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1. INTRODUCTION

One of the most crucial steps in the overall computer design process is 

that of routing (RP), the process of formally defining the precise conductor 

paths (wires) necessary to properly and efficiently interconnect the elements 

of a digital system. Due to the inherent complexity of the RP, it is necessary 

to partition the problem into simpler subproblems - each of which, because of 

comparative simplicity, can be studied and possibly solved with far better 

results than the routing problem as a whole.

We shall focus on the general channel routing problem (GCRP), which plays 

a central role in solving the routing problem (as discussed in [Sa]). As is 

customary, we view a channel of width t as being on a unit grid with grid points 

(x,y), where both x and y are integers with 0 y <_ t+1 and arbitrary x. The 

horizontal and vertical lines are called tracks and columns, respectively. A 

vertex (x,y) of this grid at either y = 0 or y = t+1 is a terminal; in particular,

(s.,0) is a lower (or entry) terminal and (t.,t+l) is an upper (or exit) terminal.
J »

wire is a subgraph of this grid whose edges are segments connecting adjacent

vertices in the grid. A net N is an ordered pair of (not simultaneously empty)

increasing integer sequences ((s. ,... ,s. ),(t.,. ..,t, )); thus, N contains lowerI ic 1 n
terminals and upper terminals t^,...,t, . If k+h > 2, then we speak

of a multiterminal net, as distinct from a two-terminal net. The reason for 

this distinction is that channel routing of two-terminal nets is much simpler 

and better understood than the corresponding multiterminal net problem.

A solution to a GCRP must have, for each net, a graph on the grid that 

contains a path between any two terminals of that net. Note also that no two

nets may share the same terminal.



2
We must distinguish between the layout disciplines knoim as "Manhattan" 

and "knock-knee" [RBM,L,BB]. In the Manhattan mode two wires may share a grid 

point only by crossing at that point (crossing) as shown in Figure la. In the 

knock-knee mode two wires may cross at a vertex or may both bend at that vertex 

(knock-knee) as shown in Figure lb. In both modes, no two wires are permitted 

to share an edge of the grid. In this paper, we shall adopt the "knock-knee" 

layout mode.

Figure 1. Illustration of the basic construct in the knock-knee mode.

In the channel, there is a fixed number (two or more) of conducting 

layers, each of which is a graph isomorphic to the channel grid. These layers 

are ordered and placed one on top of another, and contacts between two distinct 

layers (vias) can be made only at grid points. If two layers are connected 

at a grid point, no layer in between can be used at that grid point.

We shall use the terms "layout" and "wiring" with the following distinct 

technical connotations (as in [PL]).

Definition 1 . A wire layout (or simply layout) for a given GCRP is a 

subgraph of the layout grid, each of whose connected components corresponds to 

a distinct net of the GCRP, in the knock-knee mode.

Notice that we can, without loss of generality, restrict ourselves to 

connected subgraphs which are trees, which we shall call wire-trees. (Each 

non-tree graph can be replaced by one of its tree subgraphs on the same set of 

terminals.)

(a) Crossing (b) Knock-knee
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Definition 2. Given a wire layout consisting of wire-trees w^,...,w^, a 

wiring is a mapping of each edge of wire-tree w^ (for i = l,2,...,n) to a 

conducting layer with vias established at layer changes.

Example. Consider a GCRP n = {N^,^} where = ((2,4), (5)) and

= ((3),(1,4)) (see Figure 2a). Nets are laid out and wired 

as shown in Figures 2b and 2c.

Columns 1 2 3 4 5

(a)

n z

_ u
H  >
—< )---

(b)

layer 1 
layer 2

(c)

Figure 2. (a) Specification of the terminals of and N^; (b) wire layout

and (c) wiring of the nets and N^.

An optimal layout of a given GCRP is a layout that uses the least possible 

number d of tracks. A simple-minded (and optimistic) lower bound to d can be 

readily established as follows.

Consider a GCRP n = {N. ,...,N } , where N . = ((s^,....s1 ), (t\ ...,t^ )), and1 n l 1 k . 1 h .
i i i i 1 1let SL. = min(s_,t1) and r. = maxis, ,t, ). The interval [¿.,r.] represents an l 1 1 1  k. h. i il l

obvious lower bound to the horizontal track demand raised by N ., since al
terminal in column l. must be connected to a terminal in column r.. In otherl l*words N_̂  is replaced by a fictitious two-terminal net (whose two terminals
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may belong to the same track). We now consider the channel routing problem 
* * *

n = {N^,...,N }, and use standard methods to obtain its density 6 (i.e., the 

maximum number of two-terminal nets which must cross any vertical section of 

the channel). It is clear that 6 is a lower bound for the minimum number of 

horizontal tracks, and we call 6 the essential density of the GCRP..

The method of Preparata-Lipski [PL], devised for the two-terminal net 

CRPs, produces optimal routings (i.e., it uses 5 tracks). However, the best 

known upper bound on t for multiterminal nets is t < 26-1 [SP], and no one has 

been able to make any statement about the tightness of this bound.

In this paper we will show that it is NP-complete to decide whether an 

arbitrary instance of the GCRP, in the knock-knee mode, can be routed (using any 

number of layers) in a given number of tracks (an analogous result was shown by 

Szymanski [Sz] for the Manhattan mode). The most frustrating implication of this 

result is that, unless p = NP, no efficient algorithm can find the least possible 

number, d, of tracks required to route a given GCRP (using three or more 

conducting layers).
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2. GENERAL CONSTRUCTION

In this section we shall prove the NP-completeness of the GCRP by verifying

that a known NP-complete problem is (polynomial-time) transformable to the GCRP

(details about the theory of NP-completeness can be found in [GJ]. The

NP-complete problem that we shall use is 3-satisfiability (3SAT):

Instance: A collection C = {c„,c„,...,c } of clauses on a finite set U of--------  1 2  m
variables such that |Ĉ j = 3  for 1 <_ i <_ m, and |u| = n.

Problem: Find a truth assignment for U that satisfies all the clauses, that is,

in each clause, at least one literal is true.

Following the definition in [SP], for any integer c, the interval (c,c+l) is

called a vertical section (the vertical strip comprised between two columns).

We say that a net N = ((s^,...,s^),(t^,...,t^)) is upper-active in (c,c-KL) if

^  _< c < t^ and lower-active in (c,c-H) if s^ < c < s^; N is active in (c,c+l)

if it is both upper-active and lower-active in (c,c+l). Any vertical line

x = x , x £ (c, c+1) for minis,, t,) < c < maxis, , t, )-l cuts N in at least oneu u  i l  —  —  k h
point; each intersection of N with x = x^ identifies a strand of N at x^. For

a column c, let d_(c) and d+ (c) be the local densities of the problem in the

vertical sections (c-l,c) and (c,c+l), respectively. With reference to a

left-to-right scan, we say that c is a density increasing column (d.i.c.) if

d_(c) < d+ (c), is a density decreasing column (d.d.c.) if d_(c) > d+ (c), and a

density preserving column (d.p.c.) if d_(c) = d+ (c). Hereafter, a terminal will

be labeled with the index of the net to which it belongs.

We shall now assume that the layout of the given GCRP r\ uses tracks l,2,...,t.

We assume that each net N occupies at most two tracks in (c,c+l). We call them
upper track a (m) and the lower track a (m). Note that a (m) >_ a (m) and 

a (m) = a (m) if and only if net N occupies only one track in (c,c+l)
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2.1 Construction

We shall construct an instance of the GCRP corresponding to an instance of 

3SAT. We partition the channel into blocks of contiguous columns where each 

block either corresponds to a clause of 3SAT - a clause block - or ensures a 

fixed orderingof nets - an enforcer or an end block. A similar idea has been 

exploited by Szymanski [Sz], but due to the inherent difference between the 

knock-knee and the Manhattan modes, the two constructions are correspondingly 

different.

Now we introduce the GCRP constructs corresponding to 3SAT variables. A

pair of nets (N.,NT)will correspond to a variable v.(v. € U) . Consider a

column c with upper-terminal i and lower-terminal i. If a (i) > a (i) (at theu u
vertical section (c-l,c)) the layout of column c is straightforward; indeed, we 

connect the upper-terminal to o(i) and lower-terminal to o(i) , as shown in 

Figure 3a. Instead, if cr̂ Ci) < a^(i) in (c-l,c) we must have two strands of N_̂  

or N- at the vertical section (c,c+l), as shown in Figure 3b. The convention 

is that the variable v , corresponding to the pair (N^N-), is true if

y =  ou U) 

y =  a u ( i )
a st(1)

au(i)
ou(I)
a£(i)

(a) a^(i) > au(i):v^ true (b) a (i) < a (i): v . u u 1 false

Figure 3. A pair of nets correspond to a boolean variable.
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o^(i) > (i) and false if a^(i) < ^(i). Obviously, the layout of a column

with upper-terminal i and lower-terminal i is simpler (requires only two tracks

in (c,c+l)) if the corresponding variable is true.

Now we can construct the clause blocks (B., , ... ,B ), each of which corresponds-------------- 1 m
to a clause of 3SAT (B^ corresponds to c^, for 1 <_ i <_ m) . We will insert an

enforcer block (0 <_ i _< m) to the right of the clause block B^, and to the left

of the clause block B_̂ +^. The main purpose of the enforcers is to guarantee that

both strands of nets N. and Nt are ordered with respect to strands of nets N. andl . i  J

Nj, that is, au (j)»au (j) < au (i)»au (i) f°r ^ i  j < i i  n ‘ We also introduce
two end blocks, F_ and F. , to the left of E and to the right of E , respectively, ----------  u ± o m
to ensure that (some) nets traverse the entire length of E0 and E . An overviewU m
of the channel is shown in Figure 4.

Fo O Bi Ei • • • Bm Em Fi

Figure 4. Relative positions of the enforcer, clause, and end blocks.

The essential density of our proposed problem is 2n+4:2n nets (N.,N- for

1 _< i _< n) for n variables, 2 long nets N^ and (which traverse the entire

length of the channel), and pairs of nets N and N_ that begin in B . _ ande. r. l-ll l
terminate in B_̂ . Thus there are a total of 2(n+m+l) nonoverlapping nets. Next 

we give a more detailed description of the individual blocks.
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We begin by describing the clause blocks. Each clause block consists of

seven columns: B. contains columns c.,c.+l,...,c.+6. Columns c. and c.+l are 
1 1 1 1  1 1

d.d. columns at which N and N_ terminate, respectively. Columns c.+2, c.+3,e. f . i il i
and c.+4 are d.p. columns. Finally,, nets N and N. begin at column c.+5 

1 ei+i f±+i
and c^+6 respectively. The position of terminals in is shown in Figure 5,

where A is the index of the empty net. For convenience, we have used a, b, and

c for the indices of nets corresponding to the variables (of the blocks) with

the convention that a (a),a (a) < a (b),a (b) < a (c),a (c). As we shallu u u u u u
verify later, this ordering of the nets at the vertical sections (c^-l,c^) and 

(c +6,c +7) is imposed by ^ and respectively.

e f.l l

N ,N- n n

N ,N- c c

Nb .Nr ̂ {

N ,N- a a

V Nï

au (e) 
a (f)

<Ju (ei) 
a (f.)U 1

Columns:
l

Local densities: 2n+4

e
1

f c b 
1 1 1

a
| ei+l•

c .l c.+l c.+2 c.+3l , 1 , 1 . c .+4l | c.'+5l

•)N ,N-v n n

‘In ,n -c c

} Nb>Ni

] Na>N;

VNi
a (e) uau ( f )

2n+3 2n+2 2n+2 2n+2 2n+2 2n+3 2n+4

Figure 5. Clause block B_̂ .



9

An enforcer block  ̂ consists of 4n+l columns: (i) n-1 subblocks each of 

which contains four columns; the j-th block ensures that the strands of nets

lie above the strands of nets N.,Nt > that is, a (j+l),a (j+1) > cr (j),cr (j)3+1 j+1 3 3 u u u u
in (c.-l,c.), (ii) five columns that guarantee a (l),a (1) > a (e) > a (f) > a (e.)>a (f ) 1 1  u u u u u i u ^ i 7
in (c^-l,c^). The enforcer block E_̂ _̂  is shown in Figure 6.

N ,N- n n

Nr N:

au(e)
au (f)

au (ei)
‘u (V

n n n n 3 3 l i e f

•  •  • • •

e .l

n-1 n-1 n-1 n-1 3-1 3-1 3-1 3-1 e e f e . f .i l

N ,N- n n

;Ni,NI
au (e )
a (f)

au (ei)
° u < V

Figure 6. Enforcer block E_̂

Finally, each of the end blocks F^ and F^ contain 2n+4 columns (actually

n+2 columns could suffice): 2n+2 columns for N.,Nt (1 < i < n), N , and N_,i i  ~  ~  e r
and two columns for N ,N_ in F_, and N ,N_ in F..

el f l 0 em+l fm+l 1
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2.2 Proof of the Reduction

First, we must show that all of the nets must have a fixed ordering as 

they enter (in a left-to-right scan of the channel) a clause block (see 

Figures 5-6). We will also show that a clause block can be laid out using 

6 = 2n+4 tracks if and only if the corresponding 3SAT-clause is satisfiable 

(i.e. if and only if it contains at least one true literal).

Lemma 1 ; If a d.p. column c has a terminal of net N as its upper terminal and 

a terminal of net N as its lower terminal, and if t = d+ (c) ( = d (c)), then

au (i) > a (j) at the vertical sections (c-l,c) and (c,c+l).

Proof: Since each of the t tracks is occupied by a distinct net, N. and N.
i J

can only be connected to y = a (i) and y * ’a (j'), respectively.

If 0 (j) > cr (i), then the vertical section between y = a (i) and y = a (i) u u  u u
at column c is shared by N. and N. (see Figure 7a), which violates the knock-knee 

» 3
mode rules, so a^(i) > a^ij), as shown in Figure 7b. □

i i

♦
.. ■■ overlap

4

j j

Figure 7. Layout of column c when t = d_(c) = d+ (c).
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Now consider the enforcer block E_̂  (see Figure 6). Since there are

exactly t = 2n+4 tracks available and t = d_(c) = d+ (c), where c is any column

of E_̂ , we can apply Lemma 1 to each column. The application of Lemma 1 to the

first column of E. dictates that the strand of N lie above the strand of Ni n n-1
After applying this lemma to every column of E^, we obtain the following result.

Lemma 2: In the vertical section (c!+k-l,c!+k) for 0 < k < 4n+l, when c 1 isi i  —  —  i
the leftmost column of the enforcer block E^, the following invariants are

maintained: (i) if i > j then a (i),a (I) > a (j),a (j) ; (ii) nets N , N_,u u u u e r
N , and N occupy tracks 4, 3, 2, and 1, respectively. 
ei i

Next, we consider the layout of a clause block. We must show that a clause

block can be laid out if and only if its corresponding clause in 3SAT is satisfiable,

that is, (with reference to Figure 5) a (a) > a (a), or a (b) > a (b), oru u u u
^(c) > au (c) in (c^-l.c ) . We must also guarantee that the ordering of pairs

of nets corresponding to a variable remains fixed as we lay out a block.

The upper terminal of column (the leftmost column of is ei and the

lower terminal is e (see Figure 5). Since a (e) > a (e.), either N or N mustu u x e e.l
have two strands in the section (c^,c^+l) (this is a trivial variation of

Lemma 1). Since N and N can occupy at most two tracks in the section (c ,c +1),e . e i il
and N is forced to have at least one strand in this section (since N is a © e
continuing net), N must be the net with two strands at this vertical section.e
Therefore, column c^ can be uniquely laid out; we connect the upper-terminal to

a (e.), thereby terminating N , and we connect the lower-terminal to a (e ), u 1 u i
as shown in Figure 8a. Using a similar argument and considering that the two

strands of N cannot be spliced at column c.+l, we can verify the existence of a e x
unique layout for this column as shown in Figure 8b.
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n ,N-r n n )

NrNij;
°u(e>
°u(f)
0u (ei)'
°U(V

°<t(e)

N ,N-f n n

n i >n i

au (e)
au (f)

W
W r a^(f)

c .1 c .+1 1

(a) (b)

Figure 8. Layout of column c_̂  and c^+1

Next we show that if all the variables of a clause in 3SAT are false then

the corresponding clause block cannot be laid out (in 2n+4 tracks). With

reference to Figure 5, assume that v (the variable associated with (N ,N-)) isc c c
false, that is, a (c) > a (c). We must then have a free track in the vertical u u
section (c.+2,c.+3) to be able to run the second strand of net N- (or N ). We canc c
have this free track if we splice the two strands of N or N_ at column c +2e f i
(note that we cannot splice the strands of both nets). If we splice the strands

of then there is a unique way to layout column c^+2; we connect the upper-

terminal to y = a (c), the lower-terminal to y = o (f), and y = a (f) to u ix
Y = a £(f) (see Figure 9a). Instead, if we splice the strands of then there 

are two ways to layout this column, as shown in Figure 9b.
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c

a (c) ------u
a (c) .....Iu

a (e) u
(f) -----u >—

— r ~ __>£ ' 
o(f) ___ //-- Q o(c) r  v «

r ~  V c>
c c c

(i) (ii)

V c)

(a) Strands of are spliced (b) Strands of are spliced

Figure 9. Layout of column c_j+2.

If v, is false, that is, a (b) > a (b), then we can apply the preceding b u u
argument to show that net or (depending on which one was spliced at cH-2)

must be spliced at column c_̂ +3. It is crucial to observe that N- cannot be spliced

at this column; if it is, then we are unable to connect the upper- or the lower-

terminal to any tracks. All possible ways to layout column c_j+3 are shown in

Figure 10, which provides sufficient explanation.

A closer look at column c.+4 reveals that neither the strands of N- nor the
1 c

strands of N- can be spliced at this column, since o (c),a (b) > a (a),a (a) > b u u u u
on(c),an(b). We conclude that if v is false —  that is, a (a) > <j (a) —£ ' £ ' a u u
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au (b)'V b>

°u(e)
au (f)

V e>
V T>

M b ) °»<c)
Vb>

IT M b ) V c>
Vb> r Vb

(a) If c^+2 is laid out as 
shown in Figure 9a.

(b) If c.+2 is laid out asl
shown in Figure 9b(i).

(c) If c.+2 is laid out
shown in Figure 9b(i:

Figure 10. Layout of column c^+3.

then B. cannot be laid out in 2n+4 tracks. In fact, to lay out column c.+4l i
we must add one more track. The preceding discussion gives us the following 

result.

Lemma 3. If a (a) > a (a), a (b) > a (b) and a (c) > a (c) in B ., that is, -------  u u u  u u u 1

v + v, + v =0, then B. cannot be laid out in 2n+4 (=6) tracks, a b c i
Assume that v and v, are false, but v is true. Column c.+2 and c.+3 c b a i i

are laid out as shown in Figures 8 and 9. Column c_̂ +4 can be laid out by

connecting the upper-terminal to y = au (a) an(* lower-terminal to y = a^(a) .

At column c.+5 and c.+6, we will splice the strands of N- and N- and begin i i  c b
N and N , respectively. Note that there are only two possible 
ei+l l+l
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ordering of nets in the section (^+3, c > 4 ) ; we can lay out columns c.+4,

c^+5, and c_̂ +6 correspondingly in two different ways (see Figure 11). We also

have a choice of splicing the strands of N- and Nr at c .+5 or c.+6, that is,c b l i
we can trade the knock-knees at (x,y) = (a (c) ,c .+5) and (a (b), c.+6) with theX J6 1
one at (a^(b),c^+5) in Figure 11a. A similar tradeoff exists for the case

illustrated in Figure lib.
a A A a A A

0u (C)

ouM

°u(b)
°u(b)

° U (a)
a u (I)

° u (e) 
% ('> 
a «,(*>) 
a. (H)

•
•
•

•
•
•

•
•
•

•
•
•

___J

> Ji
° u (ei+1)
° u (fi+1)

,a ei+l fi+l 
I I I c .+4 c .+5 c .+6 i i i
(a)

CT£(C)
0^(5)

•
•
•

••
•

9

•
•
#

••
•

l___
__

)
«1a e f . i+1 i+11 I I c.+4 c.+5 c.+6i l l

cr (e.+l) u 1
a (f.+l) u i

(b)
Figure 11. Layout of columns c.+4, c.+5, and c +6.i i  i
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We conclude that if (v »u >v ) = (0,1,1), then we can lay out the clausea b c
block (in 2n+4 tracks). Since only the pair of nets corresponding to false 

variables (v in the preceding discussion) require an extra track, and therecl
are at most two free tracks , we conclude that the same result holds if at least

one of the variables is true which means that the two tracks that are free will

be used for the nets associated with the false variables.

Lemma 4. If v V v, V v = 1  (i.e. a (a) > a (a) or a (b) > a (b), or -------  a b c  u u u u
a (c) > a (c)) in the enforcer block B., we can layout the block using u u i °
2n+4 (=6) tracks.

It has been shown that the ordering of nets remains fixed as we lay out an

enforcer block. Now, we must show that the ordering is also preserved when we

layout a clause block. In particular, we must show that if a (N ) > Q (N-) atu i < u i
the vertical section (c_^-l,c^) of then cr^iN^) < cr̂ iN-) at the vertical 

section (c +6,c +7). We accomplish this task by showing that net N for
j

1 _S j  £  n,  cannot change tracks from y = a ( j )  to y ■ a ( J ) .

We have seen that there is a unique way to layout column c and c +1 ini i
the clause block B^ (see Figure 8). The only available free tracks at columns

c_j+2, c^+3, and cJ-6 are at y = 1 or y = 2, and they become available when we

splice the two strands of and (each in a different column). This means

that at these columns, tracks 3 through 2n+4 are occupied by distinct nets, and

the vertical section (y-,y ) = (a(e),a(f)) is occupied by net N , N_, N-, N-, orx L 1 e f c b
N-. Therefore, neither nor , nor can have a vertical wire at these columns, 

that is, they cannot switch tracks at these columns. Finally,

c +7 contain a segment N and N and also nets N , N_, N-, N-, or N- can be
i+1 £i+l e f a b c

spliced at this column (exactly one net per column). Trivially, none of N , N ,
a b *

or can have a vertical segment at column c^+5 or c^+6. The preceding 

discussion gives us the following result.
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Lemma 5 . The ordering of nets that corresponds to the truth assignment of the 

variables is an invariant from one block to the other. We now integrate the 

previous results to establish the main theorem of this section.

Theorem 1 . Our proposed instance of the GCRP with 6 = 2n+4 can be laid out in 

2n+4 tracks if and only if the corresponding 3SAT problem is satisfiable.

Proof: (if) If the corresponding 3SAT is satisfiable, then it means that

v_ + vK + v*' = 1 for all i, 1 £  i < m. Thus, in each clause block a (a) > a (a),d D C U u
au (b) > a^Cb), or cr^c) > a^Cc), so by Lemma 4, every one of the clause blocks 

can be laid out using 2n+4 tracks.

(only if) If the corresponding 3SAT is not satisfiable, that is,

va + = 0 for some i, 1 <_ i <_ m, then in the corresponding clause block

o (3..) > a (a ) and a (b.) > a (b.), and a (c.) > a (c.). Lemma 3 implies that 

the corresponding clause block cannot be laid out in 2n+4 tracks; indeed, we 

must use more than 2n+4 tracks (i.e., 2n+5 tracks) to layout that clause block. * 

Thus, the entire problem requires more than 2n+4 tracks. These arguments hold 

provided that the truth assignment is common to all bolcks and this was established 
by Lemma 5.

Theorem 2. It is NP-complete to decide whether an arbitrary instance of a GCRP 

with essential density 6 can be laid out using a specified number of tracks.

Proof. In Theorem 1 we have shown that a known NP-complete problem is reducible 

to the GCRP in polynomial time. This implies that the GCRP is NP-complete. □

Immediate consequences of the previous theorem are:
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Corollary 1 : The following problems are NP-hard (or NP-complete) in knock-knee

mode:

(i) To determine the minimum number of tracks needed to lay out an 

arbitrary instance of the GCRP.

(ii) To decide whether a given layout for an instance of the GCRP is 

optimal.

(iii) To obtain an optimal layout, that is, a layout that uses the least 

possible number of tracks.
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3. NETS OF BOUNDED DEGREE

In this section, we shall extend the previous result to nets of bounded

degree k. We will show that for k > 5 it is NP-complete to decide whether an

arbitrary k-terminal net GCRP (where each net has at most k terminals) can be

laid out with a specified-number of tracks.

In order to establish this result, we need to modify the construction of

Section 2 in such a way that each net has at most k terminals. Since each net

has at most one terminal in a clause block (see Figure 5), we begin by cutting

a k-terminal net N_̂  into s pieces, (each an individual net), called N^,N7,...,N®.

Each column c of an enforcer block with upper terminal i and lower-terminal

j will be replaced by five columns. At the first two columns we terminate nets 
,Tm , m m+i m+iN and N., and, at the next two columns, we begin N. and N. . Finally, at the 1 J i J
fifth column we enforce a^(i) > a (j) which is exactly what column c was 

originally meant to accomplish (see Figure 12).

i j i f j 1 i ’

V 4)
VJ)

°u(i)
°u(j) '»— •

♦---- V 1')
- i - V J ' )

i j i' j ' j '

Figure 12. Transformation of a column in an enforcer block.



20

After this transformation, every net has exactly five terminals (with the 

exception of the nets that have a terminal in an end block). In fact, all the

nets have either j— j-— J or | 1— | form. Obviously, the ordering of the nets

(see Lemma 2) is preserved and we conclude:

Theorem 3 : It is NP-complete to decide whether an arbitrary instance of the

k-terminal net CRP, for k 5, can be laid out in a specified number of tracks. 

Obviously, Corollary 1 also holds for this problem (k-terminal net CRP).

As we have mentioned, all the nets in our final construction are of the form

J— j— | or |---1 J . Preparata and Sarrafzadeh [PS] have shown that a 3-terminal

net CRP with essential density 6 can be laid out (and wired) using 36/2 tracks.

An immediate consequence of this result is that a problem with nets of the form

|— j— | or J- - - 1- - - j , and essential density 5, can also be laid out in 36/2
tracks, Theorem 3 shows that it is NP-hard to find an optimal layout (or routing) 

for this problem.

It should be noted that Theorem 3 holds for other routing models lqke 

routing through a rectangle or routing through a generalized switchbox.
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