
April 1991 UILU-ENG-91-2216
CRHC-91-9

Center fo r Reliable and High-Performance Computing

MIDA: AN IDA
SEARCH WITH
DYNAMIC CONTROL

Benjamin W. Wah

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

A pproved for Public R elease. Distribution Unlim ited.

UNCLASSIFIED___________
SECURITY cIlASSIFICAÎION ÓF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

1b. RESTRICTIVE MARKINGS
_None

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION / AVAILA8ILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2216 CRHC-91-9
S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6c ADDRESS (G'ty, Sfai#, anò ZIP Cock)

1101 W. Springfield Avenue
Urbana, IL 61801

6b. OFFICE SYMBOL
(If applicable)

N/A
7a. NAME OF MONITORING ORGANIZATION
NASA Ames Research Ctr.
National Science Foundation

7b. ADORESS (City, State, and ZIP Cock)

Moffett Field CA 94035
Washington, DC 02236

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION
see 7a

8c AODRESS/C/ty, State, and ZIP Cock)

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NCC20481 MIP88-10584
10. SOURCE OF FUNDING NUMBERS

7b. PROGRAM
ELEMENT NO.

11 TITLE (Include Security Classification)

Mida*:An Ida* Search With Dynamic Control

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

12. PERSONAL AUTHOR(S) Wah, Benjamin W.
13a. TYPE OF REPORT

Technical
16. SUPPLEMENTARY NOTATION

13b. TIME COVERED
FROM_____ TO

14. DATE OF REPORT (Year, Month, Day) fl5. PAGE COUNT
1991 April 5_______I 13

17. COSATI CODES
FIELD GROUP SUB-GROUP

19 ABSTRACT

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
automated reasoning, search algorithm

threshold, heuristic values,

In this paper, we extend Korf s IDA* search method so it can determine the threshold used in each itera­
tion of the search dynamically at run time. Current IDA* search stra- tegies are based on the assumption that
the distribution of nodes in the search tree by their lower-bound values is exponen- tial, so a static strategy that
extends the thresholds by a con- stant amount in each iteration will result in an exponential increase in the
number of nodes expanded in successive itera- tions. We show that this distribution is not necessary exponen- tial
for all problems, and that a dynamic strategy which deter- mines the thresholds, based on run-time information
collected, will result in a lower search overhead. The objective function we use for evaluating IDA* searches is
the ratio of the number of nodes evaluated by an IDA* search and that evaluated by a pure best-first
search. We analyze the perfor- mance of IDA* searches for both continuous and discrete search problems and
establish the optimal performance of an IDA* search. Finally, we develop strategies for determin- ing thres­
holds at run time and show performance results for the 15-puzzle, traveling-salesman, and knapsack problems.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
E UNCLASSIFIED/UNLIMITED □ SAME AS RPT.

22r □ OTIC USERS
21. ABSTRACT SECURITY CLASSIFICATION

Unclassif ied
NAME OF RESPONSIBLE INDIVIDUAL

D D FO RM 1473,84 m ar

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

83 APR edition may be used until exhausted.
All other editions are obsolete. SECURITY CLASSIFICATION OF TMlS PAGF

MIDA*: AN IDA* SEARCH
WITH DYNAMIC CONTROL

Benjam in W. W ah

Center for Reliable and High Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1101 West Springfield Avenue

Urbana, IL 61801
wah@ aquinas.csl.uiuc.edu

ABSTRACT
In this paper, we extend Korf’s IDA’" search method so it can determine the

threshold used in each iteration of the search dynamically at run time. Current
IDA* search strategies are based on the assumption that the distribution of nodes
in the search tree by their lower-bound values is exponential, so a static strategy
that extends the thresholds by a constant amount in each iteration will result in an
exponential increase in the number of nodes expanded in successive iterations.
We show that this distribution is not necessary exponential for all problems, and
that a dynamic strategy which determines the thresholds, based on run-time infor­
mation collected, will result in a lower search overhead. The objective function
we use for evaluating IDA* searches is the ratio of the number of nodes evaluated
by an IDA* search and that evaluated by a pure best-first search. We analyze the
performance of IDA* searches for both continuous and discrete search problems
and establish the optimal performance of an IDA* search. Finally, we develop
strategies for determining thresholds at run time and show performance results for
the 15-puzzle, traveling-salesman, and knapsack problems.

PRIMARY TOPIC: Automated Reasoning

SECONDARY TOPIC: Search Algorithms

Research was supported partially by National Aeronautics and Space Administration Contract
NCC 2-481 and by National Science Foundation Grant MIP 88-10584.

1. INTRODUCTION
The evaluation of search algorithms is often limited resource constraints,

such as the maximum space allowed. Traditional search strategies such as best-
first and depth-first strategies do not work well. Various researchers have pro­
posed search methods that cope with limited memory space: depth-m search [3],
IDA* [4], MA* [1], MREC [6], and speculative search [2]. We focus in this
paper on improving IDA* and MREC.

Korf in his seminal paper [4] proposed iterative-deepening A or IDA , a
search strategy that can operate in a memory space linear in the size of the prob­
lem and that can approach asymptotically the behavior of A*. Like A , it
requires an admissible lower-bound function. It is a variant of depth-first iterative
deepening (DFID): a series of distinct depth-first searches to progressively
greater depths to mimic a breadth-first search. As originally described, IDA ini­
tially sets an incumbent or threshold to the (lower-bound) value of the root node
s, and searches depth-first from s, backtracking when it reaches nodes whose
values exceed the threshold. Such a depth-first search is a stage or iteration. If a
stage finds a solution, that solution is optimal; if not, IDA alters the threshold,
setting it to the smallest value borne by any of the leaves of the stage (its peri­
phery). Then it does the next stage: a new depth-first search from the root, dis­
carding all results of the previous stage apart from the new threshold.

Korf demonstrated the performance of IDA* using the 15-puzzle problem.
Since the lower-bound value of a child node in the 15-puzzle problem either
increases by 0 or 2, the threshold value in successive stages of an IDA search
always increases by 2. By noting that there is an exponential distribution of the
number of nodes in the search tree with respect to their heuristic values, it is
guaranteed that the last depth-first search, which finds the optimal solution, has an
overhead which overwhelms the total overhead of all previous depth-first
searches.

MREC [6] is essentially an IDA* that uses extra memory to save nodes near
the root. So long as memory remains, it extends the stored search tree (or graph)
by doing a series of depth-first stages from the root to nodes whose values just
exceed an incumbent. The only differences from IDA are that it does not re­
expand nodes that are already in storage, and that it stores new nodes that are not.
When memory is exhausted, it searches as before, but adds no more nodes to
storage. Assuming that there is memory space for storing m nodes in the search
tree, m nodes are generated in the first iteration to fill the memory. Successive
iterations of MREC expand nodes similar to those expanded by IDA* except for
nodes that lead to the m active nodes in memory. Note that EDA is a special case
of MREC with m = 1.

- 2 -

The extension of thresholds in successive iterations of an IDA* search is
generally controlled by a static algorithm. Korf notes that IDA search does not
perform well on the traveling-salesman problem using the IDA* as presented ori­
ginally, and suggests that performance can be improved by using thresholds
sufficiently exceeding the value of the minimum leaf of the previous stage [5]. In
general, a dynamic algorithm which determines the thresholds based on run-time
information collected during the search is necessary. In the following, we discuss
two problems associated with controlling and evaluating IDA searches.

First, the distribution of the number of nodes expanded or generated in the
search tree by their lower-bound values is assumed to be exponential in the origi­
nal IDA* search studied by Korf [4]. Although this assumption is valid for many
search problems, such as the 15-puzzle problems (which we verified by testing
the distributions of the 15-puzzle problems studied by Korf), the density functions
of a large number of finite optimization problems, such as the traveling-salesman
and integer programming problems, are bell-shaped. Many nodes in the search
tree have lower-bound values centered in the middle of the range. The latter
assumption has been verified for the traveling-salesman, resource-constrained
scheduling, knapsack, and production planning problems when the density of all
nodes in the search space are plotted with respect to their lower-bound values.
We found that the corresponding distributions rise initially in a form similar to an
exponential distribution and level off when all nodes in the search space are
expanded.

The assumption that the distributions are exponential is a good approxima­
tion for many optimization problems when we consider only nodes expanded
before the optimal solution is found. This is true in the symmetric traveling-
salesman and production-planning problems, which have many feasible solutions.
An exponential distribution simplifies the determination of thresholds in the IDA*
search because a constant increase in thresholds results in exponential increase in
the number of nodes expanded.

For problems that we need to expand all nodes in the search space before
termination, such as integer programming problems with no feasible solution, and
for problems that have pruning due to dominance relations, such as knapsack
problems, a non-exponential distribution is a better fit and should be used in
deciding the thresholds applied. One difficulty exists when the distribution levels
off eventually: it is impossible to determine, without knowing all the parameters
of the distribution, when the distribution will level off.

In this paper, we address the above problem by selecting dynamically at run
time the best distribution function to use in determining thresholds. The particu­
lar function used and its coefficients are unknown before the search begins, and

- 3 -

such information is determined during the search based on information of nodes
generated. Such an approach avoids the problem of starting with an assumed
(and possibly incorrect) distribution and developing a method for extending thres­
holds without examining dynamic information collected during the search.

The second problem associated with using the conventional IDA search is
that only its asymptotic performance has been determined [4]. This performance
behavior indicates that both IDA* and A* behaves identically (with a constant
factor of difference) in the asymptotic case. In practice, for searches that ter­
minate in finite time, it is more important to minimize the number of nodes gen­
erated beyond a pure A* search when the search terminates, assuming that the
search is run in a fixed memory space. Let n A. (resp. n mj.) be the number of
nodes expanded by an A* search (resp. IDA* search) for solving a given problem
instance. The objective in designing a good IDA strategy is to

n
minimize I = IDA

" a*
(LI)

This objective works under both finite and asymptotic conditions. Note that the
number of nodes searched by an A* search can be found by discounting the nodes
search beyond the optimal solution in the last iteration of an IDA search.

In this paper we develop methods to determine the thresholds used in each
iteration of the IDA* search, so that the resulting ratio defined in Eq. (1.1) can be
reduced when the search terminates. A more restricted objective is to find thres­
holds so that the numbers of nodes searched in successive iterations increase in a
geometric fashion with a constant ratio of increase r, where r > 1. This restricted
objective results in a strategy which can be analyzed. We further assume that
only admissible heuristic functions are used in the search.

2. IDA* SEARCH WITH CONTINUOUS LOWER BOUNDS
s|e

In this section, we analyze the performance of IDA searches for problems
with continuous lower-bound values. We assume that thresholds in the IDA
search can be chosen so that the numbers of nodes expanded in successive itera­
tions always increase by a factor r. Let ntl be the number of nodes with lower-
bound values less than or equal to threshold ti (for minimization problems), and
nt2 be the number of nodes with lower-bound values less than or equal to ¿2,
next threshold chosen after t \ . Then

nu (2.1)r —

- 4 -

We find, for a given r, the performance of IDA*, and the optimal value of r that
minimizes the increase in overhead as compared to an A* search (Eq. (1.1)).

In addition to the stack for carrying out depth-first searches, let m be the
memory space available for storing active nodes. Let nA. be the number of nodes
expanded by an A* algorithm, n j ^ opt be the number of nodes expanded by the
IDA* search in the last iteration if the optimal solution were found, ^ ^ no'opt be
the number of nodes expanded by IDA* in the last iteration if no solution were
found, and eo be the number of nodes expanded to generate m active nodes ini­
tially. Then the overshoot in the last iteration is characterized by q, which is
defined as follows.

<7 =
eo + n last, opt

IDA*

eo + n ^ " ° '0pt- ”
0<q < 1, m > 1 . (2.2)

The numerator in Eq. (2.2) represents the overshoot of IDA* in the last iteration,
while the denominator represents the overshoot of IDA in the last iteration
assuming no solution were found. The denominator normalizes the numerator, so
q is between 0 and 1.

Using the parameters defined, the objective I defined in Eq. (1.1) is a func­
tion of nA. , r, m, and q.

The value of r defined in Eq. (2.1) is important in controlling the perfor­
mance of the IDA* search. If r is too small, then there will be too much repeated
work in successive iterations; if r is too large, then there is overshoot in the last
iteration. The best choice of r is to have a value such that the optimal solution is
included in the first iteration. Such a choice is very difficult. A compromise is to
choose a value of r between and r max.

Note that q is defined only for a given problem instance. A value of q close
to zero means that there is little overshoot, while a value of q close to one means
that the overshoot is large. The overhead due to overshoot is large if the thres­
hold of the last IDA* iteration is extended too far beyond the value of the optimal
solution. Although q is neither constant nor predictable before the search is com­
pleted, its statistical behavior for problem instances evaluated before is useful in
selecting the r to be used in evaluating problem instances in the same class by
IDA* search. If q is generally small, then choosing a large r results in a faster
search, since the overhead due to overshoot is small.

Although it is impossible to achieve the ideal case in which r is chosen prop­
erly based on values of n , and q, and successive iterations always increase by-a
factor r in the nodes expanded, the results derived in this section serve as bench­
marks for comparing with the real performance of an IDA search. Results in this

- 5 -

section show the maximum and minimum increase in overhead as compared to an
A* search for all values of n hence the knowledge of n K. before the search ̂ _ £ ^
begins is unnecessary. During the evaluation of the IDA search, heuristic
methods are applied to define thresholds so that successive iterations grow
approximately by the factor of r prescribed. Heuristic methods for choosing
thresholds are discussed in Section 4.

The following theorem relates n mA. , the number of nodes expanded in an
IDA* search, to n . , q , r , and m. The theorem shows the increase in the number ̂ 3|c
of nodes expanded by an IDA search with respect to an A search.

Theorem 2.1. Assume that we can expand by a factor of r nodes in successive
iterations of an IDA* search. For given n A. , r, q, and m, the number of completed
IDA* iterations, not counting the last iteration, is

k = logr
(* . - 1)

m
¥ •

n\DK » num >̂er °f nodes expanded in IDA , is

m r (r k - 1)
« ID A = « a - + r — 1 + <7 n t r — n . . + r - 1

(2.3)

(2.4)

Proof. The proof is shown in four parts.
(a) We first find the number of nodes expanded so that there are m active

nodes in memory. Assume that a best-first search is applied until m nodes are
generated and that the branching factor of the best-first search is r .1 We are
interested in e o, the number of nodes expanded in the search tree to obtain m
active nodes. Since the root is assumed to exist initially, and each nonterminal
node is expanded into r nodes, the following equation must be satisfied.

, m - 1
e 0 -r = e0 + m - l —» ¿o = - (2.5)

(b) Next, we prove that k is as defined in Eq. (2.3). Starting with m nodes
initially, and assuming k completed iterations of the IDA search (not counting
the last), the fc-th completed iteration must have expanded m rk nodes. Therefore,
nA. must satisfy the following formula.

1. The assumption that the branching factor is r is a simplification here. In reality, the branching
factor is r0, which is different from r. There is negligible error introduced since m is generally
much smaller than nA- .

- 6 -

m r k < (n . - 1) < m r k+1 (2.6)

Simplifying Eq. (2.6) results in Eq. (2.3).
(c) We find e i , the total number of nodes expanded in the k completed itera­

tions. Starting with m active nodes, the i-th, 1 <i <k, iteration expands m r l nodes.
Hence, e i is evaluated as •

ei = E mr =
i=i

i _ / n r (r - l)
r -1

(2.7)

(d) Last, we find r t ^ opt, the number of nodes expanded in the last iteration,
from Eq. (2.2). Since - m r*+1, Eq. (2.2) can be simplified as

« ^ opt = («„• - e 0) (1 - q) + qm rk+1 . (2.8)

Eq. (2.4) is proved by summing and simplifying the results found in Eq’s
(2.5), (2.7), and (2.8). □ *

To illustrate Eq’s (2.4) and (2.5), suppose m = 17, r = 3, q - 0.3, and
nA. =20008. eo as computed by Eq. (2.6) is 8. Eq. (2.4) shows that k = 6: start­
ing with 17 nodes, the number of nodes expanded in the 6 completed iterations of
an IDA* search are 51, 153, 459, 1,377, 4,131, and 12,393, which sum to 18,564
and can be verified by Eq. (2.7). The number of nodes expanded in the last itera­
tion is computed by Eq. (2.8) and is 25,154. Hence, the total number of nodes
expanded in the IDA* search is 43,726, which is 2.19 times more than what are
expanded in an A search.

To illustrate the results of the theorem, we plot in Figure 2.1 the overheads
normalized with respect to n A. for m = 1, (a) r = 3, q - 0.5 and (b) r —10, q = 0.05.
We observe (a) that for small values of r, the average normalized overhead and
frequency of variations tend to be higher than those for large values for r, (b) that
the normalized overhead is the lowest when the optimal solution lies exactly on
the threshold of the last IDA* iteration, and (c) that larger values of r should be
chosen when q is small.

Given that r is between r n̂ and r max, the next theorem shows the optimal
value of r that will minimize the normalized overhead.

Theorem 2.2. For r ^ < r < r mv3i, ropt, the optimal value of r that minimizes

log,
n J n . is

IDA A

r opi ~ '

exp

« A *

m

logr. m
n

m

m

" a*

m

> r max

(2.9)

^ r ,

Figure 2.2. Normalized Overheads Figure 2.3. Minimum Normalized
form = 1 (Theorem2.1). Overheads based on ropt (rmin = 1)

(Theorem 2.2).

The increase in overhead as compared to an A* search is

r opt (2.10)

Proof. The second part of Eq. (2.9) is straightforward because if the optimal
solution can be generated in the first iteration of the IDA* search, then the
optimal r to be used is nKJm. In the remainder of this proof, we assume that
(n Am ^*max•

For r between and r max, there is a set {rls r 2, ..., r 0},
r max — r 1 > r 2> *•* > r 0>rmin, such that

—— = r^ 1 , where k-t is integer. (2.11)
m

That is, rx represents the ratio used such that the IDA* search terminates in
(ki + 1) iterations and that the optimal solution lies on the threshold of the last
iteration. Note that

k, = lo gr,
n s
m

- 1 ; k 0 = logr m
- 1 ; ki+i - k i + 1, 1 <i <0 (2.12)

For example, for r m|n = 3, r max = 10, n . =624, m - 1, then k\=2>, ri =8.545,

- 8 -

¿2 = 4, r2 =4.998, k 3 = k <)= 5, and r 3 =r0 =3.623.
Let T(nA.., m, r, <?) (or in short, T(r)) be the overhead of the IDA* search.

The proof has to be shown in three parts: (a) T(ri) < T (rt) for ry < r\ and
1 < i <0 + 1, (b) T fo) > T(n) for r/+1 < r,* < rt and 1 <*i < Q, and (c) T (r0) >T(r{)
for ri < r Q < r max. In each case, we can establish that 7 (r x) is the minimum by
comparing corresponding terms in e\ (Eq. 2.7). Due to the complexity of the
proof and the space limitation, the proof is omitted here.

Substituting the value of k\ in Eq. (2.12) into Eq. (2.11) to find r lf Eq. (2.9)
is proved. Eq. (2.10) is proved by finding n ^ . and assuming k x iterations. □

To illustrate Theorem 2.2, the normalized overheads using ropt for various
r max are plotted in Figure 2.2. We have the following observations about the
optimal overheads, (a) The optimal normalized overhead is close to one as r max
increases, (b) The frequency of variation is higher for smaller r max. Note that the
curves are not smooth because ropt is different for different n A. .

3. IDA* SEARCH W ITH DISCRETE LOWER BOUNDS
For problems with discrete lower bounds, we assume that nodes in the

search tree are arranged in levels: nodes with the same lower-bound values are on
the same level. We are interested in finding the number of nodes expanded rather
than those generated because nodes in a level of the search tree is either com­
pletely expanded or not expanded in an iteration, while nodes in a level may not
be completely generated in the given iteration. By knowing the growth of nodes
in successive levels, it is straightforward to estimate the total number of nodes
expanded in successive iterations.

There is a distinct difference between the discrete and the continuous cases
when a solution is found one level below the threshold of the last iteration. The
search can terminate immediately at this point because the solution found must be
optimal, and all nodes with solutions less than the optimal solution have been
expanded in the last iteration. This phenomenon does not exist when lower
bounds are continuous values. On the other hand, when a solution is found at a
level other than the level immediately below the threshold of the previous itera­
tion, the search cannot be terminated because it is possible for a better solution to
be found in an intermediate level in between.

In controlling the IDA* search, it is easy to show that a new iteration should
extend the threshold by at least one level. In choosing the threshold of the next
iteration, the distribution of nodes in levels searched in previous iterations can be
used so that the number of nodes expanded in the next iteration is at least r times
more than that expanded in the previous iteration. Assuming that the threshold of
an iteration is set at discrete levels, the problem is in finding how many levels to

- 9 -

“ skip” from the current threshold in defining the threshold of the next iteration.
The following symbols are defined in our analysis before we prove Theorem

3.1, which shows the number of nodes expanded in the IDA search.
R : Ratio of the number of nodes in one level to that in the next level;
m: = R v+l, where v is. a real number representing the equivalent number of

levels evaluated completely in generating the m initial nodes;
q+v: level number where the optimal solution lies;
p: fraction of nodes in level Q+v that have to be expanded before the optimal

solution is found;
s: number of levels skipped in defining the threshold of the next iteration of

IDA* search so that the number of nodes expanded in the next iteration is
increased by a factor r (defined in Eq. (2.1)).

We show the following theorem without proof (due to space limitation).
The theorem shows an estimate of the number of nodes expanded in finding the
optimal solution using an IDA* search. In this model we assume that nodes in
successive levels grow by a constant ratio R, that the behavior of growth is similar
for nodes with lower bounds larger than the optimal solution, and that no other
optimal solution exist besides the unique one found. The advantage of using the
number of nodes expanded is that we do not need to know the branching degree
of the search tree.
Theorem 3.1.. n mA. , the number of nodes expanded to find the optimal solution
in the discrete case is obtained by summing d i, d2, d 3> and <24, where
(a) d 1 is the total number of nodes expanded up to and including level Q+v,

d 1
p v+0+1 __ ^

R ^ l
(3.1)

(b) d-i is the number of nodes not evaluated in the last iteration due to pruning,
/?”+v+1 - R v+1

" P * R - 1 (Q + 1) mod s = 0
(3.2)

(Q + 1) mod s > 0
d l \ - (l - p) R 0+v

(c) d3 is the number of overshoot nodes expanded beyond level Q + v in the final
iteration,

d 3
0

p R 0+v+l
ps~0 m ods_^

R - l

Q mod s - 0
Q mod s > 0 (3.3)

- 10-

(d) ¿4 is the number of nodes evaluated in intermediate iterations,
R v+{t+1)s+l-{ t+ l)R v+s+1 + t R v+l

{ R - \) (R s - l)
0¿4 = <

t> 1
(3.4)

i = 0

where t = <
<L-i 0 mod s = 0

0 mod s > 0

(3.5)

We illustrate the theorem by applying it on the 15-puzzle problems that Korf
studied [4], which fit the assumptions stated in Theorem 3.1. In the 15-puzzle
problems, the numbers of nodes in successive levels grow in approximately a
geometric fashion. For problem 1 of the 15-puzzle problems tested by Korf, 0=9,
and the numbers of nodes at the various levels are 110 (LB=41), 662 (LB =43),
4,825 (LB=45), 31,772 (LB=47), 194,458 (LB=49), 1,178,160 (LB=51),
7,025,558 (LB=53), 412,162,086 (LB=55), and 237,913,457 (LB=57). The
optimal solution exists in the level with LB=57 after expanding 66,281,653
nodes; hence p =0.28. With the above values, the average increase in nodes in
successive levels is R =6.21. Since LB starts at 41 with 110 nodes, we assume
that m = 17.71 so that when these nodes are expanded, 110 nodes will be gen­
erated in level 1. The corresponding v is {log ̂ 2 1 110)—1 = 1.57. From the above
data, we can compute the number of nodes expanded in a pure best-first search as
115,879,285. With 5 = 1, the actual IDA* search expands 140,036,821 nodes.
Our model defined in Theorem 3.1 estimates that d \ =287,893,653,
d 2 =-207,283,415, <¿3 = 0, and d4 =55,257,706, resulting in a total of
135,867,944 and an error of 3%. With s =2, our model estimates that <¿1 and <¿2
are the same as the case of s =1, and ¿3 =419,979,261 and ¿4 =47,593,730. The
total number of nodes that we estimate to be expanded when s =2 is 548,183,229.

Table 3.1 shows a summary of the simulation results and predictions on the
first 50 15-puzzle problems studied by Korf [4]. Results in Table 3.1 with 5=1 is
obtained by simulations, while results with larger s are predicted using Theorem
3.1. Our results predict that Korf s original IDA* algorithm (with 5=1) is the
most efficient algorithm to use on the average, although it is possible that evalua­
tions with 5 > 1 could result in a smaller overhead. This happens when the;
optimal solution lies exactly on the threshold of the last iteration.

-11 -

Table 3.1. Summary of results using different thresholds
for the first 50 15-puzzle problems studied by Korf [4].

Statistics Levels R p
n • fii •IDA A

s=l s=2 s=3 s =4 s= 5
m in im u m

maximum
average
std. dev.

6.00 4.23 0.01
12.00 44.62 0.98
8.80 10.22 0.34
1.54 8.24 0.32

1.12 1.02 1.00 1.00 1.00
1.31 29.52 1095.45 28759.49 41102.47
1.20 3.88 39.93 915.48 1130.31
0.03 5.14 157.22 4396.06 5865.01

Table 4.1. Summary of results for dynamic selection of thresholds
for 20 random symmetric TSPs and knapsack problems

Statistics " a - <7

nm »/n
IDA A

r =2 r=3 r=4 r=5 r=6
Statistics of 20 random 22-city symmetric TS problems

minimum 4055.00 0.00 1.28 1.28 1.28 1.28 1.28
maximum 2848047.00 0.38 3.14 2.74 2.71 2.30 2.50

average 290288.85 0.09 2.61 2.03 1.92 1.73 1.78
std. dev. 637829.81 0.14 0.43 0.37 0.38 0.35 0.28

Statistics of 20 random 110-object KS problems
minimum 124749.00 0.00 1.40 1.00 1.00 1.00 1.00
maximum 526267.00 0.02 2.50 2.31 2.29 2.22 2.02

average 251668.00 0.00 1.97 1.72 1.63 1.55 1.51
std. dev. 99684.65 0.00 0.32 0.35 0.34 0.38 0.28

4. DYNAMIC PREDICTION OF THRESHOLDS
Predicting the threshold dynamically is achieved by regressing on the (par­

tial) distributions obtained at run time using a polynomial fit (first-order or
second-order) or an exponential fit. The particular equation selected is based on
the one that gives the smallest mean square error. Simulation results are shown in
Table 4.1. r is the desired growth ratio that we wish to achieve, although the
ratios of growth achieved usually deviate from the desired one. Our results show
(a) that an exponential fit is better in symmetric TSPs, (b) that the second-order
polynomial fit is better for knapsack problems (due to the extensive pruning by
dominance relations), and (c) that r= 5 (resp. r=6) gives the minimum average
increase over A* for TSPs (resp. knapsack problems).

- 12 -

ACKNOWLEDGEMENTS
The author would like to acknowledge the help of Mr. Lon-Chan Chu, who

developed WISE, an integrated search environment, and implemented the search
algorithms for the traveling salesman and knapsack problems studied in this
paper. The author is also indebted to Mr. Mark Gooley, who implemented the
search algorithm for the 15-puzzle problems, and to Mr. Arthur
Ieumwananonthachai, who implemented the IDA search in WISE.

REFERENCES

[1] P. P. Chakrabarti, S. Ghose, A. Acharya, and S. C. de Sarkar, “ Heuristic
Search in Restricted Memory,” Artificial Intelligence, no. 41, pp. 197-
221,1989.

[2] M. M. Gooley and B. W. Wah, “ Speculative Search: An Efficient Search
Algorithm for Limited Memory,” Proc. In f l Workshop on Tools for
Artificial Intelligence, pp. 194-200, IEEE, Nov. 1990.

[3] T. Ibaraki, “ m-depth search in branch-and-bound algorithms,” In f l. J. of
Computer and Information Sciences, vol. 7, no. 4, pp. 315-373, Plenum
Press, 1978.

[4] R. E. Korf, “ Depth-First Iterative Deepening: An Optimal Admissible
Tree Search,” Artificial Intelligence, vol. 27, pp. 97-109, North-Holland,
1985.

[5] R. E. Korf, “ Optimal Path Finding Algorithms,” in Search in Artificial
Intelligence, ed. V. Kumar, pp. 223-267, Springer-Verlag, New York,
1988.

[6] A. K. Sen and A. Bagchi, “Fast Recursive Formulations for Best-Fist
Search That Allow Controlled Use of Memory,” Proc. In f l Joint Conf on
Artificial Intelligence, pp. 297-302, UCAI, Inc., Detroit, MI, Aug. 1989.

