of M ) . Since



k —  v — 1
fi

u+l £ q-1 and v ^ (u+1), this violates the hypothesis that M contains no 

complete s-blocks for s £ q-1, hence the thesis holds. Q.E.D.

We are now ready to prove the central theorem.

Theorem 2 - A necessary and sufficient condition for an rXn left con

nection matrix to realize a k-transmission is that be k-feasible.

Proof: Notice that is k-feasible if and only if each column sub

matrix of with p columns is p-feasible (p=l,2,...,k).

(Necessity): It follows directly from Theorem 1, since M is a columnL
submatrix of M = [m  ,M^.

(Sufficiency): Due to the preceding remark, we only need consider an rXk 

matrix ML (r^k). The proof is by induction. For k = 1, a rXl 1-feasible M 

contains at least one nonzero entry, hence it realizes a 1-transmission* Assume 

the theorem holds for p-feasible rXp matrices with p £ k-1 and r ^ p, and 

let the rXk matrix be k-feasible. Either contains a complete s-block 

B or it does not. In the former case, by lemma 1 we decompose M into an sXs 

s-feasible matrix M(j0) and an (r-s)X(k-s) (k-s)-feasible matrix M !; by the 

inductive hypothesis, M(/2) realizes an s-transmission (s^k-1) and M 1 realizes
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a (k-s)-transmission (k-s^k-1), i.e., M realizes a k-transmission. In the
JL

latter case, by Lemma 2 a column of M is assigned to a row (a 1-transmission)i-i
and the residual (r-l)X(k-l) matrix M 1 is (k-1)-feasible; by the inductive 

hypothesis, M' realizes a (k-1)-transmission. Q.E.D.

The preceding theorem embodies a procedure for the construction of 

a k-transmission in a connection whose matrix M is k-feasible (briefly, aL
k-feasible connection). It also provides the basis for answering the 

following questions: 1) which is the minimum number of nonzero entries in

an rXn k-feasible left connection matrix (i.e., the least number of edges)? 

2) Given the maximum weight w of the columns, which is the maximum n 

admissible for an rXn connection matrix M to be k-feasible? These questions 

will be answered in the following section.

3. A Lower bound

Let an rXn incidence matrix be given and assume that the weight

of the columns of M does not exceed (k-1). For a given s (s=l,2,...,k-1) we
JL

construct an >(s) (s)iXn binary matrix P = ||p)/||, whose rows and columns are

in a one-to-one correspondence with the s-blocks of MT and with columns of
JL

(s ) (s }M^, respectively. P 7 is defined so that p)^7 = 1 if and only if the
is)s-block associated with the i-th row of P 7 covers column c.. Then, the“ J( g \k-feasibility condition requires that each row of P contain no more than 

s l's. Thus, counting by rows, P v 7 contains at most

l's. On the other hand, each column of M of weight j is covered by exactlyLi
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jj s-blocks; if n^ denotes the number of columns of weight j, then,

counting by columns, P v 7 contains exactly

s I • i 
I n. r'J

J - l

l's. We therefore obtain the inequalities

( 1) Z n.|r-j)
j-l

s (s 1*2, ••• ,k-1)•

It is convenient to rewrite these (k-1) inequalities as

(2)
k-i .
2 c (.s) n
j=l J ■

£ 1 (s-l,2,...,k-l)

where c*jS  ̂ = |g jj/s|^j, w lt*1 t îe convention that |^j = 0 for m < n. We claim 

that if (n^,n^, •. • ,n^ (n^ ^ 0) satisfies (2) for s=k-l, then it satisfies

(2) for every s < k-1. This follows immediately from the fact thatif
(s)

c^ < cj ' ^or s < ^"1* Therefore the inequality for s = k-1 is the most 

stringent one, that is, it implies all the others, and we may restrict our

selves to it. Our problem reduces to minimizing the linear function

k-1
C = E j n ,

j-l J

subject to the linear constraints

t k-1
£ n . = n

J - l  J
k-i x
£ —  n . £ 1,
j-i vj J
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with

( 3 )

This is a simple integer L.P. problem. Since we are seeking a bound, we may

consider is as a conventional L.P. problem (Notice that v. < v for i < i).i J J
Since there are two constraints, the general extremum solution needs contain

only two nonzero variables n. and n. with
1 J

( 4 ) n .l v .-v.J i
<Vn> » n . J v .-v . J i

(n-vi) .

F°r v i * n ^ v i+l’ the s°lution relative to the basis n ^  ni+  ̂ is certainly 

feasible. We claim it is also minimal. Indeed the well-known condition 

for minimality (see, e.g., [5] p. 61) becomes

-1
r 1

[ i,i+l]

i+1

1 '

-1/v -
• p i O

(p — 1,2,.• •,k-l)

or, equivalently,

(5) *.(p) = v±+1(v -v.)+(i-p)v (vi+1-v.) £ 0 (p-1,2....k-1).

With regard to tjf̂ (p) in appendix we prove the following lemma:
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Lemma 3. The function t •(p ) > for i = l,2,...,k-2, satisfies thei  :

conditions? (p = 1,2,...,k-l):

i) ^ ( i )  = ^(i+1) = 0,

ii) ty^(p) ^ 0 for p^i, i+1, with equality if and only if r = k.

Not only does this lemma state the optimality of the mentioned 

solution, but it also tells us that the minimal solution is unique for 

r > k. Using relations (4), we then have the following,theorem:

Theorem 2 . Let n be the number of columns of M of weight at most
L

(k-l). For fixed r and k, a lower bound to the number of edges of a 

k-feasible left connection is given by

(6) C 2 ni +

where i is the largest integer for which n

Notice that' when n = v. the minimal solution vector contains thel

only nonzero component n =v =n; notice also that the minimal solution is a

continuous piecewise linear function of n.

If we upper bound by w £ k-l the maximum weight of the column’s of

M , we automatically place an upper bound to the value of n for which a 
Li

k-feasible connection is realizable, that is n £ v . We observe that we mayw
adjoin to the connection matrix M as many columns of weight k as we please

JLi

and still preserve k-feasibility; thus, since = 00, for maximum weight

w £ k, the general upper-bound to the number n' of vertices of A for which
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a k-feasible connection may exist is given by

(7) n s vw (w l}2,.##,k).

There is an interesting special case to be examined. For r=k 

inequality (6) becomes (notice that in this case = k(k-l)/(k-i))

( 8) C ^ ni + (n - — -^-)(k-i) = k(n-•k+1)

This represents the number of edges of the left connection; adding to it the 

number mk of the edges of the right connection, a lower bound to the number 

N of edges of our design for r=k is

(9) N ^ k(n+m-k+l).

It must be pointed out that (9) has been obtained in the hypothesis that M
L

be k-feasible and be complete; however, we would obtain the same result 

using (the necessary condition of) Theorem 1, i.e., replacing n with 

(n+m) in (8). This shows, as mentioned before, that Theorem 1 embodies a 

tight condition for r=k; moreover it proves a conjecture by Aggarwal-Mayeda- 

Ramamoorthy [ l], who also exhibited designs meeting bound (9), i.e., 

optimal. Hence (9) is also an upper bound. Other optimal designs exist for 

r ^ k as will be shown in the following section.
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4. Synthesis of Multitransmissions

The designs considered in this section are such that ^  is complete 

and contains columns of at most two distinct weights,,

First we obtain two simple corollaries to Theorem 2.

Corollary 1 - If the columns of an rXn matrix M have weight (k-1) and 

at most (k-1) columns are identical, M is k-feasible.

Proof; Indeed k-feasibility reduces to testing s-blocks for s = k-1. 

Then, by hypothesis, each (k-1)-block covers at most (k-1) columns, that is, 

it is feasible, Q 0E„D,

As an example, assume that n ^ vk 1 = (k-l)(£ • It is possible

to construct an rXn k-feasible matrix M by repeating (k-1) times each ofJ-i
17

the ^k-P distinct columns of weight (k-1)(corollary 2) and adding (n-v, 1)Jx “ JL
columns of weight k. The number of entries of the resulting matrix is

vk- i^k" + (n_Vk - P k = nk"Vk-l

i.e., it coincides with the value offered by (9) for i = k-1. Thus, these 

designs are optimal.

Corollary 2 - If the columns of an rXn^matrix M have weight (k-2) 

and are distinct, then M is k-feasible (k ^ 3).

Proof: Indeed k-feasibility reduces to testing s-block for s=k-2,k-l.

Each (k-2)-block covers exactly one column, and, due to the fact that 

k-2 ^ 1, the condition is satisfied; each (k-l)-block covers at most 

(k-1) columns since all columns are distinct and have weight (k-2). Q.E.D.
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Consider the following class of designs of M for v, 9 £ n < v, .,

1) we generate the set ft of the v^_2 = |£_2| columns of weight (k-2);

2) we select J"(n-v^_2)/(r-k+l)j  ̂  ̂ columns from this set; 3) from any 

selected column, at most (r-k+2) extensions are obtained by changing from 

0 to 1 a different entry in each extension. (This step is applicable to 

all selected columns except possibly one for which only |(n-v^ 2) +1 - 

([(n-Vk_2 )/(r_k+l)]“l)(r-kfl)] extensions are formed.) 4) The columns of

are the unselected members of ft and the extensions of the selected members. 

The number of "1" entries of M is found to be
JLi

n(k-2) + (n-vk_2) +
n-vk-2
r-k+l

which, for integer (n-v^ 2)/(r-k+l), coi-ncides with the value given by the 

lower bound (9) for i = k-2. We claim that the just constructed matrix M is 

k-feasible. Indeed, we only have to test (k-l)-blocks since, by construction, 

all the columns of weight (k-2) are distinct. Assume now that a (k-1)-block 

covers a set of p ^ k columns and let q be the number of the columns of 

weight (k-1) in this set. Since no two extensions of the same original 

column are identical, the q columns of weight (k-1) originate from q 

distinct columns of weight (k-2): but this entalis that there are p > (k-1) 

distinct columns of weight (k-2), whose union has weight (k-1), which is 

impossible. Thus, the given designs are also optimal.

(*) r I| I denotes "smallest integer not less than".
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Example 1 ' F o r  r=5, k=4 and n=12 we have 10=v2<n<v2=30. Therefore we 

select = 1 column of weight 2 and replicate it three times. The

resulting 5X12 matrix M, shows below, describes the design (the replicated 

column is [OOOll]').

9--------------------------> |<--- 3---->

> 1 1 1 1 0 0 0 0 0 1
1 1 0 0

1 0 0 0 1 1 1 0 0
11
1 0 1 0

M = '5 0 1 0 0 1 0 0 1 1
fft 0 0 1

0 0 1 0 0 1 0 r 0
1
1
1 1 1 1

0 0 0 1 0 0 1 0 1
f
ft 1 1 1

Unfortunately no other general method can be presently offered for 

designs corresponding to v. ^ n ^ v i+1 for i < k-2, although some isolated 

near-optimal designs can be produced. For example for k = 5 and even r, 

consider the following designs. Suppose to enumerate the rows of M from 0 

through (r-1); all the columns are distinct and each column has two l's but 

not both in rows having the same parity. The resulting matrix is 5-feasible 

indeed each 4-block can be classified, according to the parity of the rows 

it contains, as (EEEE) (EEEO), (EEOO), (E000), (0000), where E and 0 stand 

for "even" and "odd", respectively. For obvious reasons of symmetry, we 

only need consider the first three cases: by virtue of the stated property

of the columns, in the first case the 4-block covers no column, in the 

second case at most three columns, in the third case at most four columns. 

With a similar argument we consider 3-blocks; finally a 2-block covers at
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most a single column, and the claim is proved. The largest n for which such

a 5-feasible design is possible is given by the number of ways of selecting
2an even and an odd row among r rows, i.e., r /4. Clearly since r 2: 5,

= i ( 2r)

which shows that the given designs are not optimal.

5. Failure-Tolerant Multitransmissions

So far we have analyzed connections in relation to their capa- 

ki-1 i-1:ie;s to realize k-transmissions« It is highly desirable, however, (as 

pointed out by other authors [l,2^) to characterize those connections which 

maintain their transmitting capabilities even in the presence of edge 

failures, that is, when a number of their edges are not usable in any 

transmiss ion.

In this paper we shall consider only the case of a single edge 

failure. A connection which allows an arbitrary k-transmission in the 

presence of one edge failure is said to be (k,1)-feasible (the same denota

tion applies to its incidence matrix M) . Clearly, (k,1)-feasibility implies 

k feasibility. Hereafter we shall assume to be complete and we shall 

concentrate on M .
JLi > ' f

We then have the following necessary condition for the matrix M :X
Theorem 3 - An rXn k-feasible matrix M is (k,1)-feasible only if each

Li

column has weight at least 2 and no complete k-block covers any complete 

(k-1)-block,
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Proof. The condition on the weight is trivial. Assume now that a 

complete k-block 6 covers a complete (k-1)-block 13y  Without loss of 

generality, the relation between M(#) and M(/5^) is as illustrated below:

Notice that the first row of M(/?) is 10...0: if the edge corresponding to

the single 1 fails, the k vertices of A corresponding to the columns of M {B) 

have only (k-1) outlets on V and the k-transmission is irrealizable. Q.E.D.

A sufficient condition is offered by the following:

Theorem 4. An rXn k-feasible matrix MT is (k,1)-feasible if each
Li

column has weight 2 and there is no complete s-block (s = 2,3,...,k-1).

Proof: Consider an rXk submatrix M' of M and assume that the entryJL
marked x below identifies a failing edge.

1

M' = ;
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By hypothesis there is at least another 1 entry in the same column (let it 

be the i-th entry so that the first column can be assigned to the ith row). 

We remove the first column and the i-th row and claim that the resulting 

matrix is (k-1)-feasible. Indeed, assume that in the resulting matrix 

there is a u-block covering v > u patterns. This means that in the original 

matrix M' there is a (u+1)-block/? covering at least v patterns; since 

v ^ u+1 and is k-feasible we must have v = u+1. It follows that B is a 

complete (u+1)-block, violating the hypothesis. Q.E.D.

We can now use Theorem 3 to establish a lower bound to the number 

of edges for given n, r and k, and Theorem 4 as a guide in the development 

of design procedures.
£The lower bound is established by means of the (^ ^)Xn matrix P,

whose rows correspond to the (k-1)-blocks of M and whose columns correspond

to the set of columns of M of weight not exceeding (k-1). With the usual
Lik-1

meaning of symbols, 2 n . = n; counting by columns, P contains exactly

l's. We now want to establish an upper-bound to the number of l's of P 

counting by rows. By k-feasibility, each row may contain at most (k-1) l's. 

However a row containing exactly (k-1) l's corresponds to a complete 

(k-1) -block B; each (k-1) -block B^ intersecting/® in (k-2) rows must have 

no entry equal to 1, otherwise there would be a complete k-block®U®^ 

containing the complete (k-1)-block ®, a violation of the condition of
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Theorem 3. Now, assuming that contains t > 0 complete (k-1)-blocks, we 

want to determine the largest number of possible incomplete (k-1)-blocks of 

To this end, we form an binary matrix A, whose rows correspond

to the (k-1)-blocks of and whose columns correspond to the t complete 

(k-1)-blocks of M^« An entry of A is 1 if and only if the corresponding 

(k-1)-blocks intersect in exactly (k-2) rows« Counting by columns, A 

contains exactly t(k-1)(r-k+1) l's. Each row of P may have at most 

min[t,(k-1)(r-k+l)] l's, whence the number v of rows of P which have at 

least one nonzero entry is bounded by

= max |t,(k-1)(r-k+1)j.

Therefore,for t > 0, ML contains t complete (k-1)-blocks and at most 

C (k-i)-t-raax(t,(k-1)(r-k+1))] incomplete (k-1)-blocks. It follows that, 

counting by rows, P contains at most

(10) lk-l)(k_2)‘{max(t,(k-1)(r-k+1))*(k-2)-t) (t>0)

l's. On the other hand, for t=0, ML contains incomplete (k-l)-blocks

and therefore, counting by columns, P contains at most

(ID |k-l)(k"2> <t"0)

l's. Notice that the value of (10) never exceeds the value of (11) for 

k ^ 3. It follows that (11) is the upper bound to the number of l's of P

v £ t(k-l) (r-k+1)_______
min(t, (k-1) (r-k+1) )
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and we have the inequality

( 12)
k-1 
2
j=2

Notice that here again, and a fortiori, (12) is more stringent than any of 

the inequalities (2) for s = l,2,...,k-2. Defining

by arguments similar to those developed in section 3, a lower bound to the 

number C of edges of the left connection is found to be

(13) C ^ ni + (n-u .) -p i/ r-k+2

where i is the largest integer for which n £ n .i
Notice that if M contains no complete s-block (s=2,...,k-l), 

particularly, no complete (k-l)-block, we may add to M an arbitrary number 

of columns of weight at least k without affecting the (k,1)-feasibility.

This then leads to demonstrate the sufficiehcy of the following designs.

Assume n ^ p.k-1 = (k-2)(k_1). We repeat (k-2) times each distinct 

column of weight (k-1) and add (n-|j,k_^) columns of weight k. By theorem 4 

these designs are (k,1)-feasible; the number of edges coincides with the 

lower bound (13), hence the designs are optimal.

As a coincidence, an rXn matrix M whose columns are distinct and 

have weight w is at the same time (w+2)-feasible and (w+1,1)-feasible. This 

parallelism, however, does not seem to be further extensible.
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Appendix

Lemma 3 , Letting = (k-1) )/ |k *) , for i = l,2,...,k-2 and

p = l,2,,.#,k-l, we define:

(5) t • (p) = v • , 1 (v - V . )  + (i-p)v ( V ., ,-v .) 1 r 1+1 p i  v p v 1+1 l'

and claim that

1) ^(i) = ^(i+1) = 0

2) ty^(p) ^ 0 p f i, i+1, with equality if and only if r=k,

Proof: Part 1) follows directly from the definition of ty^(p). To

prove part 2), we assume at first that r > k. Notice that v.

Vi l 1+ F i ^ i ) : l e t t i n g

i+1
a = r-k+1 we have for 1 £ p < i:

, . A V p)
= "J(5j 1 + (i-p)-- rr  r - i

k -!-P , a i
-  n_ k . 1 +  ! ) ; J = k - i

a recursive relation between cp^p) and cp^(p-1) is now easily obtained:

k-p
cp ( p -1 )  = [ i + ( i - p f i ) - S - ]  -  n ( 1  +  ^)

J-k-i J

k-p
cp.(p) + - ~  -  n ( i  +
1 r_1 j=k-i J k"P

= cp.(p) + r - T - M ! ( l + ( i - p ) - ~ )  - cp . (p )]  i  r - i  k-p v v r ' r - i  Y i ^ / J

that is,
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v p - d  = v p )£ j ? r (r-k+l) (r-k) (i-p+1) 
(r-i)(k-p)

Since r S k > i > p, the second term in the right side is 2a 0, with equality 

if and only if r—k. Notice now that for p=i, since cp.(i) = 0, we have;

(r-k)(r-k+l) 
(r-i)(k-i+l) £ 0

with equality if and only if r=k. It follows that cp.(p) £ 0 for p = 1,2,,.., 

i-1, with equality if and only if r=k.

For i+1 < p £ k-1 the argument is exactly parallel and we obtain 

the recursive relation

cPi(P+1) = ̂ ( p)iililEr-p (r-k+l) (r-k)
(r-i) (r“P) *

here again, since r ^ k > p > i, the second term in the right side is ^ 0, 

with equality if and only if r=k. Furthermore for p = i+1, since cp.(i+l) = 0, 
we have:

cpi(i+2) (r-k+l)(r-k) 
(r-i)(r-i-1) £ 0

) i

with equality if and only if r=k. It follows that cp.(p) £ 0 for p = i+2, 

i+3, • ••» k-1, with equality if and only if r=k.
Q .E ,D.
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