
COMPACT CHANNEL-ROUTING OF MULTITERMINAL NETS

M. Sarrafzadeh and F. P. Preparata*

Abstract

In this paper we describe a novel technique for solving the channel routing
problem of multiterminal nets. The layout is produced column-by-column in a
left-to-right scan; the number t of used tracks satisfies the bound 6 X t £
6+a (0 < a 6-1), where 6 is the density of the problem. The technique
behaves equivalently to known optimal methods for two-terminal net problems.
For a channel routing problem with C column and n nets, the algorithms run in
time O(Clogn) and produce layouts that are provably wireable in three layers.

Keywords : layout techniques, channel routing problem, knock-knee layout mode,
multiterminal nets, two-terminal nets, multilayer wiring.

This work was supported in part by Semiconductor Research Cooperation under
Contract 83-01-035 and by the National Science Foundation under Grant MCS-81-
05552.

* Coordinated Science Laboratory and Department of Electrical Engineering,
University of Illinois, Urbana, IL 61801.

1. Introduction

A general two-shore channel routing problem (GCRP) consists of two paral­

lel rows of points, called terminals. and a set of nets, each of which speci­

fies a subset of terminals to be (electrically) connected by means of wires.

The goal is to route the wires in such a way that the channel width is as

small as possible. As is customary, we view a channel of width t as being on

a unit grid with grid points (x,y), where both x and y are integers, with 0 <

y < t + 1 and arbitrary x. The horizontal lines are called tracks and the
vertical lines columns. A vertex (x,y) of this grid at either y = 0 or y = t

+ 1 is a terminal; in particular, (s^,0) is a lower (or entry) terminal and

(t^,t+l) is an upper (or exit) terminal. A wire is a subgraph of this grid
whose edges are segments connecting adjacent vertices in the grid. A mul­

titerminal net N is an ordered pair of (not simultaneously empty) integer

sequences ((, . . . , s^),(t^» ...,t^)); thus, N contains lower terminals

Sl,,,,,sk an<* uPPer terminals t.,,...,^. A solution to a GCRP must have, for
each net, a graph on the grid that contains a path between any two terminals

of that net. Note also that no two nets may share the same terminal.

We shall adopt the layout mode known as "knock-knee" [RBM, L, BB], where

no two wires share an edge of the grid, but two wires may cross at a vertex or

may both bend at that vertex (see Figure 1). In this mode, two distinct nets

can share only a finite number of points, thereby reducing crosstalk between

nets.

In the channel there is a fixed number (two or more) of conducting

layers, each of which is a graph isomorphic to the channel grid. These layers

are (ordered and) placed one on top of another, and contacts between two dis­

tinct layers (vias) can be made only at grid points. If two layers are

2

Figure 1. Illustration of the basic construct in the knock-knee mode.

connected at a grid point, no layer inbetween can be used at that grid point.

We shall use the terms "layout" and "wiring" with the following distinct

technical connotations (as in [PL]).

Definition 1 . A wire layout (or simply layout) for a given GCRP is a sub­

graph of the layout grid, each of whose connected components corresponds to

a distinct net of the GCRP, in the knock-knee mode.

Notice that we can, without loss of generality, restrict ourselves to con­

nected subgraphs which are trees, which we shall call wire-trees. (Each

non-tree graph can be replaced by one of its tree subgraphs on the same set of

terminals.)

Definition 2. Given a wire layout consisting of wire-trees w^,...wn, a

wiring is a mapping of each edge of wire-tree w^ (for i = l,2,...,n) to a

conducting layer with vias established at layer changes.

An optimal layout of a given GCRP is a layout that uses the least possi­

ble number d of tracks. A simple-minded (and optimistic) lower bound to d can

be readily established as follows.

Consider a GCRP t| = {N. ,,...,N }, where N. = ((s^..i 1- * * * k /» 'll'***' h .'1 *l l
and let = min(s^,t^) and r .l

, i . i \= max(sfc , t^) . The interval
i i

represents an obvious lower bound to the horizontal track demand raised by N̂ .,

since a terminal in column must be connected to a terminal in column r^.

In other words is replaced by a fictitious two-terminal net N* (whose two

3

terminals may belong to the same track). We now consider the channel routing
, * rvT* *problem q = Nn), and use standard methods to obtain its density 6

(i.e., the maximum number of two-terminal nets which must cross any vertical

section of the channel). It is clear that 8 is a lower bound for the minimum

number of horizontal tracks, and we call 8 the essential density of the GCRP.

Two methods [BP][B] have been recently proposed for the GCRP, which use

at most 28 tracks. The methods are inherently different, but both produce the

layout track-by-track; the method in [B] used exactly 28 tracks, while the

method in [BP] frequently results in more economical realizations.

In this paper we shall illustrate a method that produces the layout

column-by-column (analogously to the "greedy router" of [RF]), and uses 8 + a

tracks, where 0 < a £ 8-1.

The paper is organized as follows. In Section 2 we describe and prove the

correctness of the wire layout algorithm, beginning with a systematic version

that uses 28-1 tracks, and then introducing natural modifications leading to

potentially simpler layouts. We also show that the method, when applied to a

collection of two-terminal nets, produces a result equivalent to the one of

the optimal method of Preparata-Lipski [PL], Finally, in Section 3 we show

that the obtained layouts are wireable in three layers.

2. Wire layout algorithm

Before describing our proposed wire layout algorithm, we examine a

simpler version thereof, which uses exactly 28-1 tracks. This simpler tech­

nique will provide the intuitive background for the method; the final algo­

rithm will be a refinement of this version.

4

2.1 A t=26-l algorithm.

At any abscissa x we say that a net Nm = ((,...,sfc),(t^,...,t^)) is

upper-active at c if t^ < c £ t^, and lower-active at. c. if s^ < c £ s^; Nm is
active at c. if it is both upper-active and lower-active at c. For ane x^ in

the interval (c,c+l], min(s^,t^) ^ c < max(Sj.,t^), a vertical line x=Xq cuts

N in at least one point. Each intersection of N with x=xA identifies a m m o
strand of Nffl at xQ.

The invariant (and the central feature) maintained by the algorithm is

the following :

Property 1. Each net upper-active at c has a strand lying above a strand

of any other lower-active net; each net lower-active at c has a strand lying

below a strand of any other upper-active net.

If this property holds, then the layout of the column is straightforward:

Indeed, if c = ŝ = t* (i.e., column c has an entry terminal of net N. and an
r H J

exit terminal of net N^), by Property 1 there is a strand of lying above

a strand o of N.; thus we connect s^ to a. and t* to N. by means of nonover-
J J J r J H A

lapping vertical wires (see Figure 2).

Figure 2. Column layout

5

Property 1 will be readily established if we algorithmically guarantee

the following (specialized) invariant:

Property 2. Let J be the set of indices of the nets of t\, and let a: J

-> Z+ be a function from the set J to the positive integers. At x = c, each

n©t upper-active at c has a strand at y = <x(m); each net Nm lower-active at

c has a strand at y = -a(m). This means that if is active at c, it has a

symmetric pair of strands at y = <y(m) and y = -cr(m) (Figure 3).

For convenience, in the GCRP statement, a net will be represented by a

tree as in Figure 4. Suppose we display all the members of t\ = { , . . . , Nn}

each as in Figure 4, in the correct vertical alignment. For a given column c,

we cut a vertical slice [c-e,c+e] ,0<e<l, and retain only the net fragments

y = a(m)

y = 0

y = -a(m)

Figure 3. The two symmetric strands of N active at c.m

tl t2 t3 t4

si s2 s3 s4

Figure 4. Representation of a multiterminal net in GCRP statement.

^^Thus, by convention, track y=0 is not used. Later, we shall see that
the strands (of the same net) at y=+l and y=—1 can be made to coincide.

6

containing a terminal (at most two): this yields the column state (state(c)),

i.e., the layout requirement of column c. The 20 different possible states

are shown in Figure 5 (where I denotes "empty", and "t" denotes "trivial",

i.e., a two-terminal net with = tj = c). For a column c, let dL(c) and

dR(c) be the local densities of the problem in the open intervals (c-l,c) and
(c,c+l), respectively. With reference to a left-to-right scan, we say that c

is a density increasing column (d.i.c.) if dL(c) < dR(c), and is a density

decreasing column (d.d.c.) if d^ic) > dR(c). With this definition, the column

states are readily classified as in Figure 5 as d.i. (density increasing),

d.d. (density decreasing) and d.p. (density preserving). Hereafter, a terminal

will be labeled with the index of the net to which it belongs.

We begin by considering the d.p. columns. States -p -J- , -J- and are

readily handled, as shown in Figure 2 (or in a trivial variant thereof). So,

we must consider states— j-— and — j-r Here NL terminates and Nj begins. The

two nets N. and N- can be concatenated to form a run of nets. The transitionA J
between two nets of the same run can be handled very simply. In either of the

cases illustrated in Figure 6, we assign to N. the same track(s) assigned toJ
to the left of c, and Property 2 is maintained.

We now give a less informal description of the handling of a d.p.

column. Specifically, here and hereafter, a right bend is a layout construct

I t _ L L J. LL J J - l i l , . !j > r r r r r il -| ~i t “ » ri t t t
empty trivial density density density

increasing decreasing preserving
(d.i.) (d.d.) (d.p.)

Figure 5. Possible column states.

7

y=a(i) y=or(i)

y=-a(i)' y=-a(i)- /
Figure 6. Handling of a density-preserving column

of the types "-j" or "j-", whereas a left bend is one of the constructs "A" or

"Li\ Available is an array describing the function a, and a priority queue Q

of the available tracks in the set {y = iIi=l,••.,8}. In the following sub­

routine »LAYOUT D.P.C.(u,£,c), u and i are respectively the names of the nets

having an upper (exit) or lower (entry) terminal in column c. Of course»

either u or Z (or both) may be equal to A , (the index of the empty net); in

which case, any "connect" operation involving the empty net is void.

PROCEDURE LAYOUT-D. P. C (u , fc;c)
BEGIN IF state(c) € {-p, -J- , $ =$=) THEN connect upper terminal to

y = <t (u) and lower terminal to y = -o(£)
ELSE BEGIN

r := net starting at c;
IF state(c) = ’4’"THEN

BEGIN connect lower terminal to y = a(£) and y =
cr(r) := a(l);
connect upper terminal to cr(r) with left bend

END
ELSE

BEGIN connect upper terminal to y = <r(u) and y = -cr(u);
<r(r) ;= a(u);

connect lower terminal to -a(r) with right bend
END

END
END

8

By forming runs of nets and handling them as shown in Figure 6, we are

effectively partitioning the channel into blocks of contiguous columns, so

that changes of density occur only at columns separating adjacent blocks. The

preceding discussion gives us the following result.

Lemma 1 : Inside each block the set of tracks used remains fixed.

We now consider the handling of d.d. columns, with the assumption (to be

substantiated later) that a terminating net has at most two disconnected

strands in tracks above and below y = 0. Recall that at a d.d. column one or

two nets terminate. Suppose, at first, that just one net terminates (states
J--- 1 _ 0i :v*r) • ~ States —j , -J , and -J are handled in a straightforward

manner, by connecting both strands of the net to the appropriate terminal.

There remain states =j- and , of which we just need to consider (the other

case being handled symmetrically). Referring to Figure 7, let be the ter­

minating net and be the continuing net. If o(j) > o(i), then the termina­

tion of N̂, is straightforward (Figure 7a). If a(j) < a(i), then cannot be

terminated at column c. Thus we extend both strands of to the closest d.i.

y = cr(j) -
y = cr(i) -
y = 0 -
y = -a(i)
y = — cr(j)-

(a)

c e

Figure 7. Handling of a density-decreasing column c; N. is the
terminating net.

9

or empty column e to the right of c. If e is an empty column, then the two

strands of NL are connected at e in a straightforward manner (Figure 7b),
When e is a d.i. column, the operation of splicing of the two strands of at

e will be considered later in connection with the layout of a d.i. column.

When two nets terminate at c (state(c) =), then one net is spliced at c (as

in Figure 7a) and the other is extended (as Nj in Figure 7b). We shall
make use of an integer parameter EX, which denotes the number of nets being

extended to the right of the current column c.

The preceding discussion is formalized in the subroutine LAYOUT -

D.D.C(u,£; c,EX); this subroutine makes use of the priority queue Q of the

available tracks (only positive ordinates), with the usual notations "Q <= "

(add to Q) and " <= Q" (extract from Q), and, of a priority queue P of the

extended nets.

PROCEDURE LAYOUT - D.D.C. (u,£; c; EX);
BEGIN Connect upper terminal to y = o(u) and lower terminal to y = -a(Z);

r := net continuing in column c;
IF state(c) € i-j»“ 1 H > THEN

BEGIN Q <= or(r);
connect y = a(r) and y = -o(r);

END
IF state(c) € {=j“,) .THEN

BEGIN e := net continuing at column c;
IF a(r) < ar(e) THEN

BEGIN Q <= a(r);
connect y = a(r) and y = -a(r);

END
ELSE BEGIN EX = EX + 1;

P «= r;
END

END
IF state(c) = =j THEN

BEGIN EX = EX + 1;
IF cr(u) > or(£) THEN

BEGIN connect y = a(£) and y = -<r(£);
P <= u; (»extended net ♦)
Q <= a(Z); (♦available tracks ♦)

END

10

END

ELSE BEGIN connect y = <r(u) and y = -o(u) ;
P 4= l i
Q <= cr(u) ;

END
END

Lemma 2 : Any d.d. column can be processed without increasing the number of

tracks.

Proof : When any of column states —| , ,— f • is .processed, two tracks

become free. For column state = , two tracks become free and one net is

extended, and finally, for column states and either two tracks are freed

or one net is extended, depending on the relative positions of the tracks car­

rying the terminating and the continuing nets. So, no tracks are added while

a d.d. column is being processed.

We now consider the handling of d.i. columns. Recall that at a d.i.

column one or two nets begin. First suppose that just one net N.. begins

(states 1— , p , |— ,-p ,”p). States , p , |— are handled in a straightfor­

ward manner: if there is no extended net, by assigning two unused tracks to

N^; otherwise by connecting strands of an extended net together and running N^

on the tracks previously used by the extended net. There remain states _j=r and

-p, of which we just c o n s i d e r R e f e r r i n g to Figure 8, let N^ be the new

net, Nj be the continuing net and N^ be an extended net (if any). If cr(j) >

a(i), then all the connections are straightforward and N^ is assigned the

tracks previously used by N (Figure 8a). If a(j) < a(i), then N. cannot be«1
connected to y = —a(j), so we shall run N^ on y = —<r(i) temporarily (in the

channel columns where N^ is not lower-active). The two tracks y = -cr(i) and y
= —o(j) are connected at the closest column e to the right of c with the fol­

lowing property: the lower terminal is labeled either i, or j, or A (Figure

11

9). (Note that between columns c and e net has three strands.) Finally,

when two nets start at c (state(c) = j=), if there is just one or no extended

net, then the connections to upper (u) and lower (£) terminal are straightfor­

ward as in Figures 8a and 8b. If instead there are two or more extended nets,

then only one will be connected at column c and the others will be further

extended to the right. The integer parameter EX is updated (decreased) as the

extended nets are connected. The preceding discussion is formalized in the

subroutine LAYOUT - D.I.C. (u, l ; c; EX). This subroutine makes use of addi-

y = o(h)

y = -a(h)-

— y=cr(j)

--- y=a(i)

I
y=-a(i)

y=-a(j)

(a)

y=cr(i)

y=o(j)

y=-o(j)

-— y=-a(i)

Figure 8. Handling of a density-increasing column; is the beginning net,
and is an extended net.

Figure 9. Temporary extension of a net on the
inactive track of a beginning net.

12

tional data structure to handle nets temporarily assigned two tracks in either

(lower or upper) half-channel. Specifically, for the upper portion of the

channel, we shall use two binary search trees AU and AU-* (and analogously, AL

and AL-* for the lower portion of the channel). Both AU and AU-* are organ­

ized on the basis of the index of a net, and support operations of MIN,

MEMBER, INSERT, and DELETE in time logarithmic in their size. Their function

is the following: AU(t) = s (i.e., search of AU for member t) means that the

third track used by t is o(s); conversely, AU *(t) = s means that track o(t)

is used, as a third track, by s.

PROCEDURE LAYOUT - D.I.C. (u, £ , c; EX)
f := 0;
BEGIN IF EX ^ 0 TEEN

BEGIN r <= P; (* P is the queue of the extended nets *)
EX := EX - 1;
Connect o(r) and -a(r);
tl := or(r); (* tl is a track made available *)
f := 1; (♦ f=l means that the column is occupied by a wire

between y=a(r) and y=-a(r) *)
END
ELSE tl <= Q; (* Q is the queue of available tracks ♦)
IF state(c) € {r . L »(- ,~\= ,-}= } THEN

BEGIN IF u H AND state(c) t ~r THEN cr(u) := tl;
IF £ * A AND state(c) t -f= THEN cr(£) := tl;
IF state(c) = ~p THEN

BEGIN IF f = 0 OR (f = 1 AND a(u) > tl) THEN tl := a(u);
IF f = 1 amd o(u) < tl THEN

BEGIN AU(u) := £;
AU *(£) := u;

END
END

IF state(c) = 4= THEN
BEGIN IF f = 0 OR (f=l AND -cr(£)<-tl) THEN -tl := -o(£);

IF f = 1 AND -cr(£) > -tl THEN
BEGIN AL(£) := u;

AL *(u) := £ ;
END

END
Connect upper terminal to tl with a left bend;
Connect lower terminal to -tl with a right bend;

END
ELSE BEGIN cr(u) := tl; (*state(c) = j= *)

connect upper terminal to tl with a left bend;
t2 <= Q;

13

END

cr(£) := t2;
IF f = 1 AND t2 < tl THEN

BEGIN ALU) := u;
AL -^u) := £;
t2 := tl;

END
ELSE Connect lower terminal to -t2 with a right bend;

END

Lemma 3 : Any d.i. column c can be processed using no more than 26 tracks.

Proof: It is sufficient to show that at a d.i. column c: (1) no tracks are

added if dR(c) £ dm (c) (recall that d^(c) denotes the local density in (c,

c+1)), and dm (c) = max dĵ (i); (2) Two (symmetric) tracks are added if dR(c) =
i<c

d (c) + 1 (this also implies that dD(c-l) = d (c)); (3) four tracks are addedm K m
if dR (c) = dffl(c) + 2 (this also implies that dR (c-l) = dm (c)).

Indeed, if dR(c) = dm (c) + 1 or d^(c) = dffl(c) + 2, new (symmetric) tracks
are added and the column is laid out in a straightforward manner (as had been

described in the handling of d.i. columns). Instead, if dn(c) < d (c) then asK m
described earlier, states j— , I— , and |— are trivially handled by connecting

the new net to a free track (or a track occupied to the left of c by an

extended net). States "jr, —j= and p are also handled trivially by running the

new net(s) on a free track (or tracks occupied to the left of c by an extended

net).

The preceding discussion reveals that at a column c with dR (c) = 5 (8 =

maX dĵ (i)) the number of occupied tracks is 28 and the number of tracks never
i

exceeds 26 in any column i for all i > c.

The layout procedure scans the channel column by column from left to

right. It calls the appropriate subroutines according to the state of the

current column. We shall formalize this in the subroutine LAYOUT1.

14

PROCEDURE LAYOUT1;
BEGIN c := 1; (* first column *)

EX := 0; (♦ no extended nets *)
WHILE EX # 0 or there is any d.i.c. left DO

u := upper terminal in column c;
i := lower terminal in column c;
IF AU t 0 THEN

BEGIN IF AU-1(u) f A THEN
BEGIN s := AU (u); (♦ third strand of s on a(u) *)

connect y = <r(s) and y = a(u);
connect u to y=cr(u) with left bend;
delete AU_1(u) and AU(s);

END
IF AU(u) f A THEN

BEGIN s := AU(u); (♦ third strand of u on cr(s)
connect u to y = <r(s) and y = o(u);
delete AU(u) and AU vs);

*)

END
IF u = A THEN

BEGIN t := min AU;
s := AU(t);
connect y = a(s) to y = a(t);
delete AU(t) and AU~^(s);

END
END

IF AL ^ 0 THEN (* analogous to the above when AU ^ 0 ♦)
IF state(c) = t THEN connect upper and lower terminals;
ELSE IF c = d.p.c. THEN call LAYOUT - D.P.C. (u, £; c);
ELSE IF c = d.d.c. THEN call LAYOUT - D.D.C. (u,£; c; EX);
ELSE IF c = d.i.c. OR empty THEN call LAYOUT-D.I.C.(u,i; c; EX);
c := c + 1;

END
END.

Theorem 1 . Any GCRP with essential density 8, can be laid out in 28 - 1

tracks using the LAYOUT1 algorithm.

Proof: Referring to Lemmas 1, 2 and 3, it can be noted that only at d.i.

columns we add tracks. We have also shown in Lemma 3 that the number of occu­

pied tracks is twice the essential density, namely 28. A closer look at the

algorithm (LAY0UT1) reveals that tracks 1 and -1 are always occupied by the

same net (property 2) so we can merge them. As a result, only 28-1 tracks are

required to lay out any GCRP with essential density 8.

15

2.2 An Improved Algorithm

The algorithm we have presented in the last subsection was intended to

provide intuition for a possible solution to any GCRP and to establish an

upper-bound to the number of used tracks. The main feature of this algorithm

is that, in conjunction with heuristics, it can result in a rather efficient

and yet provably good solution to any GCRP. The first thing to note is that

the second strand of a net should be added only when it is necessary: indeed,

it might very well happen that for some nets we never need to add the second

strand. Second, it is only natural to splice the split nets (nets having more

than one strand) as soon as it is feasible in a left to right scan. We shall

name the improved technique "LAY0UT2". We shall see later that in this method

the two strands of a net may be no longer symmetric, so we shall use the nota­

tion cr'(t) to denote the track used by the second strand of a net t (as

opposed to -a(t) in "LAYOUTl"), with the convention that o'(t) < a(t).

We now look at the handling of the column states by "LAY0UT2". The nota­

tion of inclusion between states of a column is defined in a natural way,

e. g.,— j ̂ — j— . A column s is said to be a T-column iffj-̂ ^ state(s) (states

y , , “j= , _j= , , rj- , ̂ are T-states). Handling of any non-T-column is

straightforward, as shown in the discussion of "LAYOUTl", as in the handling

of states -p- and-L-. So, we need to consider states , _£=, and rjr .

We begin with the two d.i. T- columns (~{r,-£:), of which we just need to

consider (the other case being handled symmetrically). If the net , to

be connected to the upper terminal u, has two strands, then we can connect y =

a(u) and y = o'(u) and run the beginning net on y = <r'(u) as shown in Fig­

ure 10a. If instead, has only one strand but there is a free track at y =
f, with f > a(u) , then we can connect y = cr(u) to y = f and continue on

16

track f, while is assigned track or(u) (Figure 10b). Other variations are

being handled trivially.

Next we shall turn our attention to the handling of the two d.d. T-

columns) of which we just need to consider (the other case will be

handled symmetrically). The policy is to connect the lower terminal Z to y =

cr(£) (and also to y = <x'(£) if it exists) and connect the upper terminal u to

y = a(u) if cr(u) > or(£) (Figure 11a), or to y = <y(£) with a left bend, other­

wise (Figure lib). Other variations are being handled trivially.

u

y=o(u)

y=or' (u)

y=cr(u)

y=cr'U)

£
a. u has more than

one strand

u

y = f

y=cr(u)-----

y=o(u)

y=o(£)

Z
b. y=f > y=o(u)

Figure 10. Handling of a d.i. T-column

u

y=o(u) -------11

y=o(£)--------------

y=cr' (£)-----— »

l

a. <y(u) > a(£)

u

y=o(£)

y=cr' (u)

y=o'(£)

y=a(u)

£

b. a(u) < a(£)

Figure 11. Handling of a d.d. T-column

17

It remains to consider the handling of a d.p. T-column (-y-). Denoting,

as usual, by and the two nets having the upper and lower terminals,

respectively, there are eleven possible cases (ignore trivial mirror sym­

metries), depending upon the number of strands of and and their relative

positions. The handling of these cases is illustrated in Figure 12, and

deserves no further comment.

The preceding improvements yield the following result:

Theorem 2 : Any GCRP with essential density 6 can be routed in 8 + a tracks

for 0 < a £ 8-1 by the "LAY0UT2" algorithm.

While 8 is a lower bound for the minimum number of horizontal tracks, we

have shown an upper bound of 28-1 for the number of tracks required by any

u

4 strands
o(Z)
a'(£).
a(u).

a'(u).

a(SL)
o'(u)
o'(l)
o' (u)

u
o(Z)
a(u)
o' (u)
a'U).

a(u)---y«
o' (u)---1

...(free) a(&)
---- - o'(Z)

(free)

(free)

3 strands
oU)
o(u)

o'(z)

u
cr(u) -- I
o(Z)

o'(z)
(free)

2 strands a(u)
oU)

L

o(z)
a(u)

(new track)

Figure 12. Handling of a d.p. T-column

18

GCRP using the "LAY0UT1" algorithm. By saving extra tracks (beyond 6) in the

"LAY0UT2" algorithm we frequently can solve any GCRP in fewer than 26-1

tracks. Simulations reveal that a, the number of tracks used beyond 8, is

rather small. In fact for some GCRP a is equal to zero.

Next we shall turn our attention to a special case of GCRP, namely a

two-terminal net CRP. We shall route a CRP by the "LAY0UT2" algorithm. Of

the twenty possible column states, only the following ten states (I, t, —\ , —J

channel from left to right and processes successively all the columns. Note

that Property 1 holds in all columns except when state(c) = ^ . The process­

ing of this column is straightforward if o(u) > o(£) (where ,as usual, u is

the upper terminal and £ the lower terminal) as in Figure 13a. If, on the

other hand, a(u) < or(&), then we shall connect the upper terminal u to y =

o(u) and connect the lower terminal to y = c'(Z) where we have assigned

or'(̂) <- a(u) as in Figure 10b.

u u

y = a(u) y=cr(Z) y=<*(z)

y = <r(£) y=o(u) y=ff' (il)

z z
c c

a b

Figure 13. Layout cases for the two-terminal net CRP.

19

We shall make use of a priority queue P (FIFO) of the extended nets. So

is introduced into the queue (Figure 13b); but in the interval (c,e), where

e is the closest density-increasing or empty column (states I , ^ , j— , p)

to the right of c, the number of occupied tracks will not exceed the local

density d^(c)-2 £ 6-2, so that we can connect the two strands of the extended
at column e (Figure 14).

u u u

L- ̂ —

— ___r'%

i! £ $
c e c e c e

Figure 14. Layout of extended nets in the two-terminal net CRP.

The preceding discussion gives us the following result:

Theorem 3 Any two terminal net CRP with density 6 can be routed using 6

tracks by the "LAY0UT2" algorithm.

3. Three-layer wireabilitv

We now return to the general problem and show that any layout produced by

"LAY0UT2" can be wired with three layers without increasing the number of

tracks used in the layout phase.

Our arguments are heavily based on the wireability theory developed by

Preparata and Lipski [PL], to which the reader is referred. We begin by

observing that in the layout of multiterminal nets there is one more type of

grid points, the "~r", in addition to the five standard ones encountered in

20

the layout of two-terminal nets(the "crossing", the "knock-knee", the "bend",

the "straightwire", the "empty"); these six types are illustrated in Figure

15. Following the arguments in [PL], suppose that in a given layout W we

replace each non-knock-knee grid-point by a crossing: it is very simple to

show that if the resulting layout W* — a "full" layout — can be wired with

three layers, so can the original W.

Note that in the transformation from W to W* we have ,in essence,

obtained a two-terminal net problem. We must only verify that it satisfies the

three-layer-wireability sufficient condition proposed by Preparata and Lipski:

We begin by observing the following facts :

(1) at a d.p. column (states — j^-and -jp-) we have at most one knock-knee.

(2) at a d.d. column (states ,=j— ,and =j) we have at most one knock-

knee.

(3) at a d.i. column we have either one knock-knee (states p , ,-|= ,-jp)

or two (statey j= and j—) if the priority queue of the extended nets is

not empty.

(a) (b) (c) (d) (e) (f)

Figure 15. Types of grid-point in multiterminal net layout :
(a): T, (b): crossing, (c): knock-knee; (d): bend;
(e): straight wire; (f): empty.

21

We can therefore assume that every column contains one of the following:

(i) a single knock-knee of the form — —̂ , (ii) a single knock-knee of the form

-jr-;or (iii) two knock-knees, of which the lower one is of the form —|— and the

upper one is of the form-j— . As is customary, we graphically denote a knock-

knee grid point by means of a -length diagonal, centered on the grid point

and crossing both wires as shown in Figure 16.

7K
Figure 16. Graphical equivalents (diagonals) of knock-knees.

With this convention we can convert any layout to a "diagonal diagram".

We augment the diagram by adding dummy tracks 0 and 8 + a + 1, placing £/]

(knock-knee of the form— -̂) on track 8 + a + 1 for every column of type (i),

and placing Q (knock-knee of the form-^p) on track 0 for every column of

type (ii). We shall refer to these additional diagonals as dummy diagonals.

In this way we can restrict ourselves to the case where all nonempty columns

are of type (iii).

Preparata and Lipski have shown that any diagonal diagram of this type

corresponds to a full layout that is wireable with three layers, provided that

we allow for layout modifications in correspondence with special pattern of

diagonals. We now show that, in the layouts produced by our algorithms, such

patterns never arise.

A representative of the special diagonal pattern is shown in Figure 17a,

together with the corresponding fragment of layout. This layout shows that two

disconnected strands of a net have been spliced in column c+1 and state(c) is

either — j— (Figure 17a) or L. (Figure 17c). In either case, our policy to

22

splice a two-strand net as soon as possible, will generate the layouts shown

in Figures 17b,d (i.e., one extended net is spliced at column c rather than

c+1), so that the cases shown in Figures 17a,c never arise.

a b c. d

Figure 17.

Thus, as an immediate consequence of the above obsevations and of the

results established in [PL], we conclude :

Theorem 4 Any layout produced by the "LAY0UT2" algorithm that uses 8 + a

tracks (for 0 < a < 8-1) can be wired in three layers using 8 + a tracks.

Since both the layout and the wiring algorithms scan through the channel

column-by-column, they could run simultaneously.

To illustrate the method, we now give two examples : a GCRP (Figure 18),

where 8 = 5 and o = 1, and a two-terminal net CRP (Figure 19), with 8 = 8 and

a = 0.

23

L
r

i---- 1---- r

i--------- r
j---- r

T
H

Figure 18

WI
RI

NG

LA
YO

UT

NE
TS

24

»■
i

Figure 19

WI
RI

NG

LA
YO

UT

NE
TS

25

Before closing the section, we briefly analyze the time performance of

the proposed algorithm LAYOUT 2. Denoting by C the number of columns, the

input is assumed to be in the form of a sequence of pairs |

i=l,...,C) where u^, € {l,...,n} specify the upper and lower terminals of
column i; these pairs are stored in an array. Processing of each column i

involves some actions on the data structure required by the procedures

described earlier (priority queues Q and P, search trees AU,AU *,AL,AL and

the array a). Inspection of the algorithms reveals that the number of opera­

tions performed at each column is bounded by a constant; in addition , each of

these operations takes time at most logarithmic in the size of the data stru-

ture (which is 0(n)). Thus we conclude :

Theorem 5 "LAY0UT2" run in time proportional to Clog n, where C is the

number of columns and n is the number of nets.

It is relatively straightforward to show that also wiring can be accom­

plished within the same time bound.

26

References

[B] Baker, B. S,, private communication

[BB] Bolognesi, T, and D. J. Brown, "A channel routing algorithm with

bounded wire length," draft.

[BP] Brown, D. J. and F. P. Preparata, "Three-layer channel routing of mul­

titerminal nets," draft

[L] Leighton, F. T., "New lower bounds for channel routing," draft, 1981.

[PL] Preparata, F. P. and W. Lipski, Jr., "Optimal three-layer channel rout­

ing," Proc. 23rd IEEE Symposium on Foundations of Computer Science,

Chicago, IL, Nov. 1982, pp. 350-357.

[RBM] Rivest, R. L., A. Baratz and G. Miller, "Provably good channel routing

algorithms," Proc. 1981 CMU Conference on VLSI Systems and Computa­

tions. Oct. 1981, pp. 153-159.

[RF] Rivest, R. L. and M. Fiduccia, "A greedy channel router." Proceedings

19th IEEE Design Automation Conference. 1982, pp. 418-424.

