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ABSTRACT

This paper also appears in the Proceedings of the Sixth National Conference on Artificial 
Intelligence, Seattle, WA, July 1987.

This paper addresses the important issue in "explanation-based learning" of generalizing 
number. Most research in explanation-based learning involves relaxing constraints on the variables 
in an explanation, rather than generalizing the number of inference rules used. However, many 
concepts require generalizing the structure of the explanation. An explanation-based approach to 
the problem of generalizing to N  is presented. The fully-implemented BAGGER system analyzes 
explanation structures and detects extendible repeated, inter-dependent applications of rules. 
When any are found, the explanation is extended so that an arbitrary number of repeated 
applications of the original rule are supported. The final structure is then generalized and a new 
rule produced. An important property of the extended rules is that their preconditions are 
expressed in terms of the initial state - they do not depend on the results of intermediate 
applications of the original rule. To illustrate the approach, portions of several situation calculus 
examples from the blocks world are analyzed. The approach presented leads to the acquisition of 
efficient plans that can be used to clear an object directly supporting an arbitrary number of other 
objects, build towers of arbitrary height, and unstack towers containing any number of blocks.

* This research was partially supported by the National Science Foundation under grant NSF 1ST 85-11542.
* University of Illinois Cognitive Science/Artificiai Intelligence Fellow.



BAGGER

An EBL System that Extends and Generalizes Explanations

I. INTRODUCTION

Most explanation-based generalization algorithms [Fikes72, Mitchell86, Mooney86, 

0 ’Rorke87, Rosenbloom86] do not alter the structure of their explanations. No additional objects 

nor inference rules can be incorporated into the explanation. Instead, these algorithms generalize 

by converting constants in the observed example to variables with constraints. Augmentation of 

the explanation, which can often be required to produce the appropriate generalization, is not 

performed. This paper addresses the important issue in explanation-based learning of extending 

explanations. This can involve generalizing such things as the number of entities involved in a 

concept or the number of times some action is performed. It is our thesis that explanation 

structures that suffice to understand a specific example do not always fully reflect the underlying 

general concept.

Many concepts require generalizing number. For example, concepts such as momentum and 

energy conservation apply to arbitrary numbers of physical objects, clearing the top of a desk can 

require an arbitrary number of object relocations, and setting a table involves an arbitrary number 

of guests. In addition, there is recent psychological evidence [Ahn87] that people can generalize 

number on the basis of one example.

A domain-independent, explanation-based approach to the problem of "generalizing to N  ” is 

presented in [Shavlik87b]. That paper presents a theory of generalizing number. It also motivates 

the need for augmenting explanations, discusses other approaches to generalizing the structure of 

explanations [Cheng86. Prieditis86, Shavlik85, Shavlik87a] and briefly discusses how this approach 

handles examples from several domains. This paper describes the details of a working system 

based on that theory. The system analyzes and generalizes structures of the form shown in the



Page 2

left-hand side of figure 1.

Observation of the repeated application of a rule or operator indicates that generalizing the 

number of rules in the explanation may be appropriate. The desired form of structural recursion is 

manifested as repeated application of an inference rule in such a manner that a portion of each 

consequent is used to satisfy some of the antecedents of the next application. When such a 

sequence is detected, it is determined how an arbitrary number of instantiations of this rule can be 

concatenated together. This indefinite-length sequence of rules is conceptually merged into the 

explanation, replacing the specific-length collection of rules, and a standard explanation-based 

algorithm produces a new rule from the augmented explanation. An additional requirement is that 

the preconditions for the N  rule applications be fully specified in terms of the state of the world 

when the new rule is applied. That is, the preconditions do not depend on the results of 

intermediate applications of the underlying rule.

Figure 1. Augmenting the Explanation
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n. THE BAGGER SYSTEM

The BAGGER system (Building Augmented Generalizations by Generating Extended 

Recurrences) analyzes predicate calculus proofs and attempts to construct concepts that involve 

generalizing to N . Most of the examples under study use the situation calculus to reason about 

actions.

One problem solution analyzed by BAGGER is shown in figure 2s. The goal is to clear 

block x . The system is provided low-level domain knowledge about blocks, including how to 

transfer a block from one location to another. Briefly, to move a block it must have nothing on it 

and there must be free space at which to place it. Additional inference rules (many of which are 

frame axioms) are used to reason about the eifects of moving an object. The system produces a 

situation calculus proof validating the actions shown in figure 2s. in which two blocks must be 

moved to clear the desired block. By analyzing this example, the system acquires a general plan for 

clearing an arbitrary block contained in a tower of arbitrary height. The acquired plan applies, for 

example, to the problem of clearing block z in figure 2g. Note that there may be a different 

number of blocks on z than on x .

In another example, the system observes several blocks being stacked upon one another in 

order to satisfy the goal of having a block at a specified height. Extending the explanation of these 

actions produces a plan for stacking any number of blocks in order to reach any given height 

(provided enough blocks exist). Figure 3 illustrates this general plan.

Figure 2s. Unstacking a Specific Tower
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I

Figure 2g. A General Plan for Unstacking Towers

* «— goal

a

Unlike many other block-manipulation examples, in these examples it is not assumed that 

blocks can support only one other block. This means that moving a block does not necessarily clear 

its supporting block. Another concept learned by BAGGER is a general plan for clearing an object 

directly supporting any number of blocks. This plan is illustrated in figure 4.

The domain of digital circuit design has also been investigated. By observing the repeated 

application of DeMorgan's law to implement two cascaded and gates using or and not gates.
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□
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1___________________ 1

Figure 4. A General Plan for Clearing Objects

BAGGER produces a general version of DeMorgan's law which can be used to implement N  

cascaded and gates with N or and one not gate.

The next section describes how BAGGER constructs these general plans. Complete details on 

these examples, including the initial set of inference rules used, the situation calculus proofs, and 

the acquired inference rules, can be found in [Shavlik87c].

ID. GENERALIZATION IN BAGGER

The system begins its analysis of a specific solution at the goal node. It then traces backward, 

looking for repeated rule applications. These repeated applications need not directly connect - there 

can be intervening rules. The general rule repeatedly applied is called a focus rule. Once a focus 

rule is found, BAGGER ascertains how an arbitrary number of instantiations of this rule and any 

intervening rules can be concatenated together (as illustrated in figure 1). This indefinite-length 

collection of rules is conceptually merged into the explanation, replacing the specific-length 

collection, and a new rule is produced from the augmented explanation.

Three classes of terms must be collected to construct the antecedents of a new rule. First, the 

antecedents of the initial rule application in the arbitrary length sequence of rule applications must 

be satisfied. To do this, the antecedents of the focus rule are used. Second, the preconditions 

imposed by chaining together an arbitrary number of rule applications must be collected. These are 

derived by analyzing instantiations of the focus rule in the sample proof. Those applications that 

provide enough information to be viewed as the arbitrary uh application produce this second class
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of preconditions. Third, the preconditions from the rest of the explanation must be collected. This 

determines the constraints on the final applications of the focus rule.

The consequents of the new rule are produced by collecting the consequents of the last 

application in the chain of focus rule applications and any other terms in the goal expression. For 

example, the consequents for the rules illustrated by figures 2g and 4 state that in the final 

situation the object originally under the last object moved is clear. In the rule represented by 

figure 3, the consequents state that the last block moved is at the goal location.

In order to package a sequence of rule applications into a single macro-nde, the preconditions 

that must be satisfied at each of the N  rule applications must be collected and combined. The 

preconditions for applying the resulting extended rule must be specifiable in terms of the initial 

state, and not in terms of intermediate states. This insures that, given that the necessary conditions 

are satisfied in the initial state, a plan represented in an extended rule will, run to completion 

without further problem solving, regardless of the number of intervening states necessary. For 

example, there is no possibility that a plan will lead to moving N  — 2 blocks and then get stuck. If 

the preconditions for the ith rule application were expressed in terms of the result of the (i—1 )ch 

application, each of the N  rule applications would have to be considered in turn to see if the 

preconditions of the next are satisfied. In the approach taken, extra work during generalization and 

a possible loss of generality are traded off for a rule whose preconditions are easier to check.

When a focus rule is concatenated an arbitrary number of times, variables need to be chosen 

for each rule application. A sequence of p -dimensional vectors, called the rule instantiation 

sequence (R1S), is used to represent this information. The general form of the RIS is:

<V U ........V 1/, > .< V 21....... v 2p> ------ , <V„ !........vn p > (1 )

In the unstacking example of figure 2s, p — 3: the current state, the object to be moved, and the

object where the moved object will be placed.

Depending on the rule used, the choice of elements for this sequence may be constrained. For 

example, certain elements may have to possess various properties, specific relations may have to
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hold among various elements, some elements may be constrained to be equal to or unequal to other 

elements, and some elements may be functions of other elements.

To determine the preconditions in terms of the initial state, each of the focus rule 

instantiations appearing in the specific proof is viewed as the \th application of the underlying rule. 

The antecedents of this rule are analyzed as to what must be true of the initial state in order that it 

is guaranteed the ith collection of antecedents are satisfied when needed. This involves analyzing 

the proof tree, considering how each antecedent is proved. An augmented version of a standard 

explanation-based algorithm [Mooney86] is used to determine which variables in this portion of the 

proof tree are constrained to be identical.1 Once this is done, the variables are expressed as 

components of the p -dimensional vectors described above, and the system ascertains what must be 

true of this sequence of vectors so that each antecedent is satisfied when necessary. All antecedents 

of the chosen instantiation of the focus rule must be satisfied in one of the following ways for 

generalizing to N  to be possible:

(1) The antecedent may be situation-independent. Terms of this type are unaffected by actions.

(2) The antecedent may be supported by a consequent of an earlier application of the focus rule. 

Terms of this type place inter-vector constraints on the sequence of p -dimensional vectors.

(3) The antecedent may be supported by an "unwindable rule.” When this happens, the 

antecedent is unwound to the initial state and all of the preconditions necessary to insure that 

the antecedent holds when needed are collected. This process is elaborated later. It. too, may 

place inter-vector constraints on the sequence of p -dimensional vectors.

(4) The antecedent is supported by other terms that are satisfied in one of these ways.

Notice that antecedents are considered satisfied when they can be expressed in terms of the 

initial state, and not when a leaf of the proof tree is reached. Conceivably, to satisfy these 

antecedents could require a large number of inference rules. If that is the case, it may be better to

1 The ruies used in the specific proof are replaced by their general versions and the algorithm determines which 
unifications must hold to maintain the veracity of the proof. That is, expressions must be unified wherever a rule consequent 
is used to satisfv an antecedent of another rule.
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trace backwards through these rules until more operational terms are encountered. This 

operationality/generality trade-off [Mitchell86] is a major issue in explanation-based learning, and. 

except where it relates directly to generalizing to N  , will not be discussed further here.

A second point to notice is that not all proof subtrees will terminate in one of the above ways. 

If this is the case, this application of the focus rule cannot be viewed as the \th application.2

The possibility that a specific solution does not provide enough information to generalize to N  

is an important point in explanation-based approaches to generalizing number. A concept involving 

an arbitrary number of substructures may involve an arbitrary number of substantially different 

problems. Any specific solution will only have addressed a finite number of these sub-problems. 

Due to fortuitous circumstances in the example some of the potential problems may not have 

arisen. To generalize to N  , a system must recognize all the problems that exist in the general 

concept and, by analyzing the specific solution, surmount them. Inference rules of a certain form 

(described later) elegantly support this task in the BAGGER system. They allow the system to 

reason backwards through an arbitrary number of actions.

A specific solution will contain several instantiations of the general rule chosen as the focus 

rule. Each of these applications of the rule addresses the need of satisfying the rule's antecedents, 

possibly in different ways. For example, when clearing an object, the blocks moved can be placed 

in several qualitatively different types of locations. The moved block can be placed on a table (the 

domain model specifies that tables are always clear), it can be placed on a block moved in a 

previous step, or it can be placed on a block that was originally clear.

2 One solution to this problem would be to have the system search through its collection of unwindable rules and 
incorporate a relevant one into the proof structure. To study the limits of this paper’s approach to generalizing to .V, we are 
requiring that all necessary information be present in the explanation; no problem-solving search is performed during 
generalization. Another solution would be to assume the problem solver could overcome this problem at rule application 
time. This second technique, however, would eliminate the property that a learned plan will always run to completion 
whenever its preconditions are satisfied in the initial state.
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BAGGER analyzes all applications of the general focus rule that appear in the specific 

example. When several instantiations of the focus rule provide sufficient information for number 

generalization, BAGGER collects the preconditions for satisfying their antecedents in a disjunction 

of conjunctions (one conjunct for each acceptable instantiation). Common terms are factored out of 

the disjunction. Knowledge about the independence of the methods of satisfying the antecedents 

can be used to further simplify the disjunction of conjunctions.

The learned rule illustrated in figure 2g only allows clearing towers by unstacking each block 

(after the first) on the previously moved one. The first transfer of figure 2s provides no 

information that can be used to guarantee that the block to be moved in step i is clear at that step. 

The acquired rule would be more general if it contained provisions for placing moved objects in 

any of the types of locations mentioned above. When an example of unstacking a four-block tower 

is presented to the system, where one intermediate block is placed on the table, a disjunctive rule is 

learned. In this case, the learned rule provides a choice of places to locate moved blocks. The 

disjunctive rule represented by figure 3 involves a choice of where to get the next- block for the 

tower being constructed. Either a block that is clear in the initial state is used, or a block that is 

cleared by earlier transfers is chosen.

Figure 5 contains a portion of the proof for the unstacking example. Portions of two 

consecutive transfers are shown. All variables are universally quantified. Arrows run from the 

antecedents of a rule to its consequents. Double-headed arrows represent terms that are equated in 

the specific explanation. The generalization algorithm used enforces the unification of these paired 

terms.

There are four antecedents of a transfer. To define a transfer, the block moved (a: ). the object 

on which it is placed (y ), and a state (j ) must be specified, and the constraints among these 

variables must be satisfied. One antecedent, the one requiring a block not be placed on top of itself, 

is type 1 - it is situation-independent. The next two antecedents are type 2. Two of the 

consequents of the ith transfer are used to satisfy these antecedents of the jth transfer. During
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transfer-,

(Clear ?x, (Do (Transfer ?x, ?y, ) ?Sj ))

(State (Do (Transfer ?x, ?yt ) ?s, ))

(FlatTop ?z ) (Clear ?z ?s )

(State ?Sj )

?x j ?y j  )

(FreeSpace ?z ?s )

(FreeSpace ?y> ?sj )
(Liftable ?Xj ?S j )

transfer y

Figure 5. Satisfying Antecedents by Previous Consequents

transfer-, . in state s, object x, is moved on to object y -,. The consequents of this transfer are that a 

new state is produced, the object moved is clear in the new state, and x, is on y-, in the resulting 

state. (The On term is not shown.)

The state that results from transfer, satisfies the second antecedent of transferj. Unifying 

these terms completely defines Sj in terms of the previous variables in the RIS.

Another antecedent requires that, in state Sj , there be space on object yy to put block X j . 

This antecedent is type 4. Another inference rule specifies that a clear object with a flat top has 

free space. The clearness of x-, after transfer, is used. Unifying this collection of terms leads, in 

addition to the redundant definition of Sj , to the equating of yy with 2 and x , . This means that 

the previously moved block always provides a clear spot to place the current block. No provisions 

need be made to insure the existence of a clear location to place intermediate blocks.
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The fourth antecedent, that Xj be liftable, is also type 4. A rule (not shown) states that an 

object is lif table if it is a clear block. Block Xj is determined to be clear because the only object it 

originally supports is moved in transfer, . Tracing backwards from the liftable term leads to 

several situation-independent terms and the term (Supports ?Xj (?x, ) ?s, ). Fortunately, although 

this term contains a situation variable, it is satisfied by an “unwindable rule,” and is type 3.

Equation 2 presents the form required for a rule to be unwindable. The consequent must 

match one of the antecedents of the rule. Hence, the rule can be applied recursively. This feature 

is used to “unwind” the term from the ith state to the initial state.3 The variables in the rule are 

divided into three groups. First, there are the x  variables. These appear unchanged in both the 

consequent’s term P and the antecedent's term P. Second, there are the y variables which diifer in 

the two P's. Finally, there is the state variable (s ). There can be additional requirements of the x 

and y variables (via predicate Q), however, these requirements cannot depend on a state variable. 

Only the definition of the next state can depend on the current state, as it is assumed the sequence 

of repeated rule applications completely determines the sequence of states.

Applying equation 2 recursively i times produces equation 3. This rule determines the 

requirements on the initial state so that the desired term can be guaranteed in state i . Except for 

the definition of the next state, none of the antecedents depend on the intermediate states. Notice

p (x i ,i> • • • > x i ,>*’ y  i —i,i» • • • . y i - -i,i»» s i - 0
and

Q »x i ,/x> yi —i,i ........... yi —i,i»» Tt ,1» — »yi
and

=  Do (xt ,1» • • • * ^ y i - 1,1» •

/—\TvT2kT

p  , 1» • • • > yi, i ’ • * *»yi ,v> ) (2)

3 Actually, recursive rules are not always unwound to the initial state. If two (or more) of rules of this form are in a 
pathway, the first is unwound from state i to state; and the second is unwound from sta te ;’ to the initial state. For 
example, a block can be supporting another block during some number of transfers, can be cleared, can remain clear during 
another sequence of transfers, and finally be added to a tower.
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that a collection of y variables must be specified. Any of these variables not already contained in 

the RIS are added to it.

Frame axioms often satisfy the form of equation 2. Figure 6 shows one way to satisfy the 

need to have a clear object when placing the xth block in a tower. On the left-hand side of figure 6 

is a portion of the proof of a tower-building example. Block x-t is clear in state s, because it is clear 

in state J;_i and the block moved in transfer is not placed upon x ■,. Unwinding this rule leads to 

the result that block x, will be clear in state 5, if it is clear in state s x and x } is never used as the 

new support block in any of the intervening transfers.

p 1» • • • »%i ^ y i i i  - . . . y i . v . s i )  
and

V k € 2........ i

Q ,1» • • • * ,/j.’ y k —i, i’ * * * * y  k ,v  yk • • • » yk ,v)
and

s k D o  U i  j i  • • • •> y k — i ii • • • » y k —i^» $k —i)

p (.Tj i , . . . , Xj y i,\ ' • • • ’y i,v> (3)

A Portion of the Explanation Unwound Subgraph

(Clear ?z ?s) ?z ?y ) (Clear ?xt ?s x) ( ^  ?xt ?y x)

(Clear ?x, ?st )
(Clear ?x, ?st )

Figure 6. Unwinding a Rule
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Similar reasoning is used is used in the unstacking example to insure that, up until the state in 

which it is moved, a block supports only one other block (and that block is moved in the previous 

transfer). This means that for the new rule to apply, an initial state block configuration must have 

successive support relations - in the initial state, the block to be moved in step i must support the 

one to be moved in step i —1 (the first block moved must be clear). As expected, a tower of blocks 

will be unstacked from the top downward. The new rule applies to the goal of clearing any object 

involved in the tower (including the table, provided there is another table on which to stack). Each 

block moved is placed on top of the object previously moved because that block is known to be 

clear at that time. This constraint leads to the building of a new, inverted tower. The first object 

moved can be placed anywhere that is clear - on the table, on another table, or on another cleared 

block. In the initial state, every block to be moved must be supported by an object that is 

supporting no other block. If a supporting object supported more than one block, it would not be 

clear when it is its turn to be moved, or. for the “goal” object, after the new rule is applied.

Notice that information not contained in the focus rule, but appearing in the example, is 

incorporated into the extended rule. In the unstacking example, additional rules are used to 

determine when an object becomes clear. The rule for transferring a block says nothing about the 

clearness of the block's original support after the block is moved. It applies to objects supporting 

any number of blocks. Other rules state that the supporting object is now clear if the moved block 

was the only one it formerly supported. The combination of these rules means that the new rule 

only applies to towers where each object (other than the top one) only directly supports one block. 

Unfortunately, while more broadly applicable than a plan for clearing three-block towers, the 

newly-acquired rule cannot clear objects directly supporting more than one block. The specific 

example did not address this multiple-support problem. Hence, the explanation-based BAGGER 

system did not solve it.

Once the repeated rule portion of the extended rule is determined, the rest of the explanation 

is incorporated into the final result. In the unstacking example of figure 2s, this involves the proof
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that x is clear in the final state. It is accomplished in a manner similar to the way antecedents are 

satisfied in the repeated rule portion. The main difference is that the focus rule is now viewed as 

the Ni/z rule application. As before, antecedents must be of one of the four specified types.

The example in figure 6 did not result in any new variables being added to the RIS. Other 

examples of unwinding do add to the variables in that sequence. Often this occurs during the 

process of specifying the rest of the explanation in terms of the initial state. For example, when 

building a tower, the y-coordinate of the last block added is determined by an unwindable rule. 

Unwinding this rule adds two terms to each vector in the RIS: the height of the block moved (x t ). 

and the y-coordinate of this block following the transfer.

A problem solver that applies BAGGER’s learned rules has been implemented. An acquired 

rule can be applied if its antecedents are satisfied in a state of the world. Satisfying the antecedents 

will produce an RIS. Next, N  actions are executed, one for each vector. Note that the problem 

solver need not evaluate each action’s preconditions immediately before performing it. The learned 

rule guarantees that they will be met.

IV. CONCLUSION

Most research in explanation-based learning involves relaxing constraints on the variables in 

an explanation, rather than generalizing the structure of the explanation. This paper presents an 

explanation-based approach to the problem of generalizing to N . To illustrate the approach, 

situation calculus examples from the blocks world are analyzed. The approach presented leads to 

efficient plans that can be used to clear an object directly supporting an arbitrary number of other 

objects, build towers of arbitrary height, and unstack towers containing any number of blocks. A 

generalized version of DeMorgan's law is also learned.

The fully-implemented BAGGER system analyzes explanation structures (in this case, 

situation calculus proofs) and detects repeated, inter-dependent applications of rules. Once a rule 

on which to focus attention is found, the system determines how an arbitrary number of 

instantiations of this rule can be concatenated together. This indefinite-length collection of rules is
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conceptually merged into the explanation, replacing the specific-length collection of rules, and a 

standard explanation-based algorithm produces a new rule from the augmented explanation.

The specific example guides the extension of the focus rule into a structure representing an 

arbitrary number of repeated applications. Information not contained in the focus rule, but 

appearing in the example, is often incorporated into the extended rule. In particular, “unwindable 

rules'* provide the guidance as to how preconditions of the \th application can be specified in terms 

of the current state.

A concept involving an arbitrary number of substructures may involve any number of 

substantially different problems. However, a specific solution will have necessarily only addressed 

a finite number of them. To properly generalize to N , a system must recognize all the problems 

that exist in the general concept and, by analyzing the specific solution, surmount them. If the 

specific solution does not provide enough information to circumvent all problems, generalization 

to N  cannot occur because BAGGER is designed not to perform any problem-solving search during 

generalization. When a specific solution surmounts, in an extendible fashion, a sub-problem in 

different ways during different instantiations of the focus rule, disjunctions appear in the acquired 

rule.

Rules produced by BAGGER have the important property that their preconditions are 

expressed in terms of the initial state - they do not depend on the results of intermediate 

applications of the focus rule. If the preconditions are met, the results of multiple applications of 

the focus rule are immediately determined. There is no need to apply the rule successively, each 

time checking if the preconditions for the next application are satisfied.

Generalizing structure is an important property currently lacking in most explanation-based 

systems. This research contributes to the theory and practice of explanation-based learning by 

developing and testing methods for extending the structure of explanations during generalization.
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