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Abstract

In this report, it is shown that Projective Geometry codes are 

orthogonalizable in less than or equal to 3 steps. Thus, this class of codes 

is majority-logic decodable in no more than 3 steps.

The improved decoding algorithm reduces the decoding complexity of 

Projective Geometry codes enormously in most cases. This should make Projective 

Geometry codes very attractive for practical use on error-control systems.
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lo Introduction
Cs 5 7 8lProjective Geometry (PG) codes * s'* J form a subclass of the class

[4]of cyclic codes that are majority-logic decodable, Because these codes are

majority-logic decodable, they can be very simply implemented,, In addition,

the decoding algorithm for them can automatically correct more error patterns

than those guaranteed by the decoding algorithm itself without additional cost

Thus PG codes are attractive from a practical point of view»

The decoding complexity of PG codes grows exponentially with L, the

number of levels (or steps) of majority logic required.^*^  It is desirable

therefore, to decode these codes in as few steps as possible, Unfortunately,
[ 5

the Reed decoding algorithm ’ for this class of codes often require that 
L be large»

In this report, an improved decoding algorithm for PG codes is pre­

sented, It will be shown that PG codes can be orthogonalized^’ in no more 

than 3 steps. That is, these codes can be majority-logic decoded in less than 

or equal to 3 steps. The results reduce the decoding complexity of PG codes 

enormously in most cases. Thus, they should make this class of codes very 

attractive for practical use on error-control systems.

The basic concept behind the improved decoding algorithm is also 

applicable to the Euclidean Geometry (EG) codes^ ’̂  which also form an 

important subclass of the class of majority-logic decodable codes. The decod-
r 21m g  of EG codes is presented in a separate report,L J

In section 2 of this report, we shall review some of the properties 

of PG codes and discuss the existing decoding algorithms for these codes. In 

section 3, we shall propose an improved decoding algorithm for PG codes. We 

shall show that PG codes are majority-logic decodable in less than or equal to 
3 steps.
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In the following discussions the reader will be assumed to be familiar 

with the concept of orthogonality in majority-logic decoding^’̂  and the 

structure of finite g e o m e t r i e s w h e r e  possible the notation and con­

ventions employed in Reference 5 will be used.

2. Projective Geometry Codes

It is well-known that the elements of a Galois field can be arranged 

in such a way that they form a concrete representation of a finite projective 

geometry. ’ Specifically, a projective geometry of dimension m over GF(pS),
SPG(m,p ), can be constructed as follows. A point (a) of the geometry is 

associated with the set of elements

g

( a )  = a , <*3 , c*32 , . . . ,  a3P "2

/ jl^j_l )  swhere a is a non-zero element of GF(p ) and 3 is a primitive element of
s. (m+1) s _ I

GF(p ). The number of points in the geometry is equal to ----—— — .
s  -I('mfl') s P ~ LLet a be a primitive element of GF(p^ J ). An r-flat consists of 

the points (aJ) such that

i 11 61 X2 e2(aJ) = 3 a 1 + 3 a + a 1r+l er+l+ 3 a ( 1)

®1 er+i i-i ip i . i
where Oi , Oi , CK are linearly independent, and 3 ,3 , ..., 3 r

take on all possible combinations of values in GF(pS) except that they cannot
(r+l)s_1

be simultaneously zero. Thus an r-flat contains s - P -1
points.

The points of PG(m,p ) can be considered as the location number of a 
(mfl)s .p -1 cx ----- over GF(p). An r-flat in PG(m,p ) can be
p -i

cyclic code of length n =
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associated with a polynomial in the algebra of polynomials modulo xn-l» This

polynomial is taken to have coefficient 1 in positions corresponding to the 
(r+1) s _

p  - 1

s iP -1
points of the flat and 0 elsewhere»

A projective Geometry (PG) code of order r and length n =
(mf 1) s

- 1

s  iP -1with symbols from GF(p) has the property that the polynomials corresponding to
sall r-flats of PG(m,p ) are in its null space» Because of this property, the 

Reed algorithm 51 can be used to decode a PG code» The key point of the 

Reed algorithm for PG codes is that the check sums corresponding to the r-flats 

intersecting a particular (4-1)-flat are orthogonal on the check sum correspond­

ing to the (r-l)-flat» The number J of r-flats intersecting a particular
[3,5,8](r-l)-flat can be shown1 to be equal to

(m-r+l)s npv 7 -1
pS-l

( 2)

Now, the Reed decoding algorithm for an r-th order PG code can be 

described as follows» At the first step of decoding, the check sum correspond­

ing to an (r-1)-flat is determined by the value assumed by a majority of the 

check sums corresponding to the J (r+1)-flats that intersect on the given 

(r-1)-flat» The check sums corresponding to all (r-1)-flats can be correctly
T  ^

determined in this way provided that or fewer errors occurred» In the next

step of decoding, each of the check sums corresponding to all (r-2)-flats is 

determined by a majority decision on a set of check sums corresponding to some 

(r-1)-flats that intersect on the given (r-2)-flat. It is easy to see from 

Eq»(2) that the number of (r-1)-flats that intersect on a given (r-2)-flat is

is equal to the largest integer less than or equal to x»
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at least equal to J„ Therefore, each of the check sums corresponding to all 

(r-2)-flats can be determined provided that [-̂ ] or fewer errors occurred,, This 

decoding process can be repeated until the error digits corresponding to all 

0-flats are determined,, It requires r steps of majority logic elements for 

this decoding algorithm,,

The decoding complexity of the Reed algorithm for PG codes grows 

exponentially with the number of decoding steps employed,, It is important, 

therefore, to try to cut down the number of decoding steps. In this regard, 

Weldon proposed a modified decoding algorithm for PG codes»^5,1°̂  The modified 

decoding algorithm can correct as many guaranteed error patterns as the 

original Reed algorithm»

The modified decoding algorithm by Weldon requires only two steps of 

majority logic elements» At the first step of decoding, the check sums cor­

responding to all (r-1)-flats are determined from the r-flats that intersect 

on the given (r-1)-flats in exactly the same way as in the original Reed 

algorithm» At the second step, the error digits corresponding to all 0-flats 

are determined from the (r-1)-flats using the idea of non-orthogonal check sums 

due to Rudolph»^“  ̂ Though this modified algorithm reduces the number of 

decoding steps to two, the decoder may not cost less than the decoder using 

the original algorithm» The reason is that a single majority gate with a very 

large number of inputs has to be used in the second step of the decoding»

In the next section, we shall introduce an improved decoding 

algorithm for PG codes» This improved algorithm can correct as many guaranteed 

error patterns as the original algorithm» In addition, the new algorithm reduces 

the number of decoding steps without increasing the number of inputs to the 

majority gates in every step of the decoding» Applying the idea behind the new
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algorithm, we shall show that PG codes are orthogonalizable in less than or 

equal to 3 steps» Thus, PG codes are majority-logic decoding in no more than 
3 steps»

3, Improved Decoding Algorithm

The Reed algorithm for PG codes is a step-by-step decoding algorithm» 

It determines the next lower dimension of the associated projective geometry 

from the given dimension of the associated projective geometry. Actually, it 

is possible to speed up the decoding process by jumping from the flats of a 

given dimension to the flats of several dimensions lower. Based upon this fact, 

we have a new improved decoding algorithm.

In the first step of the improved decoding algorithm, (r-1)-flats are 

determined from the sets of r-flats that intersect on the given (r-1)-flats in 

the same way as in the Reed algorithm, Now, suppose that k is the smallest 

number such that a set of J (r-1)-flats that intersect on the given k-flat can 

be constructed. Obviously k is less than or equal to (r-2). Then, in the 

second step of decoding, each of the k-flats is determined from a set of J 

(r“l)“flats that are orthogonal on the given k-flat. This process can be 

repeated again and again until all error digits or 0-flats are determined.

In general, the problem of finding the smallest k such that a set of 

at least J (r-1)-flats orthogonal on a given k-flat can be constructed has not 

been solved. Thus, the number of decoding steps that can be reduced by the
i

improved decoding algorithm can not be expressed explicitly. However, using 

the basic concept of the improved algorithm, we shall show that PG codes are 

orthogonalizable in less than or equal to 3 steps. Thus, the number of decoding 

steps is reduced to no more than 3 for any r-th order codes.
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We have demonstrated in the last section that PG(m,ps) can be con­

structed from GFCp^1̂ ^ 3)» By this construction, the elements o i \  
s

3 Q .»., 3P of GF (p^m’t~'^S) represent the same point of PG(m,pS), where

a and 3 are primitive elements of GF(p^nh*"^S) and GF(pS), respectively» Thus, 

there are (pS-l) replications of each of the points of the r-flat in GF(p^11̂ ^ s) » 

It is well-known that an m-dimensional Euclidean geometry EG(rrri-l,pS) 

can also be constructed from GF (p^^  ̂ S) . Every element in GF(p^nri’̂ s) is taken 

to be a point of EG(nrt-l,pS)» An (r+l)-flat that passes through the origin con­

sists of the points OiJ such that

Oi
j q L1 e i r^2 e2= 3 a  + 3 a d Xr+1 6r+l+ 3 a

1 2 r+1 1 2where Of , Oi , <>.», Oi are linearly independent, and 3 ,3 , »

take on all possible combinations of values in GF(pS).

Comparing Eq»(l) and Eq»(3), we have the following result.

(3)

Lemma 1 The points in the (pS-l) replications of an r-flat of PG(m,pS) in 

GF(p^  ̂ ) plus the origin form an (r+1)-flat in EG(irri-l,pS) that passes through 

the origin»

The number M of r-flats in PG(m,pS) can be shown to be equal t o ^ * ^ ^

. (Ps(ntfl)- n ( p sm-ii...(-Ds(m~r+1)-i-)
( p s ( r + 1 > - 1 ) ( p s r . 1 ) . , . ( p s . 1 )

(4)

It is easy to show that the number of (r+1)-flats in EG(n+l,pS) that passes 

through the origin is also equal to M. (See Appendix.) Thus, the converse 

of Lemma 1 is true.
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Lemma 2 Every (r+l)-flat in EG(m+l,pS) that passes through the origin consists
S  nof (p -1) replications of an r-flat of PG(m,p ),

Lemma 1 and Lemma 2 set up a unique correspondence between an r-flat 
s sof PG(m,p ) and an (r+l)-flat of EG(mfl,p )0 From this correspondence, any two

g(r+1)-flats of EG(m+l,p ) that intersect on a given (k+l)-flat passing through 

the origin correspond to two r-flats of PG(m,pS) that intersect on a k-flat. 

Therefore, we have

Lemma 3 If it is possible to construct I (r+1)-flats that are orthogonal on a 

given (k+l)-flat passing through the origin in EG(nH-l,pS), then it is possible 

to construct I r-flatsthat are orthogonal on a given k-flat in PG(m,pS).

In Reference 2, it has been shown that EG codes can be orthogonalized 

in less than or equal to 3 steps« By Lemma 3, we can show that PG codes are also 

orthogonalizable in no more than 3 steps« To prove this, we shall first list 

some of the results in Reference 2 as the following three lemmas«

Lemma 4 If it is possible to construct I r-flats that are orthogonal on a given 
sk-flat in EG(m,p ), then it is also possible to construct I (r+l)-flats that 

are orthogonal on a given (k+l)-flat in EG(mfl,pS), and vice versa«

Lemma 5 If r ^ — , it is possible to construct I = -̂
(m-r)s

- 1

orthogonal on the origin in EG(m,p )«
s  iP “1

r-flats that are

Lemma 6 If r > — , then the r-th order EG code associated with EG(m,pS) can be 

orthogonalized in 3 steps.

in qLemma 7 If r ^ — + 1, the r-th order PG code associated with PG(m,p ) can be 

orthogonalized in 1 or 2 steps.
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Proof; If r - 1, then the first order PG code is 1 step orthogonalizable, For

the case r > 1, we shall, show that a 0-flat can be determined from a set of at
(m-r+l)s -a P -1least J - --------—  (r-1)-flats that are orthogonal on the given 0-flato
P -1

By Lemma 5, J (r-1)-flats that are orthogonal on the origin in EG(m,pS) 

can be constructed, In addition, from Lemma 4, it is possible to construct J 

r-flats that are orthogonal on a 1-flat passing through the origin in EG(m+-l,pS), 

Finally, from Lemma 3, it is possible to construct J (r-1)-flats that are 

orthogonal on a given 0-flat in PG(m,pS), Therefore, if 1 < r ^ | + 1, the 

r-th order PG code can be 2-step orthogonalized,

Q ,E *D „

Lemma 8 If r > -̂ + 1 the r-th order PG code associated with PG(m,pS) can be 

orthogonalized in 3 steps,

Proof; Lemma 4 and Lemma 6 imply that all 1-flats passing through the origin
g

in EG(nrt-l,p ) can be orthogonalized in 3 steps from all of the (r+1)-flats in 
s . p(m'r+1)s_iEG(nH-l,p ) with J - - ---■ , Thus, the r-th order PG code associated with

s ? -1PG(m,p ) is 3-step orthogonalizable by Lemma 3.

Q.E „D,

Directly from Lemma 7 and Lemma 8, we have our main theorem on 

decoding PG codes»

Theorem A PG code can be orthogonalized in less than or equal to 3 steps,

The new decoding procedure for the r-th order PG code associated with 
sPG(m,p ) can be described as follows. At the first step, (r-l)-flats are 

determined from all r-flats. If r = 1, this is the end of the decoding. At the 

second step, there are two cases to consider, If (r-1) £ all 0-flats are 

determined from the (r-1)-flats. This finishes the decoding. If (r-1) >
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(r-l-[|])-flats are determined from the (r-1)-flats. It requires another step 

to finish up the decoding in this case. At the third step, all 0-flats are 

determined from the (r-l-[^])-flats. The decoding procedure is depicted as 

follows

a. r  = 1 1 - 0 (1 step)

b. 1 < r £ m
2  + 1 r — ( r - 1 )  — 0 (2 steps)

c . r > f  + 1 r -  ( r - 1 )  -  r - l - [ ~ ]  -  0 (3 steps)

In conclusion, the new improved decoding algorithm successfully 

reduces the number of majority-logic decoding steps from r to no more than 3 

for any value of r, Thus it greatly reduces the decoding complexity of PG 

codes in most cases. These results together with the results on EG codes in 

Reference 2 should make the finite geometry codes very attractive for practical 

use on error-control systems.
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Appendix

From Mann or CarMichae1 ^ t h e  number N of r-flats in EG(m,pS) 

is equal to

, ms 1 W  (m-l)s 1N / (m-p+1)s 1N (m-r)sN = (p -i h p v -i)...(pv v -u p ___i_
✓ . rs s (r-l)s . / s i \(P -1)(P -1)-..(P -1)

(a)

Let A be the number of k-flats that are contained in an r-flat of EG(m,p ) 

From Eq„(a)

f rs 1 W  (r-l)s (r-k+1)s 1N (r-k)s= (P -1)(PV -1)*««(P -l)pv
ks . (k-l)s . , s n(P -1)(P -1) •.. (p -1)

(b)

Let B be the number of k-flats in EG(m,p )„ By Eq»(a) B is equal to

.ms ... (m-l)s ... , (m-k+l)s (m-k)sB = lE__-l)(pv -l)ooa(pv -l)pv
( p k s - i ) ( p ( k - i ) s - i ) . . . ( p s - i )

(C)

Now let M be the number of r-flats that contain a given k-flat in EG(m,p ) 

Then

M = NvA
B

(p(m'k>s_ D  (p(m-k-l)B_n  _ 
(p(r-k)S-l)(p(r'k-1)S-l)...(pS-l)

(d)

If k = 0, then the number of (r+1)-flats that pass through a given
gpoint of EG(m+l,p ) is equal to

. (m4-l) s 1 W  ms .. . (m-r+l)s 1S
X e _____  - i ) ( p  - i ) . . . ( p v - i )

(r+1)s rs n. . s .N
(P - 1 ) ( P  - 1 ) . - - (p - 1 )

which is the same as the expression in Eqe(4).
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In this report, it is shown that Projective Geometry codes are orthogonalizable 
in less than or equal to 3 steps» Thus, this class of codes is majority-logic 
decodable in no more than 3 steps.

The improved decoding algorithm reduces the decoding complexity of Projective 
Geometry codes enormously in most cases. This should make Projective Geometry 
codes very attractive for practical use on error-control systems»
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