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Active Ambiguity Reduction:

An Experiment Design Approach to Tractable Qualitative Reasoning

I INTRODUCTION

Qualitative reasoning systems encounter ambiguity [de Kleer79, Kuipers84] due to the 

qualitative nature of the reasoning and the local nature of the reasoning algorithms. Ambiguity is 

often a limiting obstacle to qualitative reasoning systems. Even simple world descriptions can lead 

to an unmanageable number of possibilities. Further, the ambiguity problem becomes dramatically 

worse with increased complexity of the world. Humans, not having the infallible bookkeeping 

abilities of computers, are overwhelmed by far fewer numbers of ambiguities. One human method 

to combat growing ambiguities is to actively interact with their environment. The interactions 

yield new data from the world which may eliminate ambiguities. Even when there are relatively 

few possible qualitative states, active pruning may be desirable. Humans often perform cheap tests 

to head off undesirable possibilities. They heft a snowball several times before throwing it or test 

the swimming pool temperature with a toe before diving in.

We propose a method called active ambiguity reduction as a partial solution to the problem of 

controlling ambiguities in qualitative reasoning systems. Active ambiguity reduction involves 

purposeful alteration of the world in such a way that observable behavior will dictate which of a 

number of ambiguities corresponds to reality. This process can be looked upon as conducting 

experiments in the world. The outcome of these experiments provide additional data which, 

provided the experiments are suitably chosen, will be inconsistent with a number of ambiguous 

qualitative scenarios. These ambiguities can then be dropped from further consideration.

Central to active ambiguity reduction is the issue of experimental design. The experimental 

design process must have several important features. First, it must be complete; if there is a way 

to tease apart an ambiguity the design system should find it. Second, it must be tolerant of
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unavailable data. Third, it should be efficient. Each experiment should evenly divide the 

ambiguities so that significant information is acquired regardless of the experiment’s outcome. 

Fourth, it should be practical. Lighting a match is not a reasonable way to tell whether a nearby 

barrel contains water or gasoline.

This paper presents a theory of experiment design that is applicable to a wide variety of 

qualitative reasoning tasks - determining activity, prediction and envisionment, measurement 

interpretation, design, and fault diagnosis and troubleshooting. This theory includes three 

strategies for designing experiments - elaboration, discrimination and transformation. The theory 

and an experiment engine - an implementation of the theory - are illustrated using a detailed 

example that involves qualitative reasoning tasks like determining activity, measurement 

interpretation and prediction.

II A MODEL OF EXPERIMENT DESIGN

The ideal experiment design system accepts a set of hypotheses, designs a series of experiments 

and returns the "correct" hypothesis i.e. a hypothesis that is consistent with reality. An external 

problem solver generates the hypotheses in the course of its problem solving and uses the 

experiment design system to find the correct hypothesis. For qualitative reasoning, the problem 

solver is the qualitative reasoning system and each hypothesis is a collection of assumptions that 

leads to ambiguity. The experiment design system interacts with an inference system which 

generates a (possibly incomplete) set of predictions that are supported by a hypothesis for a given 

scenario. The experiment system manipulates the hypotheses and predictions to find the correct 

hypothesis.

The goal of experimentation is to increase the system's knowledge about a situation. If 

everything that can be known about the situation is already known then experimentation will not 

help in finding the correct hypothesis. In such a case the situation is inherently ambiguous. 

However, in most situations, what is known is considerably less than what is predicted by the 

hypotheses. Therefore, designing experiments to find out what is not known about the situation can
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help in finding the correct hypothesis.

The underlying principle behind experimentation is the refutation of hypotheses. Experiments 

are designed with the specific purpose of finding information that is not compatible with the 

predictions of a hypothesis. When all hypotheses but one have been eliminated then the remaining 

hypothesis is the correct one. This principle of refutation is superior to the principle of 

confirmation of a hypothesis which involves verifying that every prediction supported by the 

hypothesis is correct. This is because some hypotheses may support an infinite set of predictions 

and therefore can never be completely confirmed. The strategies used to design experiments to 

refute hypotheses are described in detail in the next section.

A practical experiment design system has limitations in its ability to design all the 

appropriate experiments required to identify the correct hypothesis. Even after the complete space 

of experiments that can be designed by the system has been exhausted, there can be more than one 

hypothesis remaining that are consistent with the available information. Any or all of these 

hypotheses may be used for further "problem solving since they are equivalent. However, for a 

given domain it may be possible to find criteria called hypothesis selection criteria for selecting a 

"best" hypothesis from the set of hypotheses left after experimentation. For example, such criteria 

may be based on the principle of Occam’s razor that prefers "simple" hypotheses.

A. Strategies for Experiment Design

Three strategies for designing experiments to refute hypotheses - elaboration, discrimination 

and transformation - are described:

[a] Elaboration:

In a given domain, there are usually some quantities that are readily observable or easily 

measurable. Elaboration involves observing or measuring the values of such quantities for a 

given scenario and refuting hypotheses that predict values for the quantity that are not 

compatible with the measured value. This strategy does not guarantee that the designed 

experiment will refute a hypothesis since all the hypotheses may support the observed value
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or may be agnostic about the value of the quantity. This strategy therefore involves a tradeoff 

between the ease of designing an experiment and the effectiveness of the experiment in 

refuting hypotheses.

[b] Discrimination:

In elaboration the quantity to be measured is selected according to the ease with which it can 

be measured. This condition can be waived and elaboration can be used as the sole strategy 

for designing experiments. In this case, elaboration experiments result in a gradual increase of 

what is known about a scenario until every quantity that can be measured has been measured. 

However, this is very inefficient and will result in a large number of experiments that do not 

refute any hypothesis. In discrimination a quantity is selected only if its measurement will 

help in the refutation of hypotheses. Discrimination involves the measurement of a quantity 

which satisfies two criteria: 1) a number of different hypotheses should predict different 

values for the quantity 2) these values should be discriminable i.e. a measurement should be 

able to distinguish the different values. A quantity that satisfies these two criteria is called a 

discriminant. Once a discriminant has been selected an experiment to measure its value will 

result in the refutation of hypotheses that supported the other values. A discrimination 

experiment is guaranteed to refute hypotheses if the values of the discriminant can be grouped 

into sets of discriminable values and each set has at least one hypothesis that predicts a value 

from that set. Discrimination is more effective than elaboration since the experiments are 

directed towards the measurement of those quantities that will help in the refutation of 

hypotheses.

[c] Transformation:

Elaboration and discrimination select quantities from a specified scenario for measurement. 

However, even after the space of measurable quantities for the scenario has been exhausted it 

may not be possible to identify the correct hypothesis. The ability to refute hypotheses is 

greatly enhanced if the experiment design system is endowed with the capacity to construct
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new scenarios or modify existing ones. This requires the use of domain-specific operators 

called scenario transformation operators that construct a scenario from a given scenario or 

propose changes to the given scenario. The ability to generate new scenarios helps in the 

refutation of hypotheses in two ways:

(1) The techniques of elaboration and discrimination can be applied to the new scenario. This 

results in the refutation of hypotheses that predicted the same value or indiscriminable 

values for a quantity in the original scenario and now predict different or discriminable 

values for the same quantity in the new scenario. This divergence of indiscriminable values 

can be used to select the appropriate transformations to be applied to the original scenario.

(2) A new technique called differential discrimination can be applied to the new scenario and the 

original scenario. Differential discrimination involves the measurement of a quantity that 

satisfies the following two criteria: 1) there are a number of hypotheses that predict the same 

value or indiscriminable values for the quantity in the original and transformed scenarios 2) 

however, the manner in which the value or indiscriminable values was reached under each 

hypothesis is different and discriminable. For example, the predictions in one scenario may be 

reached much faster or more of the predicted behavior may occur in the same time span as 

compared to the other scenario. Thus differential discrimination involves the discrimination of 

the second order behavior of a quantity across two scenarios. This strategy is efficient if 

transformations that lead to the discrimination of second-order behavior can be found. Then a 

single measurement in each scenario will refute a number of hypotheses that do not support 

the observed comparative behavior for the discriminant.

The problem of selecting the correct set of transformations to apply to a scenario can be 

viewed as a typical planning task. The initial state is the given scenario and the final state is a new 

scenario. The goal criterion to be satisfied by the new scenario is that it should have discriminable 

first-order or second-order behavior that leads to the refutation of one or more hypotheses. The 

plan is a sequence of transformations that converts the original scenario to a new scenario that
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satisfies the goal criterion.

These three strategies are best illustrated by an example from chemistry. In chemistry, we 

are often asked to determine an unknown salt. The process of determining the unknown salt is 

called qualitative analysis and is done by performing a series of experiments on samples of the 

unknown salt. Elaboration experiments correspond to the determination of the color, taste, smell, 

crystalline structure, physical state, litmus test reaction etc of the given salt. These experiments are 

very simple to perform and are invariably carried out to get rough idea of the likely candidates. 

Very rarely do these experiments conclusively determine the salt. Discrimination experiments are 

more difficult to design and perform. For example, we might need to determine whether a 

precipitate has formed using centrifugal precipitation or determine the solubility of the salt by 

measuring the concentration of the solution using titration. Transformation corresponds to 

converting the salt to another compound by chemical reactions. An example of transformation and 

elaboration is reacting the unknown salt with concentrated HCL and checking for a precipitate and 

identifying the chloride formed by examining the color of the precipitate. An example of 

transformation and discrimination is reacting the unknown salt with NH4C1, NH40H and (NH4)2S 

and performing the borax bead test if there is a precipitate to discriminate between CoS and NiS. 

Transformation and differential discrimination can involve comparing the speed with which the 

salt reacts with a given reagent. For example, the unknown salt is reacted with NH4C1, NH40H, 

(NH4)2C03 and CaS04 and if there is an immediate precipitate then Ba is present, if there is a 

tardy precipitate Sr is present and if there is no precipitate then Ca is present.

B. A Domain-Independent Experiment Engine

An experiment engine has been developed based on the model of experimentation described 

above. The inputs to the experiment engine are:

( 1 ) A set of hypotheses.

(2) An inference engine that accepts a hypothesis and a scenario and returns a set of predictions 

supported by the hypothesis for the given scenario.
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(3) Domain-dependent knowledge: There are three major sources of domain knowledge:

[a] A set of predicates that describe the quantities of the domain that can be measured or 

observed, the values that are discriminable. the parameters of a scenario that can be 

transformed etc. These predicates are required to design well-defined experiments that can be 

readily performed in the domain.

[b] A set of scenario transformation operators. These operators endow the experiment designer 

with the ability to construct new scenarios. A scenario transformation operator can change 

the quantities of some of the components of the scenario, the components of the scenario or 

the manner in which the components are organized. The current implementation supports 

only changes in the quantities of components.

[c] A set of hypothesis selection criteria. These criteria include domain specific knowledge and 

general principles like Occam’s razor. These criteria are used to select the "best" hypothesis or 

hypotheses from the hypotheses remaining after experimentation.

The experiment engine uses elaboration, discrimination and transformation to design 

experiments. It refutes those hypotheses that support predictions that are not compatible with the 

results of the experiments. It finally returns the "best" hypothesis or hypotheses that are consistent 

with the available information.

Importantly, the experiment engine makes very few assumptions. Most qualitative reasoning 

systems [de Kleer84, Forbus84a. Kuipers84. Williams84] readily provide the type of inference 

engine that is required by the experiment design system. The domain-dependent knowledge 

required for designing the experiments is usually readily available. Since the experiment engine 

itself does not inspect the content of the hypotheses or predictions it is not limited by the domain- 

specific nature of the hypotheses or the predictions. Thus, the experiment engine is general and 

domain-independent and can be easily integrated with existing qualitative systems.
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III EXAMPLES FROM QUALITATIVE PROCESS THEORY

Qualitative Process theory (QP theory) [Forbus84a, Forbus84b] is a formalization of people’s 

intuitive understanding of physical changes like bending, stretching, flowing, moving, boiling and 

colliding. QP theory characterizes these physical changes as the result of processes. QP theory 

provides a qualitative language for different types of qualitative reasoning. QP theory provides a 

qualitative language for different types of qualitative reasoning. QP theory also provides the 

framework for a number of reasoning tasks [Forbus84b] like determining activity, prediction, 

postdiction, measurement interpretation and skeptical analysis. Some of these are described and 

the advantage of using experiment design to help in the reasoning process is examined.

[a] Determining Activity:

The primary reasoning task is to determine the physical changes in a given situation. If there 

are many processes imposing conflicting changes on a quantity then the qualitative nature of 

the reasoning will lead to ambiguity about the resulting change. For example, evaporation, 

condensation and flow of liquid out of a container can each change the level of the liquid in 

the container. QP theory will not be able to establish whether the level is increasing, 

decreasing or constant unless it has further information to determine which process/es 

dominate/s. Experiments can be designed to measure such ambiguous quantities. In addition 

to resolving the ambiguity, the information from the experiments about the inequalities can 

help in further reasoning.

[b] Prediction:

Prediction involves determining how the scenario evolves with time. If there is ambiguity in 

determining activity or if the initial scenario was incompletely specified then prediction will 

result in an envisionment [de Kleer77, Forbus84b] - a set of possible paths into which the 

scenario can develop. Envisionment can lead to a potentially very large number of possible 

situations. Experiment design can help in curbing the combinatorial explosion by resolving 

ambiguities and generating information to eliminate possible situations. For example, if a
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mixture of alcohol and water is heated and if the system does not know whether the boiling 

point of alcohol is greater than, less than or equal to that of water then it will generate 

situations in which alcohol boils first, water boils first and both boil together. An experiment 

that determines the boiling points of alcohol and water or one that examines the liquid 

remaining in the container or the vapor produced by boiling will help in determining which 

situation actually occurs. If this were a small part of a bigger computation, for example, 

understanding the functioning of a complex distillation factory, the information obtained by 

performing such experiments will considerably reduce the computational complexity.

[c] Measurement Interpretation:

Measurement interpretation [Forbus83, Forbus84b, Forbus86b] involves determining the 

changes taking place from a set of observations and an incomplete description of an initial 

scenario. For example, if the system is given a process vocabulary that includes evaporation, 

absorption and flow of liquids and is shown a scenario in which the level of the liquid in a 

container is decreasing then measurement interpretation determines which processes are acting 

even if information about the preconditions is missing. Typically measurement 

interpretation results in a set of alternate interpretations. In the previous example, liquid 

might be evaporating, being absorbed, be flowing out of the container or a combination of 

these. Experiment design can determine the correct interpretation.

A. The Experiment Engine and QP Theory

The experiment engine requires hypotheses and an inference engine that returns a set of 

predictions supported by a hypothesis for a particular scenario. Hypotheses from QP theory can 

be combinations of two simple types - a quantity space hypothesis considers the possibility of a 

particular inequality relationship between two quantities and a view instance hypothesis considers 

the possibility of a view instance (a process or individual) being active or inactive. An inference 

engine that computes the predictions supported by a particular hypothesis is the Qualitative Process
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Engine (QPE) [Forbus86a]. These predictions describe the activity of view instances, inequalities 

between quantities and changes in quantities.

B. An Example - A Factory w ith  Steam Boilers

An example involving a combination of the reasoning tasks described above - determining 

activity, measurement interpretation and prediction - is described to illustrate the use and 

operation of the experiment engine. Consider a factory which uses a number of steam boilers 

connected by a complex network of steam pipes (figure la). Steam enters at the source and is fed to 

each of the boilers and excess steam is collected at the sink. The connecting steam pipes have 

adjustable valves that increase or decrease the cross-sectional area of the pipe thereby controlling 

the amount of flow in the pipe. Since the connecting network is complex there may be an 

unfortunate combination of processes that causes the pressure in one of the boilers to build up 

beyond the maximum capacity of the boiler leading to an explosion. The task of the qualitative 

reasoning system (QPE) is to guard against this possibility. The pressure in a boiler can be reduced 

by increasing the flow of steam out of the boiler or reducing the flow of steam into the boiler 

whenever the pressure in the boiler builds up dangerously.

QPE can determine the direction of the active flow processes if all the pressures are available. 

However, there are two problems - 1) if the pressure of a particular boiler is under conflicting 

influences from many flow processes then the resulting change of pressure will be ambiguous and 

2) if some boilers are inaccessible and all pressure measurements cannot be made then QPE will not 

be able to determine the arrangement of flow processes in the pipes. QPE will instead generate an 

envisionment of all possible scenarios that may lead to an explosion. This is unsatisfactory because 

the number of possible scenarios into which a scenario can develop is very large. These problems 

imply that a failproof system based on QPE alone will have to take preventive action for 

virtually every scenario. To avoid this it is advantageous to use experiment design to determine

* The experiment engine has not yet been integrated to the QPE. The inputs from the QPE are presently read from a file. 
The two programs are expected to be interfaced soon.
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Hypothesis21: ((> Pressure(4) Pressure(3)) (>  Pressure(3) Pressure(2)) (>  Pressure(2) Pressured)))
Predictions: ((:Active Flow43) (¡Unknown (Ds Pressure(3))) (¡Increase (Ds Pressure(l))) (>  Pressure(4) Pressure(3)))

(c)

Accepting hypotheses...
Entering experiment engine...
Scenario = Scenariol
Perf orming elaboration on: ((Pressure(4) Pressure(3))
Refuting hypotheses ...
Performing discrimination on: (Ds Pressure(3))
Refuting hypotheses ...
Transforming scenario —> (Scenariol (¡Increase (cross-sectional-area Pipel4)))
Scenario = (Scenariol (¡Increase (cross-sectional-area Pipel4)))
Performing discrimination on: (((Dm Pressure(3)) (Dm Pressure(3)))

((Scenariol (¡Increase (cross-sectional-area Pipel4))) Scenariol))
Refuting hypotheses...
Transforming scenario --> (Scenariol (¡Increase (cross-sectional-area Pipel2)))
Scenario = (Scenariol (¡Increase (cross-sectional-area Pipel2)))
Performing discrimination on: (((Dm Pressure(3)) (Dm Pressure(3)))

((Scenariol (¡Increase (cross-sectional-area Pipel2))) Scenariol))
Refuting hypotheses ...
Exiting experiment engine loop
Hypothesis2D ((> Pressure(4) Pressure(3)) (>  Pressure(3) Pressure(2)) ( > Pressure(2) Pressure(l)))

(d)

Figure 1: (a) A system of boilers connected by steam pipes. Boilers 1 and 2 are inacces
sible. The flows in the steam pipes have to be determined, (b) The quantity space for 
the pressures in the system which determine the flows. The relationship between pres
sures 1.2.3 and 4 form the hypotheses, (c) A sample quantity space hypothesis and a 
sample subset of the predictions supported by the hypothesis, (d) Sample output of 
the experiment engine.

the active flow processes and use this information to reason about the possibility of an explosion.

Consider again the scenario shown in figure la  in which the boilers at nodes 1 and 2 are 

inaccessible for pressure measurements. QPE gives the experiment engine a set of quantity space 

hypotheses representing the different combinations of pressure inequalities that are feasible and
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consistent A specific combination yields a specific arrangement of flow processes in the pipes. The 

experiment engine designs experiments to find the correct combination of pressure inequalities at a 

given time. Based on this information. QPE can determine if an explosion is imminent and 

accordingly issue warnings and change the settings on the valves.

The basic cycle of the experiment engine involves constructing elaboration and discrimination 

experiments for a scenario. Hypotheses are refuted on the basis of the observations from the 

experiments. If more than one hypothesis remain then the scenario is transformed and the cycle 

repeats. Predictions are collected for each valid hypothesis before the experiments are designed and 

whenever a new scenario is created. Differential experiments are handled by discrimination where 

the change in the quantity is treated as a new quantity that can be used for discrimination. The 

experiment engine returns when only one hypothesis remains or the space of experimentation has 

been covered - that is. no more new measurements or scenarios are possible. In such a case if 

hypothesis selection criteria are available the hypothesis that best meets the criteria is returned.

Elaboration experiments are used to determine observable or readily measurable quantities. 

For this example, the pressure at nodes 3 and 4 represent such quantities. Let us assume that the 

measurement of these pressures led to the conclusion that "Pressure(3) < Pressure(4)M. Therefore, 

the elaboration experiments lead to the refutation of the hypotheses that support the incompatible 

relations "Pressure(3) > Pressure(4)" and "Pressure(3) = Pressure(4)".

On examining the predictions under different hypotheses the experiment engine finds that 

some hypotheses predict an increase in the pressure of the boiler at node 3. others predict a 

decrease, still others predict no change, and the remaining hypotheses are compatible with either 

value. This quantity now forms the basis for discrimination since its measurement will result in 

the refutation of some hypotheses.

After elaboration and discrimination experiments have been performed the experiment engine 

is left with many hypotheses that are consistent with all the measurements made so far. It is not 

possible to find the correct hypothesis without modifying the original scenario. The transformable
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parameters of the scenario are the cross-sectional areas of the pipes. By manipulating the valve for 

each pipe the system can increase or decrease the amount of flow in the pipe. The predictions 

obtained from the transformation of the scenario by increasing or decreasing the cross-sectional 

area of a pipe or a collection of pipes under each hypothesized set of pressure relationships can be 

obtained by incremental analysis [de Kleer79] or differential analysis [Forbus84b]. For example. 

QPE builds constraint networks that link the quantities of the scenario. In this case, the rate of the 

flow process would be constrained to be qualitatively proportional to the cross-sectional area of the 

pipe. By changing the cross-sectional area incrementally and traversing the constraint network the 

effect of the change on the measurable quantities can be found. These predictions can now be used 

for further elaboration and discrimination experiments. For example, for the transformation 

"(increase (cross-sectional-area Pipel4))'' QPE will predict no change in the rate at which the 

pressure at node 4 is changing under hypotheses that include "PressureC 1) = Pressure(4)", faster 

increase under hypotheses that include "PressureC 1) > Pressure(4)" and slower increase under 

hypotheses that include "Pressure(l) < Pressure(4)". This difference can be used as the basis for 

differential discrimination experiments.

After all experiments have been performed the experiment engine determines the correct 

hypothesis. This enables QPE to determine the distribution of the flow processes in the pipes. For 

the set of observations given to the system for the experiments the flow processes are Flow43, 

Flow32, Flow21 and Flow41. QPE will find that the pressure in boiler 1 is increasing without 

restraint and an explosion is imminent. This will enable it to take preventive measures like 

decreasing the flow to boiler 1 - for example, by decreasing the cross-sectional area of pipeOl.

IV DISCUSSION

We have outlined a method to cope with certain spurious ambiguities which arise in the 

normal process of qualitative reasoning. The approach, called Active Ambiguity Reduction, would 

be invoked by a qualitative reasoning system confronted either with a) an unmanageably large 

number of ambiguous situations as might occur in constructing a full qualitative envisionment
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[de Kleer79, Forbus84b], or b) some ambiguity entails an intolerable feature so that it is important 

for the system to discover whether this qualitative state actually corresponds to reality. When 

invoked, the system identifies measurements which would serve to disambiguate among the 

postulated alternatives. The system then proposes experiments by which these measurements can 

be obtained. A major portion of the research contribution addresses the problem of experimental 

design.

The current work shares a superficial similarity with the BACON system of Langley 

[Langley8l]. While both propose experiments to gain crucial missing information. BACON does not 

do so in the context of a qualitative model of the world. Similarity with the later systems of 

NGLAUBER [Jones86] and STAHLP [Rose86] are deeper but less obvious. The purpose of these 

systems is theory formation and refinement and, therefore, their processing is initiated by rather 

different world situations. There are also important differences in internal processing. NGLAUBER 

uses a data-driven clustering algorithm to generate rules for observed data, and STAHLP does not 

perform experiments but rather relies on minimizing a cost function to decide among competing 

conjectures.

The current research is complementary to research in the area of fault diagnosis [Davis82, 

de Kleer86a, Genesereth84]. For example, the diagnostic approach described in [de Kleer86a] 

produces a set of candidates each of which explains the observed differences in behavior between 

the model and the artifact. An active ambiguity reduction module might use this set of candidates 

as input hypotheses. Experiments would then be designed to identify the actual fault/s in the 

model. An ATMS [de Kleer86b] could also be used to organize the hypotheses that are input to the 

AAR experiment engine. The assumptions or collections of assumptions underlying a contradiction 

would then form the hypotheses to be tested.

Active ambiguity reduction might also be used to complement Forbus’ notion of measurement 

interpretation [Forbus86b]. Forbus describes how constraints from envisionment can restrict the 

total number of interpretations for a given set of measurements. In general, this approach results in
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a number of interpretations each of which is consistent with the available measurements. The set of 

interpretations might be given to the AAR module as ambiguities resulting in the design of 

experiments to generate the additional measurements required to further reduce the set of 

interpretations.

In [de Kleer79] de Kleer describes two approaches to resolving ambiguities - 1) using 

quantitative information and 2) using teleological arguments. The AAR approach operates within 

the framework of qualitative reasoning. However, teleological information can also be used if it is 

input as either one of the predictions supported by the hypotheses or as a hypothesis selection 

criterion.

Continuing research includes the construction of a model of theory refinement [Mitchell86, 

Rajamoney87] based on Forbus' QP theory [Forbus84b]. The resulting system has a similar 

motivation to STAHLP [Rose86] but is experimentally oriented. Qualitative reasoning, and QP 

theory in particular, rely on an accurate description of all the processes of a domain. If the theory 

is flawed - for example, a process is missing, a precondition is incorrect, a limit point is unknown 

(a new landmark value [Kuipers85] is needed), or an influence is missing then discrepancies may 

arise between predictions of the model and observations of reality. In general there will be many 

different changes to the theory that remove the anomaly. Each change may result in a distinct 

qualitative theory. The resulting theories form a set of ambiguous hypotheses. We are extending 

the ADEPT system [Rajamoney85. Rajamoney86] to integrate our notions of active ambiguity 

reduction to experimentally determine which of the various hypotheses correspond to reality.
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