
November 2003 UILU-ENG-03-2227
CRHC-03-13

STOCHASTIC MODELING OF
INTRUSION-TOLERANT SERVER
ARCHITECTURES FOR
DEPENDABILITY AND PERFORMANCE
EVALUATION

Vishu Gupta, Vinh Lam, HariGovind V. Ramasamy, William
H. Sanders, and Sankalp Singh

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University o f Illinois at Urb ana-Champaign

SF 2 9 8 MASTER COPY KEEP T H IS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate of information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

November 2003
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE Stochastic Modeling of Intrusion-Tolerant Server
Architectures for Dependability and Performance Evaluation

5. FUNDING NUMBERS

F30602-00-C-0172

6. AUTHOR(S) Vishu Gupta, Vinh Lam, HariGovind V. Ramasamy, William H.
Sanders, and Sankalp Singh

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERCoordinated Science Laboratory

University of Illinois
1308 West Main St.

UILU-ENG-03-2227
(CRHC-03-13)

Urbana, IL 61801

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

DARPA
3701 North Fairfax Drive
Arlington, VA 22203-1714
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

In this work, we present a first effort at quantitatively comparing the strengths and limitations of various intrusion-
tolerant server architectures. We study four representative architectures, and use stochastic models to quantify the
costs and benefits of each from both the performance and dependability perspectives. We describe in detail how the
models were constructed using Stochastic Activity Networks (SANs), a variant of stochastic Petri nets. We present
results characterizing throughput and availability, the effectiveness of architectural defense mechanisms, and the
impact of the performance versus dependability tradeoff. We believe that the results of this evaluation will help
system architects make informed choices for building more secure and survivable server systems.

14. SUBJECT TERMS
1. Intrusion Tolerance; 2. Intrusion-Tolerant Architectures; 3.
Security; 4. Intrusion-Tolerant Communication; 5. Stochastic Activity
Networks; 6. Stochastic Petri Nets

15. NUMBER IF PAGES
86

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Stochastic Modeling of Intrusion-Tolerant Server Architectures for
Dependability and Performance Evaluation*

Vishu Gupta, Vinh Lam, HariGovind V. Ramasamy,

W illiam H. Sanders, and Sankalp Singht

Coordinated Science Laboratory,
Electrical and Computer Engineering Department, and

Department of Computer Science,
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana IL 61801, USA
{vishu, lam, ramasamy, whs, sankalps}@crhc.uiuc.edu

Abstract

In this work, we present a first effort at quantitatively comparing the strengths and limitations o f various
intrusion-tolerant server architectures. We study four representative architectures, and use stochastic mod­
els to quantify the costs and benefits o f each from both the performance and dependability perspectives. We
describe in detail how the models were constructed using Stochastic Activity Networks (SANs), a variant
o f stochastic Petri nets. We present results characterizing throughput and availability, the effectiveness o f
architectural defense mechanisms, and the impact o f the performance versus dependability tradeoff. We
believe that the results o f this evaluation will help system architects to make informed choices for building
more secure and survivable server systems.

Keywords: Intrusion Tolerance, Intrusion-Tolerant Architectures, Security, Intrusion-Tolerant Commu­

nication, Stochastic Activity Networks, Stochastic Petri Nets

*This research has been supported by DARPA contract F30602-00-C-0172
Author names appear in alphabetical order. Authors made equal contributions to the research.

1 Introduction

Intrusion tolerance [8] is an approach to handling malicious attacks, in which the impracticability of

making a system fully secure against all attacks is recognized and intrusions are expected, but the system is

designed to provide proper service in spite of them (possibly in a degraded mode). Intrusion tolerance has the

potential to become a very useful approach in building server architectures that withstand attacks. Several

such intrusion-tolerant server architectures have been conceived in both academia and industry, including

KARMA [9], ITSI [16], ITUA [4], and PBFT [3]. However, there has not been any comparative study of

their performance and dependability. There are many challenges in doing such a study. First, it is difficult to

identify representative architectures that cover the various design possibilities for building intrusion-tolerant

architectures. Second, the problem of coming up with detailed yet reasonably high-level models of chosen

representative architectures that could be comprehensively evaluated is a fairly complex one. The models

should represent the design differences between architectures without getting tied down to low-level details.

Third, coming up with appropriate measures that bring out the relative strengths and weaknesses of the

representative architectures is a complex problem in itself.

In this paper, the above challenges are addressed for the first time (to the best of our knowledge), and

a fairly comprehensive comparison of intrusion-tolerant server architectures is presented. We realize that

given the many variations in implementing intrusion-tolerant systems, any comparative study is feasible only

if we identify classes of intrusion-tolerant architectures, and limit our comparison to abstract architectures

that are representative of these classes. In this work, we identify four classes of intrusion-tolerant server

architectures based on how requests are handled and how decisions are made in response to intrusions. In

modeling the effectiveness of these classes of intrusion-tolerant architectures, we realize that the perfor­

mance and dependability of these intrusion-tolerant systems cannot be quantified in a deterministic manner,

because the systems do not provide complete immunity to all possible intrusion methods. An attractive

option for evaluating intrusion-tolerant systems is via probabilistic modeling [13], as shown by Singh et al.

[17], who validated an intrusion-tolerant replication system, with variations in internal algorithms, using

probabilistic models.

In this paper, we evaluate and compare the strengths and weaknesses of the four architectures in proba­

bilistic terms. We use Stochastic Activity Networks (SANs) [11, 14] as our representation of the models for

the architectures. By varying the parameters of the models, we obtain information about performance and

intrusion tolerance characteristics of the different architectures. Some of the input parameters include intru­

sion detection rate, repair rate of corrupted servers, single-phase and multi-phase attack rate and probability,

and firewall filter rate. We define various measures on the system that characterize system performance

and intrusion tolerance. They include “strong” and “weak” unavailability1 of the system, productive and

unproductive throughput1, and fraction o f online servers that are corrupted1.

'We explain these terms in Section 4.

2

2 Intrusion-Tolerant Server Architectures

We consider intrusion-tolerant architectures that follow a client-service system paradigm (for example,

a web browser as a client and a collection of web servers as the service system). All such systems are

based on replication of information across a set of servers, and rely on a distributed architecture that routes

incoming requests among several server nodes in a user-transparent way. By replicating the servers of the

service system, we could potentially improve throughput performance and provide server systems with high

availability and scalability. All such systems also have some mechanism by which the incoming requests are

spread among the servers. The reader is referred to [2] for a detailed classification of the various approaches

for routing the requests among the distributed server nodes.
Since transparency is a design criterion in all the architectures, we consider only those mechanisms for

routing the requests among the server nodes that do not require the clients to know that there are repli­

cated servers in the service system and that do not divulge any information about which of the replicated

servers actually service a particular client’s request. This “hiding” of the servers from clients is necessary for

anonymity and security purposes. For instance, if an attacker identifies the specific operating system of a tar­

get platform, he/she can focus an attack, minimizing time and attack signatures. Client-based, DNS-based,

and server-based routing mechanisms (see [2]) do not satisfy the requirement of “hiding.” The appropriate

routing mechanism is the dispatcher-based approach, in which a single virtual IP address is used for the en­

tire service system. The dispatching mechanism could be centralized, in which case it would route requests

to individual servers, or it could be logically distributed among the servers, in which case the requests would

be multicast to the servers.
We explored the design space for intrusion-tolerant systems that satisfy the above criteria, and identified

the following dimensions along which architectures can vary: (1) how the client requests get routed to the

servers, (2) whether the decisions to reconfigure the system in response to intrusions are made centrally

or in a distributed manner, and (3) whether multiple requests are served concurrently by different servers.

Based on the above, we partitioned the design space into four classes. In this paper, we model four abstract

architectures, each of which is representative of one of those classes. They are

• Centralized Routing Centralized Management (CRCM),

• Multicast Routing Centralized Management (MRCM),

• State Machine Replication (SMR), and

• Multicast Routing Decentralized Management (MRDM).

All four intrusion-tolerant distributed web server architectures that we evaluate have the following compo­

nents in one form or another:

1. Client: The client is a program, like a web browser, that establishes connections to the service system

in order to satisfy user requests.

3

2. Service: This component implements the protocols to service an incoming client request. For exam­

ple, it could be an HTTP server.

3. Intrusion Detector: This component could be a combination of multiple third-party intrusion detection

tools and protocol-specific intrusion detection (in which violations of the protocol specification are

treated as intrusions).

4. Configuration Manager Daemon: The Configuration Manager Daemon (or CMDaemon for short)

uses the Intrusion Detector component to keep track of whether or not the service has been compro­

mised, and implements strategies for recovering from attacks. There is one CMDaemon component

for each Service component. Each CMDaemon monitors one Service component and may run in the

same host as that Service component.

5. Configuration Manager: The Configuration Manager receives reports from the CMDaemons about the

well-being of the Service Components that they monitor. It decides how to recover when an intrusion

is reported, and instructs the CMDaemons about this decision. Each CMDaemon then implements

those instructions in their respective Service components.

6. Gateway: This is the component whose IP address is known to the clients as the IP address of the

service system. It serves as the dispatcher that controls the routing of the client requests to the Service

components, helping to mask the identities of the Service components’ operating systems and the

service application. In architectures that do not have the Gateway component, all the servers receive

all the client requests. That is done in various ways; for example, all the servers could be configured

to be members of an IP multicast group. Clients would send their requests to this multicast address.

7. Firewall: This component filters incoming requests based on certain policies.

8. Database: The Database component is the store for the information that clients want to access. In

this paper, we are not concerned about the exact organization of this component. A comparison of the

performance benefits of various client-server database architectures is beyond the scope of this paper.

Interested readers are referred to [1, 6, 7].

The four architectures differ in how the above components interact with each other, their placement, and

which of them are trusted. A “trusted” component is one that is assumed not to fail. We now describe each

of the architectures we are considering in more detail.

2.1 Centralized Routing Centralized Management (CRCM)

The goal of the CRCM design is to employ a small number of trusted components to protect a large set

of servers and databases. In this design, a Firewall component filters the incoming requests, looking for

signatures of commonly known attacks. The Gateway is a trusted component. An incoming request passes

4

(a) Centralized Routing Centralized Management (b) Multicast Routing Centralized Management

HO ST 1 HOST 1

(c) State Machine Replication (d) Multicast Routing Decentralized Management

Figure 1: Architecture Block Diagrams

through the Firewall to reach the Gateway, which then forwards the request to a randomly chosen server

from the active server set. The Gateway also masks server-specific and OS-specific information from all

the replies. The service system consists of a large collection of servers. They share the same filesystem,

but might run different operating systems and different web-server software versions. In addition to the

server software, each host that is part of the service system also runs a CMDaemon, which is responsible

for detecting attacks via various mechanisms (e.g., integrity-checking of various critical files and checking

of the process states). The CMDaemons report the health of the local server to the Configuration Manager,

which is a trusted component. The Manager continually checks the integrity of the CMDaemons. If there

is an intrusion detection, the Manager cleans the server state, and could roll back the potentially erroneous

transactions committed by the intruded server. The Manager informs the Gateway about the current active

server set. The Gateway uses that information in the selection of servers to process client requests.

5

2.2 Multicast Routing Centralized Management (MRCM)

In the MRCM architecture, intrusion tolerance is obtained through hardened, heterogeneous platforms.

We achieve this hardening by embedding firewalls in each server host, and having extensive alert and

intrusion-detection capabilities in each server host. Those capabilities form the CMDaemon component.

There are no additional front-end firewalls like those in CRCM. Scalability is achieved through the ability

to add additional platforms easily, and maintainability is achieved through the ability to remove and service

platforms easily. All the servers receive all the requests sent to the single virtual IP address of the service.

The service rules on each server determine what traffic to process and what to throw away. For example,

rules could be based on the source IP address of the client, in which case, if there are two web servers, the

rule might be that server 1 processes a request if the last digit of the client IP address is from 0-4, and that

otherwise server 2 processes the request. In essence, those service rules form a load-balancing policy. The

load-balancing policy could be changed at the behest of the Configuration Manager (for example, when an
intrusion is detected and the intruded host shut down), and the clients previously serviced by the intruded

host would need to be distributed among the correct hosts. When an intrusion is detected, the Configuration

Manager could instruct the servers to implement the new load-balancing policy by giving them an updated

set of service rules. Through the CMDaemon on a host, the Configuration Manager could also update the

filtering policies on the host-embedded firewalls so that traffic from specified clients is blocked or audited.

2.3 State Machine Replication (SMR)

The SMR design employs a state-machine-replication-based approach [15] that tolerates malicious faults.

A replication protocol that tolerates Byzantine faults, similar to the one described in [3], could be used (with

some modifications to ensure user transparency) for this architecture. The requirement for an algorithm

tolerating Byzantine faults is that it must have at least 3 / + 1 servers, where / is the number of simultaneous

faults that need to be tolerated. SMR does not require an extensive firewall like those in the CRCM and

MRCM architectures. Unlike CRCM and MRCM, there is no centralized trusted Configuration Manager

and local CMDaemons. Instead, the Configuration Management is now distributed among the servers. The

distributed Configuration Management and Service components are integrated into one logical unit. This

integrated Management and Service unit is replicated across the set of servers, and the Byzantine-fault-

tolerant protocol ensures that all correct servers maintain consistent state information for this integrated

unit. As in MRCM, all requests reach all the servers. The set of servers processes one request at a time.

The servers agree on the reply to be sent to the client, as well as on any updates to be made to the back-end

database, through a Byzantine agreement protocol. SMR ensures that all replies sent to clients and updates

made to the database are correct, as long as there are no more than / simultaneous corruptions in the system

(we call this the Byzantine agreement requirement), but involves a large performance overhead due to the

fact that all the requests are serialized and processed by the entire set of servers one at a time.

6

2.4 Multicast Routing Decentralized Management (MRDM)

The MRDM design is a hybrid of the previous 3 architectures, and tries to achieve a tradeoff between

the better throughput performance achieved by the parallelism of the CRCM and MRCM architectures, and

the strict correctness achieved by the SMR architecture, without relying on any tmsted components. It does

so by separating the service component in the SMR architecture from the configuration management. As

in the SMR architecture, the Configuration Manager is distributed across the host nodes. However, unlike

in SMR, the server nodes do not all process the same request at the same time. A firewall component

embedded in each host (similar to the one in MRCM) could be used to filter out incoming requests based

on specified policies. The incoming request is randomly routed to one of the servers (like in CRCM). Each

host runs a server component and a configuration management component (which represents an integrated

Configuration Manager, CMDaemon, and Intrusion Detector component). The servers can process requests

independently from each other (unlike in SMR), but the configuration management components across all

the hosts coordinate with each other, distribute knowledge about intrusions, and come to agreement about

the configuration changes that need to be made in response to intrusions. At the core of the configuration

management component could be an intrusion-tolerant group membership protocol (such as the one in [12])

that requires the participation of at least 3 / + 1 nodes to tolerate / simultaneous intrusions. By separating

the service component from the management component, we are able to retain the parallelism of the CRCM

and MRCM architectures, and by distributing the management component, we remove the need for having a

central tmsted Configuration Manager. However, MRDM does not guarantee the same level of correctness

as SMR, since the intmded node could still be servicing some requests, and potentially sending erroneous

replies, during the time period between the intrusion of a node and the detection of the intmsion. Hence,

this architecture does not guarantee strict correctness of replies. The SMR architecture, on the other hand,

masks the effects of a subset of intmded servers, as long as the threshold requirement of / is satisfied.

2.5 Assumptions and Attack Model

We assume staged attacks, which means that there is a non-negligible time between successive node

infiltrations. That gives the defense some time to react. None of the above architectures can defend against

a situation in which all the hosts are simultaneously intmded. They also cannot defend against a situation

in which the attacker intmdes the various nodes in stages, but the compromised nodes show no observable

signs of an intmsion until all the nodes have been intmded (this is essentially the same as the first situation).

For the staged attack assumption to be tme, node failures must not be strongly correlated. That could be

achieved, for instance, by running different implementations of the service code and/or the operating system.

Within the staged attack model, there could be two kinds of attacks on a single host: multi-phase attacks

that require a sequence of attacks in order to successfully compromise the host (for example, an attacker

could upload a file line-by-line using the Windows “echo” command), and single-phase attacks that suc­

cessfully compromise the host in one shot (for example, the attacker could guess the correct password and

7

Feature CRCM MRCM SMR MRDM

Parallelism in processing requests Yes Yes No Yes

Strict correctness of replies guaranteed No No Yes No

Configuration Manager Centralized Centralized Distributed Distributed

Required number of servers for

uninterrupted service when /

servers are compromised

/+1 /+1 3 / + 1 3 / + 1

Forwarding of client request by

Gateway

to a

randomly

selected

server

to all servers to all servers to a

randomly

selected

server

Servicing of request by the

randomly

selected

server

based on

source IP

by all servers by the

randomly

selected

server

Trusted components 2 1 0 0

Table 1: Summary of the design features of the four architectures

gain root access on the first attempt).

The CRCM and MRDM architectures employ dispersion, i.e., because of the random selection of servers

by the Gateway, requests from the same client could be processed by different servers. That decreases the

probability that different phases of a multi-phase attack will reach the same server. That, in turn, increases

the time required to exploit any single web server using multi-phase attacks.

3 SAN Models for Intrusion-Tolerant Server Architectures

3.1 Stochastic Activity Networks

As stated in the introduction, we use SANs, a stochastic extension of Petri nets, as our model represen­

tation. Here we present only a brief overview of SANs. Interested readers are urged to consult [11, 14] for

additional details on SANs.

Stochastic Activity Networks, or SANs, are a convenient, graphical, high-level language for capturing

the stochastic (or random) behavior of a system. A SAN has the following components: places (denoted

by circles), which contain tokens (the term “marking” is used to indicate the number of tokens in a place)

and are like variables; tokens, which indicate the “value” or “state” of a place; activities (denoted by vertical

ovals), which change the number of tokens in places; input arcs, which connect places to transitions; output

arcs, which connect transitions to places; input gates (denoted by triangles pointing left), which are used to

8

define complex enabling predicates and completion functions; output gates (denoted by triangles pointing

to the right), which are used to define complex completion functions; cases (denoted by small circles on

activities), which are used to specify probabilistic choices; and instantaneous activities (denoted by vertical

lines), which are used to specify zero-timed events. An activity is enabled if for every connected input

gate, the enabling predicate contained in it is true, and for each input arc, there is at least one token in the

connected place. Each case has a probability associated with it and represents a probabilistic choice of the

action to take when an activity completes. When an activity completes, one token is added to each place

connected by an output arc, and functions contained in connected output gates and input gates are executed.

The output gate and input gate functions are usually expressed using pseudo-C code. The times between

enabling and firing of activities can be distributed according to a variety of probability distributions, and the

parameters of the distribution can be a function of the state.

3.2 Description of Models

We have modeled the four architectures described in Section 2 as composed stochastic activity networks.

Atomic models were built for various components of each architecture, and complete models were then built

using replicate and join operations. Replicated and joined sub-models in a composed model can interact with

each other through a set of places (called shared places) that are common to multiple sub-models.

The salient features that we have tried to model for each architecture include generation of client requests

and attacks, organization of firewalls and filtering of requests, organization of servers and distribution of

requests to servers, servicing of requests and effect of attacks, detection mechanisms, system reconfiguration

upon detection of corruption, and repair of affected components.
We have used exponential distribution for the timed activities in all the models. We believe this is a

realistic assumption, because the request arrival process and servicing of requests by servers (especially

web servers) are largely memoryless, and hence are well-represented by exponential inter-arrival times and

exponential service times. Single-phase attacks and the subsequent phases in a given multi-phase attack are

generated with some probability on the incoming requests; hence, they also have an exponential distribution

in our SAN models. We developed that approach in order to keep the attack model fairly simple; we focused

the complexity in the models to reveal the differences among various architectures. We understand that we

may need sophisticated attack models in order to model the intrusion response behavior of the architectures

more accurately. That may be the focus of another study.

We now provide a description of the models of the individual architectures.

3.2.1 Centralized Routing Centralized Management (CRCM)

Figure 2(a) shows the composed model for CRCM described in Section 2.1. The model consists of

four atomic SAN submodels: Client, Server, ConfigManager, and FirewallGw. The Server submodel is

replicated N um S ervers times, where N um S ervers is a global variable indicating the number of hosts

9

ubmodel
Client

Ser rers g

C
Submodel

Submodel

Server

(a) Composed Model

FirewallGw

GenerateReqs Requests

(b) SAN Submodel for Client

»
EspafJedSingtePhase

•--------4-
Requests Filter EscapedMultiPhase

configRequestQ Serve configReplyQ

(e) SAN Submodel for ConfigManager
(c) SAN Model for Firewall

Figure 2: SAN Models for CRCM

10

running servers.
Figure 2(b) shows the SAN representation of the Client submodel. This SAN models the generation

of incoming requests to the system from the clients. Since requests have to pass through a firewall and a

gateway before they are distributed to individual servers, we have a single unreplicated client submodel in

the composed model. The place Requests is shared with the Firewall submodel, and its marking represents

the number of new requests waiting to pass through the firewall. The activity GenerateReqs is responsible

for generating new requests. The input gate MaxReqs allows the activity to be enabled only if the number

of waiting requests is lesser than an upper bound, MaxRe q u e s t s . We bound lengths of all places in our

model that serve as queues between components so that the model has a finite number of states.

Figure 2(c) shows the SAN representation of the FirewallGw submodel. This SAN models the firewall

that filters incoming requests with known attack signatures. The place Requests is shared with the Client

submodel, and keeps track of the number of requests waiting to be processed. Upon firing, the activity

FilterRequests consumes a token from Requests, and, according to the probability distribution of its three

cases, designates the request to be a good request, a single-phase attack, or a multi-phase attack (the number

of phases in a multi-phase attack is set in the Server submodels). A case corresponding to an attack is

chosen with the probability that such an attack will occur and will escape the firewall. The output places are

shared with the Server submodels. A point to note here is that since all packets pass through the firewall to

reach the servers, we model general attacks, including the ones that are not malformed client requests, as a

part of the request stream. That is acceptable, since the request stream models the path all attacks follow, and

since effects of both single-phase and multi-phase attacks are similar (they result in corruption of a server).

Figure 2(d) shows the SAN representation of a Server submodel. This SAN models the distribution of

client requests to individual servers, servicing of requests, corruption of servers due to attacks, dispersion of

multi-phase attacks, and detection of corruption and the system’s response to it.

As described in Section 2.1, the centralized load-balancing gateway randomly forwards each incoming

request to the system to one of the active servers. The activity LoadBalancing is present in each Server sub­

model to model this distribution. The places representing local queues are introduced to accurately model

the distribution scheme, which is different from an idealized scheme in which a server picks a request from

the global pool as soon as it becomes idle. If the case corresponding to a multi-phase attack is chosen, Lo-

calMultiPhase is set to a random integer between 2 and M axPhases (a tunable global variable representing

the maximum number of phases in a multi-phase attack), and PhasesNeeded, which represents the number

of phases that need to be successful for the multi-phase attack to be successful, is set to a fixed fraction of

LocalMultiPhase.
The activity Service represents the servicing of requests in the server’s local queue, as well as the effect

of attacks on the server. The local place Corruption keeps track of the level of corruption of this server.

A marking of 0 implies no corruption at all, and a marking of M axP hases implies complete corruption,

which is sufficient to influence the server’s behavior. A value in between indicates that some phases of a

multi-phase attack have been successful, but that the system is not corrupt enough to behave incorrectly.

11

We model dispersion by having the probability of success of a phase in a multi-phase attack be the recip­

rocal of the marking of NumActive, a shared place that keeps track of the number of servers online. That

accurately models the fact that each phase randomly goes to any of the active servers. If the number of

phases represented by the marking of PhasesNeeded are successful on this server, the value of Corruption

is set to M axPhases, indicating the successful completion of the multi-phase attack. On the other hand, if

the required number of phases have not completed when the last token is removed from LocalMultiPha.se,

the attack is deemed to be unsuccessful, and the marking of Corruption is reset to 0. The marking of the

shared place NumCorrupt (which represents the number of corrupt but as-yet-undetected online servers in

the system) is incremented upon completion of a successful attack on the server.

The activity Detection represents the detection component present on the server host. If the case corre­

sponding to a successful detection is chosen, the output gate ResetState is responsible for sending the alert

information to the Configuration Manager. Upon receipt of a response from the Manager, the server is taken

offline (through setting of the marking of local place Offline to 1), thus reducing the number of active servers

(represented by the shared place NumActive), decrementing the number of corrupt servers if the server rep­

resented by this SAN was completely corrupt at the time of detection, and purging all the requests currently

in the server’s local queues. A point to note is that Detection is enabled if the marking of Corruption is non­

zero, and the probability of successful detection is proportional to the number of changes that have been

made to the configuration of the server (represented by the number of successful attack phases, which is

equal to the marking of Corruption). Because of model size and complexity, we do not model false alarms.

However, that does not constitute a shortcoming of our models, given that our focus in the models is on the

effect of intrusion reports. Hence, we model a composite of actual attacks and false alarms (or, equivalently,

correct and false intrusion reports).

Once a server is taken offline, the Configuration Manager informs the load-balancing gateway about this
change, and the latter no longer forwards new requests to the server. We model that by enabling the activity

LoadBalancing only when the marking of Offline is 0.

The activity Repair represents the process of reinitializing the state of the server. Upon firing, it incre­

ments the number of active servers in the system, and sets the marking of Offline to 0, allowing the server to

receive requests again.

3.2.2 Multicast Routing Centralized Management (MRCM)

Figure 3.2.2 shows the composed model for MRCM, which was described in Section 2.2. It consists

of three atomic SAN models: Server, Firewall, and ConfigManager. Since a firewall is now present on

each host running the server, the submodels are joined to form a model of each host (Joinl). The resulting

submodel is replicated N um S ervers times to form a model of the set of servers.

Figure 3.2.2 shows the SAN representation of the Firewall submodel. This SAN models the generation

of requests from the client, distribution of requests to the servers, filtering of requests as they pass through

the firewall, and generation of multiple phases of a multi-phase attack. As described in Section 2.2, in this

12

Server Firewall

(a) Composed Model (b) SAN Submodel for Firewall

Figure 3: SAN Models for MRCM

architecture, each request goes to all the servers, and exactly one of them picks it up (using a deterministic

function) for service, while the other servers discard it. We model this by generating requests for each server

separately, not through centralized request generation as we did for CRCM. To optimize the model’s state-

space, we do not model the request generation in a separate client model, since the client submodel would

have to be replicated with each server. We model the redistribution of requests when a server goes offline

by setting the rate of FilterRequests to be weighted by the fraction of the total number of servers that are

currently active.
The SAN representation for the Server submodel is similar to the SAN for the Server submodel of

CRCM described above. The significant differences are as follows. There are no global request queues

(since requests are generated for each server); the queues are simply shared with the Firewall submodel.

Since there is no dispersion in this architecture, if the case corresponding to multi-phase attack is chosen in

ServeReq, the phase is always successful, resulting in an increase in the marking of Corruption.
The SAN representation for the ConfigManager submodel is identical to the SAN for the ConfigMan-

ager submodel of CRCM.

3.2.3 State Machine Replication (SMR)

Figure 4(a) shows the composed model for SMR, which was described in Section 2.3. The model consists

of four atomic SAN submodels: Client, Server, Synchronizer, and Repair. The Server submodel is

replicated N um S ervers times to form the set of Servers.
Figure 4(b) shows the SAN representation of the Client submodel. This SAN models the generation of

incoming requests to the system. Since each request is sent to all the active servers, we have centralized

request generation, and upon firing of the activity GenerateReqs, the marking of the shared place Requests

is increased by the marking of NumActive (i.e., we send a copy of the request to each active server).

Figure 4(c) shows the SAN representation of the Server submodel. This SAN models the processing of

client requests by a server, attacks on a server, performance of Byzantine agreement between servers before a

13

(b) SAN Submodel for Client

NumCorrupt

(d) SAN Model for Synchronizer

• ---------- H--------
HostsToRepair RepairHosts IdleHosts

(c) SAN Submodel for Server (e) SAN Submodel for Repair

Figure 4: SAN models for SMR

reply is sent back to the client, exhibition of incorrect behavior by corrupt servers, the subsequent exclusion

of corrupt servers from the server group (provided there are enough uncorrupted servers for agreement),

restarting of new servers on standby hosts, and repair of excluded hosts.

The activity Attack represents the attacks on the server. Since the system reacts identically to single- and

multi-phase attacks (since each request is sent to all servers), we have modeled both by a single activity.

Also, since each server has a publicly visible IP address and there is no firewall, we have modeled the attack

generation explicitly, instead of having it be a part of the request stream. On firing, the marking of the local

place Corruption is set to 1, and the marking of the shared place NumCorrupt is incremented.

The activity Service represents the processing of a client request by the server, and the reaching of Byzan­

tine agreement among the servers on the reply. The probability distribution of the two cases is governed by

the marking of the local place Corruption. If the marking of Corruption is 0, the case corresponding to the

output gate SimpleReply is chosen with a probability of 1. SimpleReply models the sending of a correct reply

14

by the server. It increments the marking of Replies, and puts a token in the shared place SyncInProgress

if its marking was 0. Hence, the first active server that starts processing of a particular request puts a 1 in

SyncInProgress. SimpleReply also sets the marking of the local place SentReply to 1. The activity Service

is enabled only if SentReply has no tokens. If the marking of Corruption is 1, the probability of the case

corresponding to the output gate ConvictReply is p ro b M is b e h a v io r , a global variable that represents

the probability that a corrupt replica will exhibit corrupt behavior during the agreement process. Convic­

tReply first checks if there are enough uncorrupted hosts to reach a Byzantine agreement, i.e., the marking

of NumCorrupt is less than a third of the marking of NumActive. If a Byzantine agreement can be reached,

the marking of the local place Shutdown is set to 1 (indicating that this server has been taken offline), the

markings of NumActive and NumCorrupt are decremented, and the marking of Corruption is reset to 0.

We also increment the marking of the shared place HostsToRepair, since the host on which the server was

running is also excluded, and we need to repair this host and bring it back into the system.

The activity StartupServer represents the starting of a new server on a standby host, to replace one that

has been shut down. This activity is enabled if the server represented by this SAN has been shut down,

and there is at least one standby host. When StartupServer fires, the marking of Shutdown is set to 0, and

the marking of the shared place IdleHosts is decremented. We include standby hosts for SMR, because

Byzantine agreement among hosts is the only way of detecting corruption, and it is necessary to have the

corrupt server replaced quickly (by a server running on a standby host) to maintain the same level of intrusion

tolerance.
The instantaneous activity Ready is enabled if the server has sent a reply (a token is present in SentReply)

and the marking of SyncInProgress is 0. This implies that all active servers have sent their replies, and hence

a reply has been sent to the client, and the servers are ready to process a new request. When Ready fires, the

marking of SentReply is reset to 0. That achieves a kind of “barrier synchronization,” so that all servers start

on a new request only after all of them have completed the processing of the previous request. This models

the requirement of maintaining consistent state across all correct replicas.

Figure 4(d) shows the SAN representation of the Synchronizer submodel. This SAN models the com­

pletion of the response to a client request. The activity Agreement is enabled if the markings of Replies

and NumActive are identical, i.e., each online server has sent a reply to the current request. The delay at

this activity increases with the number of servers in the system. However, instead of increasing linearly, it

increases as a step function, with jumps whenever the number of servers is of the form 3 / + 1 (i.e., it jumps

at 4, 7, 10, and so on). When Agreement fires, it resets the markings of Replies and SyncInProgress to 0 so

that all of the servers can work on the next request. The Synchronizer submodel is needed since the servers

have to maintain the same state, because they use state-machine replication; therefore, a server cannot start

working on a new request before the current request has been completely handled.

Figure 4(e) shows the SAN representation of the Repair submodel. This SAN models the repair process

of the excluded hosts, which results in their transition to the standby state.

15

Réjj] 1

in
Jol M

Submodel Submodel
Firewall Server

(a) Composed Model

(b) SAN Model for Firewall (c) SAN Submodel for Server

Figure 5: SAN Models for MRDM

3.2.4 Multicast Routing Decentralized Management (MRDM)

The composed model and atomic SAN submodels for the MRDM architecture are shown in Figure 5.

They are quite similar to those for MRCM (Section 3.2.2). The major differences are as follows. The

composed model for MRDM does not have a ConfigManager submodel, since the management decision

is taken in a decentralized manner using the Byzantine agreement algorithm; in the Server submodel for

MRDM, upon detection, a corrupt server is taken offline only if the other servers can reach a Byzantine

agreement on shutting it down. Since multi-phase attacks are dispersed in MRDM, the probability of success

of an attack phase in the Server submodel varies inversely with the number of active servers.

4 Results

We used the Möbius [5] tool to build the SANs, define performance and intrusion tolerance measures,

and design studies on the models. We also used Möbius to simulate the models and obtain values for the

measures defined on various studies. We defined several measures on each model for use in the studies.

They included:

• productive throughput: This measure characterizes the number of requests that the system replies to

correctly per time unit. We assume that all correct servers reply correctly to the requests they serve,

16

and all corrupt servers reply incorrectly to the requests they receive. We study the expected value of

this measure averaged over a time interval.

• unproductive throughput: This measure characterizes the number of requests that the system replied

to incorrectly per time unit.

• strong unavailability for an interval: This measure characterizes the fraction of time the service was

improper in the given time interval. For this measure, the service was defined to be improper (for the

CRCM, MRCM, and MRDM architectures) if at least one active server was in a corrupt, undetected

state, or all servers were offline for repair. For SMR, the service is improper if more than a third of

the active servers are corrupt. Hence, a strongly available system does not send an incorrect reply to

any request.

• weak unavailability for an interval: This measure also characterizes the fraction of time the service

was improper in the given time interval, but it uses a weaker definition of proper service. The service

is proper if at least one correct server is online. This measure is not defined on models for SMR. The

above two unavailability measures characterize the survivability of the systems as perceived by a user.

• fraction o f corrupt servers: This measure characterizes the fraction of active servers that are corrupt

at a given instant of time.

We designed several studies on the models to determine how various architectures behave when we vary

some important system parameters, and to determine the range of parameter values for which a particular

architecture is superior over others, with respect to intrusion tolerance and performance characteristics. The

input parameters we varied are the number of hosts in the system, the rate of single-phase attacks on the
system, the rate of multi-phase attacks on the system, the quality of the detection mechanism being used,

and the rate at which components taken offline are repaired and brought back into the system.

Unless otherwise specified, we used the values given below for various input parameters. We need to

emphasize here that the reader need not be particularly concerned about our specific choice of parameter

values, because the aim of these experiments is to present performance and dependability trends/patterns of

these architectures relative to each other, rather than exact values. It is very hard (if not impossible) to come

up with any single universally applicable choice of values, because these architectures could be deployed in

widely varying situations. However, using our SAN models, we can quite easily conduct these experiments

for a large range of parameter values.

We consider a time unit of one minute. Request arrival rate was set to 100 requests (to the entire service

system) per minute for all the architectures. Cumulative attack rates were set to be 12 and 6 per hour for

single and multi-phase attacks respectively.

The local detection components running on each server check for corruption once every two minutes for

CRCM, and once every minute for MRCM and MRDM. That is justified because CRCM uses a centralized

17

detection mechanism with lightweight daemons running on individual hosts, resulting in slower detection,

whereas all the detection in MRCM and MRDM is done locally on each host, resulting in faster detection.

The probability of detecting a corruption in each run is set to 0.5. Likewise, in SMR, a corrupt server

misbehaves with a probability of 0.5. (In Section 4.1, we explain why the probability of misbehavior in

SMR is equivalent to the probability of detection in other architectures.)

The probability that the centralized firewall in CRCM will detect and filter out an attack in CRCM was

set to 0.75. The probability that the local firewalls on each host running a service component in MRCM and

MRDM will detect and filter out an attack was set to 0.4. We use a higher probability for CRCM since it has

a centralized firewall running on a dedicated machine that can detect and filter out attacks more intelligently.

However, we realize that the exact degree of difference in a real setting will vary depending on the strength

of firewalls actually deployed.

The mean time to repair an offline server was set to 17 minutes in all the architectures.

The total number of hosts was set to 12. So that all architectures would have similar amounts of resources,

that number includes the hosts running service components as well as the hosts running trusted components.

Hence, CRCM had 10 hosts running service components and 2 hosts running trusted components (the Con­

figuration Manager and Gateway); MRCM had 11 hosts running service components and one host running

a trusted component (the Configuration Manager); and SMR and MRDM each had all 12 hosts running

service components. SMR had 3 additional hosts in the standby state.

The time interval considered is [0, 30 minutes]. The fraction of corrupt servers is measured at the end of

this interval.

We used simulation to solve all the models; all results presented here have a 95% confidence interval.

4.1 Comparison under Varying Quality of Detection

For the CRCM, MRCM, and MRDM architectures, the Quality of Detection is the probability with which

an intrusion detection system can ascertain that a system has been compromised, given that the system is

actually corrupt. SMR does not have a separate intrusion detection system and detects intrusion primarily

through Byzantine agreement by the group; the group members can know a corrupted member is corrupted

only when it shows some misbehavior during the agreement, by deviating from the protocol specification.

That is modeled by the probability of misbehavior.

To see the effect of the probability of detection in the performance and availability of the system, we

conducted experiments in which we varied the detection probability from 0.0 (no intrusion detection) to

1.0 (perfect intrusion detection). For SMR, the probability of misbehavior was varied from 0.0 (corrupt

server does not misbehave at all) to 1.0 (corrupt server always misbehaves). A model for SMR with low

misbehavior probability represents an attack scenario in which servers behave correctly (to avoid detection)

for a long time after they have been corrupted, and start misbehaving in a correlated manner once enough

servers have been compromised to thwart the Byzantine agreement.

18

Detection/Misbehavior Probability

160

140

-5 120
CL

5 100

80

60

40

20

CRCM
MRCMX

SMR - - Ï *■—
MRDM 0 ...

....... X **L----1-----1------H
X........... X...........

-H ---------------------- 1--------------------

........X-........* - - ** -------------------- x -............

0.2 0.4 0.6 0.8
Detection/Misbehavior Probability

(a) Strong Unavailability (b) Productive Throughput

Figure 6: Varying Detection/Misbehavior Probability

As we can see in Figure 6(a), in the absence of an intrusion detection mechanism (or equivalently, in

the absence of misbehavior in SMR), the strong unavailability of any architecture depends primarily on

the architecture’s defense against intrusion attempts. Thus, CRCM shows the best performance and the

least unavailability, because it has a strong firewall and better handling of multi-phase attacks. All the other

architectures suffer because of weaker firewalls; MRCM performs the worst because it is most susceptible to

multi-phase attacks due to lack of dispersion. When the probability of detection increases, all architectures

become more available, but among CRCM, MRCM, and MRDM, the CRCM architecture remains the best

and MRCM the worst for the same reasons. We notice that SMR is initially very sensitive to any increase

in probability of misbehavior because as long as the Byzantine agreement requirement is met, any corrupt

misbehaving servers can be immediately eliminated. However, for large values of misbehavior probability,

it becomes increasingly difficult for more than one-third of the group to be corrupt at any one time (which is

the criterion for unavailability in SMR). For that reason, for any probability higher than 0.2, SMR with 12

servers shows almost 0 unavailability.
Figure 6(b) shows that SMR has the least amount of productive throughput, because all servers process

every request. Its throughput does not change for misbehavior probabilities greater than 0.3, because above

that value it is almost always available. A trend that is observed in all architectures is that beyond a certain

detection probability (approximately 0.3 for the input parameter values used in this study), throughput does

not show an appreciable increase. The reason is that throughput depends primarily on the system’s total

service capacity (given by the service rate) and the arrival rate, and these parameters were kept constant in

our studies. Among the CRCM, MRCM, and MRDM architectures, the differences in productive throughput

reflect the fact that the number of hosts actually serving client requests varies across these architectures

(MRDM has two more hosts than CRCM, and one more host than MRCM).

19

(a) Strong Unavailability (b) Productive Throughput

Figure 7: Varying Number of Hosts

4.2 Comparison under Varying Numbers of Hosts in the System

Varying the number of hosts in the system from 4 to 13 implies that the number of hosts serving requests

(servers) varies from 2 to 11 in CRCM, from 3 to 12 in MRCM, and from 4 to 13 in SMR and MRDM.

For 4 hosts, SMR and MRDM are more unavailable than CRCM and MRCM (see Figure 7(a)), because

they require Byzantine agreement in order to exclude corrupt servers, and 4 servers can tolerate at most

one corruption. Given enough time, it may be easy to corrupt one server, and beyond that point, no further

corruptions can be tolerated, hence affecting availability. Also, MRDM performs worse than SMR, because

MRDM is considered unavailable in the strong sense even when one server is corrupt, while SMR is con­

sidered available until one-third of the servers are corrupt. SMR shows decreasing unavailability with an

increasing number of hosts, because larger group size enables it to tolerate a larger number of simultaneous

faults. However, unavailability for CRCM and MRCM increases with the number of hosts; that may seem

counter-intuitive, but the greater number of hosts means that there is a greater chance that one host will

be corrupt and online. Like SMR, a larger number of servers makes it easier for MRDM to detect corrupt

servers and exclude them. On the other hand, because of the definition of strong unavailability, a larger

number of servers makes it more likely that MRDM will have a corrupt server online. Because of these

opposing forces, MRDM’s unavailability initially remains unchanged, and starts increasing later, because

the negative effect of having more servers becomes more dominant.

Another interesting point to note is that CRCM does not show an appreciable increase in unavailability

above 10 hosts. The reason is that for a fixed arrival rate and service rate of the individual servers, the

waiting time for any request (and hence any attack) is negligible for 10 hosts, and is unaffected by a further

increase in the number of hosts.

Figure 7(b) shows the productive throughput shown by different architectures as we increase the num­

ber of hosts. In SMR, all hosts process every request, so increasing the number of hosts does not help in

increasing throughput; rather, productive throughput actually falls a little, because of an increase in agree-

20

(a) Fraction of Corrupt Servers (b) Strong Unavailability

(c) Productive Throughput for SMR (d) Productive Throughput for CRCM, MRCM, and MRDM

Figure 8: Variation in Measures with Varying Single-phase Attack Probability

ment delays. MRCM and MRDM show steady increase in productive throughput, which is to be expected

from parallel processing architectures. On the other hand, CRCM does not show any increase in productive

throughput when the number of hosts goes beyond 10, because at that point the central dispatcher starts

acting as a bottleneck in the system, as mentioned before.

4.3 Comparison under Varying Single-phase Attack Rates

We conducted studies on the models to observe the effect of varying single-phase attack rates on the per­

formance and intrusion-tolerance characteristics of the architectures. For the CRCM, MRCM, and MRDM

architectures, the probability that an incoming request is a single-phase attack was varied from 0 to 0.009

in increments of 0.001 (which results in attack rates varying from 0 to 0.9 in increments of 0.1, since the

request arrival rate is 100). Since we were looking at response to single-phase attacks, the probability of

multi-phase attacks was set to 0. For SMR, the attack rate was varied along the same lines. All the other

parameters were the same as we described at the beginning of this section.

Figure 8(a) shows the variation in the fraction of active servers that are corrupt for the CRCM, MRCM,

21

and MRDM architectures. We observe that CRCM performs better than the other two architectures. That

can be attributed to CRCM’s stronger centralized firewall as compared to the weaker local firewalls in

MRCM and MRDM. Since dispersion of multi-phase attacks is not a factor in this study, MRGM performs

comparably. The linear increase for CRCM and MRCM is as expected, but there is a rapid deterioration for

MRDM. The reason is that in MRDM, for higher attack rates, there is a significant probability that more

than a third of the servers will become corrupt before any detection, thus violating the Byzantine agreement

requirement, and hence making it impossible for any corrupt server to be removed from the set of active

servers.

Figure 8(b) shows the variation in strong unavailability for the CRCM, MRCM, and MRDM architectures.

All the architectures perform similarly and are strongly affected by the rate of attacks. CRCM is slightly

better due to its strong centralized firewall, and MRDM is slightly worse due to the failure of the Byzantine

agreement algorithm for higher attack rates.

Figure 8(c) depicts the variation in productive throughput for the SMR architecture. The performance

overhead due to the Byzantine agreement protocol increases with the number of servers in the system. How­

ever, instead of increasing linearly, it increases as a step function, with almost fixed-size jumps whenever

the number of servers is of the form 3 / + 1 (i.e., jumps at 4, 7, 10, and so on). This has been shown

experimentally in [12]. Since the throughput varies inversely with the delay, the gain in throughput with

decrease in the number of servers is more substantial when the number of servers is smaller. Increasing the

attack rate decreases the number of servers; this decreases the Byzantine agreement overhead, and hence

tends to increase the throughput. On the other hand, the probability of enough servers becoming corrupted

to violate the Byzantine agreement requirement increases with increasing attack rates, hence decreasing

productive throughput. The nature of this graph can be attributed to the competition between these two

opposing forces. The former dominates the initial portion of the graph, while the latter dominates when the

attack rate is higher. As explained above, the gain in throughput is not much when the expected number of

servers online is high, and that leads to the domination of the latter force for very low attack rates, resulting

in the initial dip in the graph.

Figure 8(d) shows the variation in productive throughput for the CRCM, MRCM, and MRDM architec­

tures. As expected, productive throughput decreases with increasing attack rates, as fewer correct servers

are online. The relative performance of the architectures can be explained by the facts that CRCM has a

performance bottleneck of centralized request routing, and that MRDM, MRCM, and CRCM have 12, 11,

and 10 servers working in parallel, respectively.

4.4 Comparison under Varying Multi-phase Attack Rates

In this study, we vary the probability that a particular request is part of a multi-phase attack from 0 to

0.009, while keeping the number of single-phase attacks at 0. Figure 9(a) shows that CRCM and MRDM

(coinciding lines) perform better than MRCM with respect to strong unavailability. The reason is that multi-

22

0.2 0.3 0.4 0.5 0.6 0.7
Rate of Multi-Phase Attacks

(a) Strong Unavailability

125

120
3
t 115
o
^ 110 0)>

| 105
a

100

95

CRCM — h -
MRCMX--
MRDM* ...

.*..... *..... *..... *..... *..... *-.....*....-»..... 4

X....
X

...-x
X ..

*......
" X - . . .

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Rate of Multi-Phase Attacks

(b) Productive Throughput

0.8 0.9

Figure 9: Variation in Measures with Varying Multi-phase Attack Probability

0.25

J 0.15

0.05 -

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Repair Rate Repair Rate

(b) Throughput up to t = 120 min(a) Weak Unavailability

Figure 10: Variation in Measures with Varying Repair Rates

phase attacks in CRCM and MRDM are largely unsuccessful due to dispersion, and have a negligible effect

on strong unavailability. The effect on MRCM becomes more evident when we look at the productive

throughput for the three architectures in Figure 9(b). Though MRCM starts out better than CRCM because

of one additional server, its performance degrades rapidly as we increase the probability of multi-phase

attacks.

4.5 Comparison under Varying Repair Rates

When a corrupted server is detected, it is removed from the set of active servers, taken offline, and put

into repair. After repair, the server is put back into the pool of active servers. The system would fail if there

was no repair or the repair was not “fast enough,” i.e., if the mean time between successful attacks is shorter

than the average time taken to repair a server and put it back into service. Only if repairs take less time than

the duration between successive attacks is it possible to provide continuous service even in the presence of

23

successful attacks. Thus, we can intuitively predict that a faster repair rate is crucial for ensuring that the

system provides continuous service.

Figure 10 confirms this intuition. In obtaining the data for these graphs, we considered, for all architec­

tures, a set of 4 hosts running the service component. Additional hosts were used for the trusted management

components (Gateway, Configuration Manager, and Firewall) if those components are required in the archi­

tecture. We varied the repair rate from 0 (no repair) to 0.5 (very fast repair rate: one repair every 2 minutes),

while the other parameters were kept constant. The attack rate was kept constant at 0.08 per time unit. As

the repair rate varies from 0 upwards, the graphs show that the good throughput increases until a saturation

point. The saturation point is reached when the repair rate is faster than the attack rate. Increasing the repair

rate beyond that point has some beneficial effects, but not substantial improvements. A similar trend can be

observed from the graphs depicting the negative performance variables (such as weak unavailability). The

saturation point (for a given estimate of the attack rate) represents the optimal repair rate; it is “optimal” in

the sense of getting maximum benefit from minimal cost for repair.

From Figure 10(a), we can see that with no repair, CRCM performs the best, because of its strong firewall

and its use of a dispersion mechanism. MRDM and MRCM do not have a strong firewall, but MRDM

outperforms MRCM due to dispersion in the former. Since CRCM starts out with low unavailability, it is

not affected substantially by an increase in repair rate. MRCM matches the low unavailability of the CRCM

architecture after the optimal repair rate has been reached. The MRDM architecture, on the other hand, is

not able to attain such low unavailability, even after the saturation point. The reason is that our experiments

were conducted with 4 servers, and when the number of correct servers drops to 3, it is not possible to reach

Byzantine agreement to remove the next corrupted server from the set of active servers.

Though the CRCM and MRCM architectures outperform the MRDM architecture in availability, with

respect to correctness of replies (productive throughput), MRDM is clearly superior (as seen from Fig­

ure 10(b)). The duration between detection of an intrusion and removal of the corrupted server from the

active set is shorter for MRDM than for the CRCM and MRCM architectures, due to the fact that it does not

have the bottleneck of a centralized manager. Therefore, the number of potentially erroneous replies that a

corrupted server could send before being removed would be less for the MRDM architecture than for other

architectures. However, we expect that for a greater number of servers, this advantage may become less im­

portant for MRDM, because the overhead due to the Byzantine agreement protocol increases significantly

as the number of servers increases, as shown experimentally in [12].

5 Conclusion

This work is the first attempt to evaluate intrusion-tolerant server architectures. We define a series of rel­

evant metrics and present a probabilistic evaluation and comparison of four representative intrusion-tolerant

server architectures. The results present useful information about the intrusion tolerance and performance

characteristics of the architectures, by means of varying system parameters such as the quality of intrusion

24

detection, rate of attacks on the system, amount of resources, and time to repair an intruded server.

The results show that architectures that use a small number of trusted components to secure a large set

of servers perform better in terms of availability than architectures with no trusted components when the

level of redundancy in the system is not very large. However, practical experience [10] shows that it is

difficult, if not impossible, to implement truly trustworthy components. Such architectures also usually

employ centralized decision-making, which is a potential performance bottleneck.

State-machine-replication-based architectures that employ Byzantine fault-tolerant protocols for agree­

ment on the request processing have the best intrusion tolerance characteristics, but they usually come at

the expense of lower performance. Hence, such architectures are a good choice for implementing mission-

critical systems for which the ability to withstand intrusions is more important than performance.

Architectures that employ decentralized decision-making and serve multiple requests in parallel have the

best performance for a given amount of resources, since all the resources can be used for request processing.

They are superior to centralized architectures for which a portion of resources need to be set aside for
hosting trusted components. However, from an intrusion tolerance perspective, the effectiveness of such

decentralized architectures is realized only when there is a sufficient degree of redundancy. We also observe

that request dispersion mechanisms that introduce unpredictability in request routing are highly effective in

defense against multi-phase attacks. It is critical that the mean time to repair be much less than the mean

time between attacks. However, beyond a certain point, increasing the repair rate does not give appreciable

added benefits.
We believe that our choice of values for model parameters is reasonable, but more importantly, our models

allow system designers to evaluate alternative architectures by assigning different values for those parame­

ters as they deem appropriate. This certainly enhances their ability to make more informed choices between

various intrusion-tolerant architectures easily and quickly, before undergoing the expensive process of build­

ing and evaluating multiple prototypes.
Acknowledgments: The authors thank other members of the ITUA team for their helpful comments, Dr.

Marinho Barcellos for his comments and help in improving the manuscript, and Jenny Applequist for her

editorial assistance.

References

[1] B. Cahoon, K. S. McKinley, and Z. Lu, “Evaluating the Performance of Distributed Architectures for Information
Retrieval using a Variety of Workloads,” IEEE Trans, on Information Sys., Vol. 18, No. 1, pp. 1-43, 1997.

[2] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic Load Balancing on Web-server Systems,” IEEE Internet
Computing, Vol. 3, No. 3, pp. 28-39, 1999.

[3] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” Proc. Third Symp. on Operating Sys. Design
and Implementation (OSDI ’99), pp. 173-186, 1999.

25

[4] M. Cukier, J. Lyons, P. Pandey, H. V. Ramasamy, W. H. Sanders, P. Pal, F. Webber, R. Schantz, J. Loyall, R.
Watro, M. Atighetchi, and J. Gossett, “Intrusion Tolerance Approaches in ITUA,” FastAbstract in Supplement of
the 2001 International Conference on Dependable Systems and Networks, pp. B64-B65, 2001.

[5] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders, and P. G. Webster,
“The Möbius Framework and Its Implementation,” IEEE Trans, on Software Engineering, Vol. 28, No. 10, pp.
956-969, October 2002.

[6] A. Delis and N. Roussopoulos, “Performance Comparison of Three Modem DBMS Architectures,” IEEE Trans­
actions on Software Engineering, Vol. 19, No. 2, pp. 120-138, 1993.

[7] A. Delis and N. Roussopoulos, “Performance and Scalability of Client-Server Database Architectures,” Proc.
Inti Conf in Very Large Data Bases (VLDB), pp. 610-623, 1992.

[8] Y. Deswarte, L. Blain, J. C. Fabre, “Intrusion Tolerance in Distributed Computing Systems,” Proc. IEEE Sym­
posium on Security and Privacy, pp. 110-121, 1991.

[9] Draper Laboratories, Inc., “Kinetic Application of Redundancy to Mitigate Attacks,” DARPA OASIS Program,
http://www.tolerantsystems.org/ProjectSummaries/IT_UsingJVIasking_Redundancy_and_Dispersion.html.

[10] U. Lindqvist, T. Olovsson, and E. Jonsson, “An Analysis of a Secure System Based on Trusted Components,”
Proc. Eleventh Annual Conf. on Computer Assurance (COMPASS ’96), pp. 213-223, Gaithersburg, Maryland,
1996.

[11] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic Activity Networks: Structure, Behavior, and Appli­
cation,” Proc. Inti Workshop on Timed Petri Nets, pp. 106-115, 1985.

[12] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, “Quantifying the Cost of Providing
Intrusion Tolerance in Group Communication Systems,” Proc. Inti Conf. on Dependable Sys. and Networks
(DSN-2002), Washington, DC, pp. 229-238, 2002.

[13] W. H. Sanders, M. Cukier, F. Webber, P. Pal, and R. Watro, “Probabilistic Validation of Intrusion Tolerance,”
FastAbstract in Supplemental Volume of the 2002 International Conference on Dependable Systems and Net­
works, pp. B78-B79, 2002.

[14] W. H. Sanders, and J. F. Meyer, “Stochastic Activity Networks: Formal Definitions and Concepts,” In Lectures
on Formal Methods and Performance Analysis, LNCS 2090, Springer-Verlag (E. Brinksma, H. Hermanns, J.P.
Katoen, Ed.), Berlin, pp. 315-343, 2001.

[15] F. Schneider, “Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial,” ACM
Computing Surveys, Vol. 22, No. 4, pp. 299-319, 1990.

[16] Secure Computing Corporation, “Intrusion Tolerant Server Infrastructure,” DARPA OASIS Program,
http://www.tolerantsystems.org/ProjectSummaries/Intrusion_Tolerant_Server_Infrastructure.html.

[17] S. Singh, M. Cukier, and W. H. Sanders, “Probabilistic Validation of an Intrusion-Tolerant Replication System,”
Proc. Inti Conf. on Dependable Sys. and Networking (DSN-2003), pp. 615-624, 2003.

26

http://www.tolerantsystems.org/ProjectSummaries/IT_UsingJVIasking_Redundancy_and_Dispersion.html
http://www.tolerantsystems.org/ProjectSummaries/Intrusion_Tolerant_Server_Infrastructure.html

APPENDIX A.l

SAN Modeling of the Centralized Routing Centralized Management
(CRCM) Architecture

Model: Client

Place Names Initial Markings
Requests 0..............,..... -....................... ,..... -..........-..............-................ f

Timed Activity: GenerateReqs
Exponential Rate
Distribution
Parameters GEN_REQ_RATE

Activation Predicate (none)
Reactivation Predicate (none)

Input Gate: MaxReqs

Predicate (R e q u e s t s - > M a r k ()) < MAX_REQS

Function /

Model: ConflgM anager

: : : : : :
configRequestQ s eryg configReplyQ

Place Names T~ Initial Markings
};

configReplyQ j 0 I1
configRequestQ 1 0 •i

Timed Activity: Serve
Exponential
Distribution

Rate i

Parameters C onfM grR ate 1
Activation Predicate (none)

Reactivation Predicate (none)

Model: FirewallGateway

Place Names Initial Markings
EscapedMultiPhase 0
EscapedSinglePhase 0
GoodReqs 0
Requests 0

Timed Activity: FilterRequests
Exponential Rate
Distribution
Parameters F i l t e r R a t e

Activation Predicate 1

Reactivation Predicate 1

Case Distributions

case 1

P r o b F i l t e r i n g * P r o b S i n g l e P h a s e
case 2

P r o b F i l t e r i n g * P r o b M u l t iP h a s e
case 3

1 - (P r o b S i n g le P h a s e + P ro b M u l t iP h a s e)

Input Gate: Filter

R e q u e s t s - >M ark() &&
(E s c a p e d S i n g l e P h a s e - > M a r k () + E s c a p e d M u l t iP h a s e - > M a r k ()

G o o d R eq s-> M ark ()) < MaxGwQLen

Predicate

Function R e q u e s t s - > M a r k ;

Model: Server

r'~'.. "• —"
Place Names Initial Markings

Corruption 0
EscapedMultiPhase o
EscapedSinglePhase .. 0............__ _ 1
GoodReqs 0
LocalGoodReqs 0
Local Multiphase 0
LocalSinglePhase 0
NumActive Num Servers{--
NumCorrupt 0
Offline 0
PhasesNeeded 0
ReqSent 0
configReplyQ 0
configRequestQ o............................. u -_________ _ ...J

Timed Activity: Detection
.............. '

Exponential Rate
Distribution
Parameters DetectionRate

Activation Predicate 1

Reactivation Predicate !

Case Distributions

Timed Activity:

case 1

(P r o b D e t e c t i o n * C o r r u p t i o n - > M a r k ()) /M ax P h ase s
case 2

1 - ((P r o b D e t e c t i o n * C o r r u p t i o n - > M a r k ()) /M ax P h ase s)

LoadBaiancing
Exponential
Distribution
Parameters
Activation
Predicate

Rate

L o a d B a la n c in g R a te

Reactivation
Predicate

Case
Distributions

case 1

(E s c a p e d S i n g l e P h a s e - > M a r k () * 1 . 0) / (E s c a p e d S i n g l e P h a s e -
>M ark() + E s c a p e d M u l t iP h a s e - > M a r k () + G o o d R eq s-> M ark ())
case 2

(E s c a p e d M u l t iP h a s e -> M a rk 0 * 1 . 0) / (E s c a p e d S i n g l e P h a s e - > M a r k ()
+ E s c a p e d M u l t iP h a s e - > M a r k () + G o o d R eq s-> M ark ())
case 3

(G o o d R eq s-> M ark () * 1 . 0) / (E s c a p e d S i n g l e P h a s e - > M a r k ()
E s c a p e d M u l t iP h a s e - > M a r k () + G oodReqs- >M ark())

Timed Activity:
Exponential Rate
Distribution
Parameters R e p a i r R a te

Activation Predicate
Reactivation Predicate

Repair

(none)
(none)

Timed Activity: ServeReq
Exponential
Distribution

Rate

Parameters S erv iceR a te
Activation
Predicate 1

Reactivation
Predicate 1

case 1

(L ocalS inglePhase->M ark 0 * 1 . 0) / (L oca lS in g leP h ase-> M ark () +
L ocalM ultiP hase->M ark() + LocalGoodReqs->M ark())

Case case 2
Distributions

;

;
(L ocalM ultiPhase->M ark() * (NumActive->Mark() ? (1 . O/NumActive-
>Mark()) : 0)) / (L oca lS ing leP hase-> M ark() + L oca lM u ltiP h ase-
>Mark() + LocalGoodReqs->M ark())
case 3................ -........ ...-

!
(L ocalM ultiP hase-> M ark() * (1 - (NumActive-
>Mark() ? (1 . O/NumActive->Mark()) : 0))) / (L o ca lS in g le P h a se -
>Mark() + L oca lM ultiP hase-> M ark () + LocalG oodReqs->M ark())
case 4

(LocalGoodReqs->Mark 0 * 1 . 0) / (L o c a ls in g le P h a se - >Mark() +
L oca lM ultiP hase-> M ark () + LocalG oodReqs->M ark())

instantaneous Activities Without Cases:
resetting

Input Gate: Detect

Predicate C o rru p tio n -> M ark () > 0 && O fflin e -> M a rk () ==0 &&
R eqSent- >Mark() ==0

j
Function

;— ,.................- - -,
Input Gate: PickReqs

Predicate

(E scapedS ing leP hase-> M ark() + E scapedM ultiP hase-> M ark() +
GoodReqs->Mark()) > 0
ScSc Of f line-> M ark () ==0 &&
(L oca lS ing leP hase-> M ark () + LocalGoodReqs- >Mark()) <

MaxServerQLen

Function
i /

Input Gate: RepairServer

Predicate i
O ff lin e -> M a rk ()

Function
[

Of f line-> M ark 0 = 0 ;
NumAc t i ve - >Mark () + + ;

Input Gate: Service

Predicate (L oca lS ing leP hase-> M ark () + L oca lM ultiP hase-> M ark() +
LocalGoodReqs->M ark()) > 0

Function
; 1

Output Gate: EnQGood

Function
if(G oodR eqs->M ark()) {

GoodReqs- >Mark() - - ;
LocalGoodReqs- >Mark()++;

>...
Output Gate: EnQMuIti

Function
i f (E scapedM ultiPhase->M ark()) {

E scapedM ultiPhase-> M ark() - - ;
s h o r t x = M axPhases> 2 ? ((s h o r t) (r a n d ()%(MaxPhases-

2))+ 2) : 2 ; //uncom m ent t h i s

/ / s h o r t x = l ; //com m ent t h i s
if(L o c a lM u ltiP h a se -> M a rk () ==0) {

L ocalM ultiP hase-> M ark() = x ;
}
e l s e {

/ / p rob o f choosing num p h ases in v e r s e ly
p rop to # p h ases

s h o r t y = x + L ocalM ultiP hase-> M ark() ;
s h o r t z = 1 + (ra n d ()%(y -1)) ; //uncomm ent

t h i s
/ / s h o r t z = l ; //comm ent t h i s
i f (z > x) {

L ocalM ultiP hase-> M ark() = x;
}

}
PhasesN eeded->M ark() = 1+ (sh o rt) (L oca lM ultiP hase-

>Mark() * f r a c P h a s e s) ;
}

Output Gate: EnQSingle

Function
if(E sca p ed S in g le P h a se -> M ark ()) {

E scapedS ing leP hase-> M ark() - - ;
L oca lS ing leP hase -> M ark ()++;

}
Output Gate: ResetState

______________ „ J

Function

Of f line-> M ark 0 = 1 ;
L oca lS ing leP hase -> M ark () =0 ;
L ocalM ultiP hase-> M ark() =0 ;
LocalGoodReqs- >Mark 0 = 0 ;
NumActive->M ark() - - ;
i f (C o rrup tion -> M ark () == MaxPhases)

NumCorrupt- >Mark() - - ;
C orruption->M ark 0 = 0 ;

Output Gate: ServeGoodReq

Function if(L ocalG oodR eqs->M ark()) {
LocalGoodReqs- >Mark() - - ;

}
Output Gate: ServeMuItiPhaseFail

Function

;

if(L o c a lM u ltiP h ase -> M ark ()) {
L ocalM ultiP hase-> M ark() - - ;
if (L o c a lM u ltiP h ase -> M ark () ==0) {

i f (C orrup tion -> M ark() < MaxPhases) {
C orrup tion -> M ark ()=0 ;

}
PhasesN eeded->M ark() = 0;

}
}

Output Gate: ServeMultiPhaseSucc
Function

if (L o c a lM u ltiP h a se -> M a rk ()) {
L ocalM ultiP hase-> M ark() - - ;
s h o r t f lag = 0 ;
if(Corruption->Mark() < PhasesNeeded->Mark()) {

Corruption->Mark()++;
f l a g = l ;

}if (Corruption->Mark() >= PhasesNeeded->Mark())
L ocalM ultiP hase-> M ark()=0 ;
PhasesN eeded->M ark() = 0;
i f (f la g == 1)
{

C o rru p tio n -> M ark () = MaxPhases;
NumCorrupt- >Mark()++;

}

Output Gate: ServeSinglePhase

Function

if (L o c a lS in g le P h a se -> M a rk ()) {
L oca lS ing leP hase -> M ark () - - ;
i f (C orrup tion -> M ark() < MaxPhases)
{

C orrup tion -> M ark () = MaxPhases;
NumCorrupt- >Mark()++;

}
}

Output Gate: detected

Function configR equestQ ->M ark() = 1;
R eqSent->M ark() = 1;

Model: CRCM

Server

Rep Node Reps Shared State Variables
EscapedMultiPhase
EscapedSinglePhase
GoodReqs

Servers Num Servers NumActive
NumCorrupt
configReplyQ
configRequestQ

Join Node: Joinl :
State Variable Name Submodel Variables

ConfigReplyQ Servers->configReplyQ
ConfigManager->configReplyQ

EscapedMultiPhase Servers->EscapedMultiPh ase
FirewallGw->EscapedMultiPhase

EscapedSinglePhase Servers->EscapedSinglePhase
F irewallGw->EscapedS inglePhase

GoodReqs
Servers->GoodReqs
FirewallGw->GoodReqs

Requests
C1ient->Requests
Fire wal 1G w->Requests

configRequestQ Servers->configRequestQ
ConfigManager->configRequestQ

Performance Variable Model: CRCM PV

Top Level Model Information Child Model Name CRCM______________ _______!
Model Type Rep/Join

Performance Variable : throughput
Affecting Models Server

Impulse Functions
Server->ServeReq_case4
(Reward is over a ll Available Models)

return 1;

Reward Function
(Reward is over a ll A va ilab le Models)

Simulator Statistics

1

!

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

Performance Variable : arrivalrate
Affecting Models FirewallGw

Impulse Functions

F irewallG w->F ilterRequestscase 1
(Reward is over a ll Ava ilab le Models)

return 1;
F irewallGw->FilterRequests_case2
(Reward is over a ll Ava ilab le Models)

return 1+(MaxPhases/2.0);
Firewal lGw->Fi IterRequests case3
(Reward is over a ll Available Models)

return 1;

Reward Function
(Reward is over a ll Availab le Models)

Estimate Mean

1 j
Optionsi;

Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities

: ii 1 s Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

Performance Variable : fracCorruptServers
A ffectin g M odels Server

Im pulse Functions . . ■ !-....... -....... ,.... , ... _...._.. ... ,........ ,.-..

Reward Function
(Reward is over a ll A va ilab le Models)

i f (Server-C orruption->M ark() == MaxPhases && Server->O ffline->M ark() == 0)
return 1 .0/Server->NumActive->Mark() ;

Sim ulator Statistics

Type Instant o f Time

Options

Estimate Mean

Include L ower Bound on Interval Estimate

Include Upper Bound on Interval Estimate

Estimate out o f Range Probabilities

C onfidence Level is Relative

Parameters Start Time 30.0

C onfidence
C onfidence Level 0.95

C onfidence Interval 0.1

Performance Variable : StrongUnavailability
Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function if(Server->NumActive->Mark()==0) return 1.O/NumServers;

if (Server->Offline->Mark()==0 && Server->Corruption->Mark() == MaxPhases)
return 1.0/Server->NumCorrupt->Mark();

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

\
Parameters Start Time 0.0

Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

Performance Variable : WeakUnavailability
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over all Available Models)
if (Server->NumActive->Mark() == Server->NumCorrupt->Mark())

return 1.O/NumServers;
Simulator Statistics Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0
Confidence Level 0.95Confidence ,------- —--------------- —----- -------- -----
Confidence Interval 0.1

Performance Variable : numCorrupt
Affecting Models Server
Impulse Functions

Reward Function
(R e w a r d is o v e r a l l A v a ila b le M o d e ls)

return (Server->Corruption->Mark()>=MaxPhases);
Type Instant of Time

Simulator Statistics

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

Performance Variable : goodth rough put
Affecting Models Server

Impulse Functions

Server->ServeReq_case4
(R e w a r d is o v e r a l l A v a ila b le M o d e ls)

if (Server-¡»Corruption->Mark() < MaxPhases)
return 1;

Reward Function
(R e w a r d is o v e r a ll A v a ila b le M o d e ls)

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics ¡Estimate out of Range Probabilities
Confidence Level is Relative.................. _...... .

„ Start Time 0.0r dI dllldCI b
Stop Time 30.0

_ Confidence Level 0.95L/UllilUCHLC
¡Confidence Interval 0.1

Performance Variable : badthroughput
Affecting Models Server

Server->ServeReq_case4

Impulse Functions <Reward “ over aU Models)
if(Server->Corruption->Mark() >= MaxPhases)

return 1.0;

Reward Function
(Reward is over a ll Available Models)

Simulator Statistics

Type Time Averaged Interval of Time
r..... . 11

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence
1
Confidence Level 0.95
Confidence Interval 0.1

Performance Variable Model: CRCM PV SS

Top Level Model Information Child Model Name CRCM
Model Type Rep/Join

Performance Variable : SSfracCorruptServers
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over a ll Ava ilab le Models)

if (Server->Corruption->Mark() == MaxPhases && Server->Offline->Mark()
return 1.O/Server->NumActive->Mark();

== 0)

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSStrongUnavailability
Affecting Models Server

Impulse Functions

Reward Function

(Reward is over a ll A va ilab le Models)

if(Server->NumActive->Mark()==0) return 1.O/NumServers;
if (Server->Offline->Mark()==0 && Server->Corruption->Mark() == MaxPhases)

return 1.0/Server->NumCorrupt->Mark();

Simulator Statistics

Type Steady State

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSWeakUnavailability
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over a ll Available Models)

if (Server->NumActive->Mark() == Server->NumCorrupt->Mark())
return 1.0/NumServers;

Simulator Statistics

Type Steady State

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSnumCorrupt
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over a ll Availab le Models)

\

return (Server->Corruption->Mark()>=MaxPhases);
Simulator Statistics Type Steady State

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

^ x Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence interval 0.01

Performance Variable : SSgoodth rough put
Affecting Models Server

Server->ServeReq_case4 Ì
Impulse Functions (Reward is over a ll Available Models)

if (Server->Corruption->Mark() < MaxPhases)
return 1 ;

Reward Function
(Reward is over a ll Ava ilab le Models)

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSbadthroughput
Affecting Models Server

Server->ServeReq_case4

Impulse Functions (Reward is over a ll Ava ilab le Models)

if (Server->Corruption->Mark() >= MaxPhases)
return 1.0;

Reward Function
(Reward is over a ll Available Models)

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate__j

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Range Study Variable Assignments for Study Detection in Project C R C M :

Variable
r

Type Range
Type Range Increment Increment

Type Function n!1
ConfM grRate double Fixed 10 - - - i_ 1

D etectionR ate double Fixed .6 - - - ! !
- i

FilterRate double Fixed 200 - '
-

!
- J

GEN REQ RATE float Fixed 100 - - "
Load Baiane ingRate double Fixed 12 -
M AX REQS int Fixed 50 - -
M axG w Q Len short Fixed 50 - - - . ii
M axPhases short Fixed 5 - - - -
M axServerQLen short F ixed 10 - -
Num Servers short Fixed 10 - - -

ProbDetection double Manual
[0. .1, .2, .3, .4, .6,
•8, 1]

- - - -

ProbFiltering double Fixed .25 - - - -
ProbM ultiPhase double Fixed .001 - - ” -
ProbSinglePhase double Fixed .002 - - - -
RepairRate double Fixed 0.06 - - -
ServiceRate double Fixed 20 - - -
frac Phases double Fixed .6 “ " . “

Range Study Variable Assignments for Study CRCMJStudy in Project C R C M :

Variable Type Range Type
1

Range Increment Increment
Type Function n

___]
ConfM grRate double Fixed 10 - - .

-
DetectionRate double Fixed 1-6 - - -

FilterRate double Fixed ¡200 - - - "
GEN REQ RATE float Fixed 100 - ■ . j

!
LoadBalancingRate double Fixed ¡12 - . -

j

: j
MAX REQS int Fixed 50 - - -

M axGwQLen short Fixed 50 - ' ' "

M axPhases short Fixed 5 - - . !
...

M axServerQLen short Fixed 10 - - .
'

Num Servers short Fixed 10 - '
ProbDetection double Fixed .5 - - - i
ProbFiltering double Fixed 1 .2 5 - ‘ -

ProbM ultiPhase double Fixed ¡.001 - - -
ProbSinglePhase double Fixed i.002 - . . .

RepairRate double Fixed 0.06 -

ServiceRate double Fixed
i
20 - * - . i

frac Phases double Fixed ,6 ' . "

. J

Range Study Variable Assignments for Study CRCM_Study_SS in Project CRCM:“1------------- - --------- —|-------
Variable Type

T".....
Range Type

T
Range Increment Increment

Type Function n

ConfM grRate double Fixed 10 - T“ -

D etectionRate double Fixed .6 r r f
FilterRate double Fixed 200 r-i

_ ~ - -

GEN REQ RATE float Fixed 100
1......... 11..........
-

r _
- !- L;

LoadBalancingRate double Fixed 12
......................
* ‘ -

M AX REQS int Fixed 50
_

"
1
*

M axGwQLen short Fixed 50 - - - .

M axPhases short Fixed 5 " - .

M axServerQLen short Fixed 10 - -

Num Servers short Fixed 10 - _ -

Pro b Detect ion double Fixed .5 ■ - - 1
Prob Filtering double Fixed .25 ■

. : 1
ProbM ultiPhase double Fixed .001 - *

\

ProbSinglePhase double Fixed .002 -
... . ..

- j
RepairRate double Fixed .06 - •

_ _ _ j

ServiceRate double Fixed 20 i - -

frac Phases double Fixed .6 1 ”

Range Study Variable Assignments for Study MultiPhase in Project CRCM :

Variable Type Range
Type

I
Range Increment Increment

Type Function n

ConfM grRate double Fixed 10 - -

DetectionRate double Fixed .6 - - -

FilterRate double Fixed 200 - - -

GEN REQ RATE float Fixed 100 - - - "
LoadBalancingRate double Fixed 12 ■ - .

M AX REQS int Fixed 50 -
M axGwQLen short Fixed 50 - -

M axPhases short Fixed 5 -
M axServerQLen short Fixed 10 - - -

NumServers short Fixed 10 - - -
ProbDetection double Fixed •5 - " "
ProbFiltering double Fixed .25 - - -
ProbMultiPhase double Incremental [0 .0 .0 .009000000000000001] .001 A dditive -
ProbSinglePhase double Fixed 0* - -
RepairRate double Fixed 0.06 - - -
ServiceRate double Fixed 20 ” . -
frac Phases double Fixed .6 - -

Range Study Variable Assignments for Study NumServers in Project CRCM :

Variable
j

Type Range Type Range
!

\!
Increment Increment

Type Function
"

ConfM grRate double Fixed 10 r _ - !- :
D etection Rate double Fixed .6 > - -

FilterRate double Fixed 200 i .

GEN REQ RATE float Fixed 100 |- -

LoadBalancingRate double Fixed 12 . " - - J
M AX REQS int Fixed 50 " . !

* I
M axG wQ Len short Fixed 50 -J
M axPhases short Fixed 5 -
M axServerQLen short Fixed 10 . " .
.......—......—--
N um Servers

,
short Incremental [2 ,11] 3 Additive - -

ProbDetection double Fixed .5 - - -
ProbFiltering

..
double Fixed .25 - -

ProbM ultiPhase double Fixed .001
~

- -
ProbSinglePhase double Fixed .002 - - _ -j-------— -- ---- --- -
RepairRate ¡double Fixed 0.06 - - -

ServiceRate double Fixed 20 - - - -
fracPhases double Fixed .6 1 1 1"

Range Study Variable Assignments for Study R e p a ir in Project C R C M :

Variable Type Range
Type Range Increment Increment

Type Function n

ConfM grRate double Fixed 10 - - - -

DetectionRate double Fixed .6 - - - -

FilterRate double Fixed 200 - "
GEN REQ RATE float Fixed 100 - - - -

LoadBalancingRate double Fixed 12 - -

MAX REQS int Fixed 50 - - -
M axGwQLen short Fixed 50 _

M axPhases short Fixed 5 - - ■
M axServerQLen short Fixed 10 - " -
Num Servers short Fixed 10 ' -
ProbDetection double Fixed •5 - - - -
ProbFiltering double Fixed .25 - ~ ' ;

j

ProbMultiPhase double Fixed .001 - ” - -
ProbSinglePhase double Fixed .002 - -!
RepairRate double Manual

[0, .01, .02, .03, .04,
.05, .1, .15]

- -
..........i

ServiceRate double
■ ' -
Fixed 20

.....
.

" '
fracPhases double Fixed .6 -

Range Study Variable Assignments for Study S in g le P h a s e in Project C R C M :
\

Variable
;
Type Range

Type

1

Range
1----------------

Increment Increment
Type

r ~ —
Function

■
n

ConfM grRate double Fixed h o
I
i - r r

D etectionR ate double Fixed: .6 - T— ------------ .
:

FilterRate double Fixed ¡200 - i ” ~
*

1------ -----
- •

GEN REQ RATE float Fixed 100 - F ^ -
LoadBalancingRate double Fixed 12 - -
M A X REQS int Fixed 50

...
■ - -

M axG wQ Len short Fixed 50 -
.

" -
M axPhases short Fixed 5 - -

M axServerQLen short Fixed 10 - - - “

Num Servers short Fixed 10 - - !-
ProbDetection double Fixed .5 - - _

ProbFiltering double Fixed .25 - - .

ProbM ultiPhase double Fixed 0 - - -

ProbSinglePhase double Incremental

oooooooooooooooooÖ©Ö
.001 A dditive - f

RepairRate double Fixed 0.06 -
ServiceRate double Fixed 20 - ‘ -

fracPhases double Fixed .6 1- |-

APPENDIX A.2

SAN Modeling of the Multicast Routing Centralized Management
(MRCM) Architecture

Model: ConfigM anager

• • ^ ̂ '----- H ---------- —--- ■ ■ •
configRequestQ Serve configReplyQ

Place Names Initial Markings
configR eplyQ r “7 ::::: ... « __ _ _ _ ___i
configR equestQ 0

Timed Activity: Serve
Exponential Rate
Distribution
Parameters Conf M gr Rate

Activation Predicate (none)
Reactivation Predicate (none)

Model: Firewall

Place Names Initial Markings
EscapedM ultiPhase 0
EscapedSinglePhase 0
G oodR eqs 0
N um A ctive NumServers
O ffline 0
PhasesN eeded 0........

Timed Activity: FilterRequests

Exponential
Distribution
Parameters

Rate

F i l t e r R a t e * (N u m A c t i v e -
> M ar k () > 0 ? (N u m S e r v e r s * l . 0 / N u m A c t i v e - > M a r k ()) : 0)

Activation Predicate
1 ..

Reactivation
Predicate 1 ..___ ____________ ______ _ i

Case Distributions

case 1

P r o b F i l t e r i n g * P r o b S i n g l e P h a s e
case 2

P r o b F i l t e r i n g * P r o b M u l t i P h a s e
case 3

1 - (P r o b S i n g l e P h a s e + P r o b M u l t i P h a s e)

Input Gate: Filter

Predicate
(E s c a p e d S i n g l e P h a s e - > M a r k () + G o o d R eq s -> M ark ()) <

MaxGwQLen
&& O f f l i n e - > M a r k () ==0

Function 7

Output Gate: MPAttack

Function

s h o r t x = M a x P h a s e s > 2 ? ((s h o r t) (r a n d () %(M a x P h a s e s - 2)) + 2) :2 ;
/ / r e m o v e d t o r e d u c e s t a t e s p a c e
/ / s h o r t x = l ; / / c o m m e n t t h i s when e n a b l i n g t h e p r e v i o u s
l i n e
i f (E s c a p e d M u l t i P h a s e - > M a r k () ==0) {

E s c a p e d M u l t i P h a s e - > M a r k () = x ;
}
e l s e {

/ / p r o b o f c h o o s i n g num p h a s e s i n v e r s e l y p r o p t o #
p h a s e s

s h o r t y = x + E s c a p e d M u l t i P h a s e - > M a r k () ;
s h o r t z = 1 + (r a n d () % (y - 1)) ; / / r e m o v e d

t o r e d u c e s t a t e s p a c e
/ / s h o r t z = l ; / / c o m m e n t t h i s when e n a b l i n g t h e

p r e v i o u s l i n e
i f (z > x) {

E s c a p e d M u l t i P h a s e - > M a r k () = x ;
}

}
P h a s e s N e e d e d - > M a r k () = 1 + (s h o r t) (E s c a p e d M u l t i P h a s e - > M a r k () *
f r a c P h a s e s) ;

Model: Server

resetting configReplyQ
configRequestQ

Place Names Initial Markings
Corruption 0.........-- -.............
EscapedM ultiPhase 0
EscapedSinglePhase 0
G oodR eqs 0
N um A ctive NumServers
NumCorrupt o

O ffline 0
PhasesN eeded 0
ReqSent 0
configR eplyQ 0
configRequestQ 0

Timed Activity: Detection
Exponential
Distribution
Parameters

Rate

D e t e c t i o n R a t e

Activation Predicate

Reactivation Predicate
1 ..

Case Distributions

case 1
(P r o b D e t e c t i o n * C o r r u p t i o n - > M a r k ()) / M ax P h as e s

case 2
1 - (P r o b D e t e c t i o n * C o r r u p t i o n - > M a r k ()) / M ax P h as e s

Timed Activity: Repair
Exponential
Distribution
Parameters

Rate

R e p a i r R a t e
Activation Predicate (none)

Reactivation Predicate (none)
Timed Activity: ServeReq

Exponential
Distribution
Parameters

Rate

S e r v i c e R a t e
Activation
Predicate 1

Reactivation
Predicate 1

Case
Distributions

case 1

(E s c a p e d S i n g l e P h a s e - > M a r k 0 * 1 . 0) / (E s c a p e d S i n g l e P h a s e -
> M ark () + E s c a p e d M u l t i P h a s e - > M a r k () + GoodR eqs - >Mark ())
case 2

(E s c a p e d M u l t i P h a s e - > M a r k ()) / (E s c a p e d S i n g l e P h a s e - > M a r k () +
E s c a p e d M u l t i P h a s e - > M a r k () + G oodR eqs - >M ar k ())
case 3

(GoodReqs->Mark 0 * 1 . 0) / (E s c a p e d S i n g l e P h a s e - > M a r k () +
E s c a p e d M u l t i P h a s e - > M a r k () + GoodR eqs - > M ark ())

Instantaneous Activities Without Cases:
resetting

Input Gate: Detect

Predicate C o r r u p t i o n - > M a r k () > 0 && O ff l i n e - > M a r k () ==0 &&
R e q S e n t - > M a r k () ==0

Function /
Input Gate: RepairServer

Predicate
l O ff l i n e - > M a r k ()

Function

Of f l i n e - > M a r k 0 = 0 ;
N u m A c t i v e - > M a r k ()++;

Input Gate: Service
;

Predicate (E s c a p e d S i n g l e P h a s e - > M a r k () + E s c a p e d M u l t i P h a s e - > M a r k () +
G o o d R e q s - > M a r k ()) > 0

Function ;
Output Gate: ResetState

Function

O f f l i n e - > M a r k () = 1 ; / / t a k e o f f l i n e r i g h t now i n s t e a d o f
w a i t i n g f o r CM r e p l y
E s c a p e d S i n g l e P h a s e - > M a r k 0 = 0 ;
E s c a p e d M u l t i P h a s e - > M a r k 0 = 0 ;
GoodReqs - >Mark 0 = 0 ;
N u m A c t i v e - > M a r k () - - ;
i f (C o r r u p t i o n - > M a r k () ==MaxPhases) N u m C o r ru p t -> M a rk 0 - - ;
C o r r u p t i o n - >Mark 0 = 0 ;

Output Gate: ServeGoodReq

Function i f (G o o d R e q s - > M a r k ()) {
G oodR eqs - >M ark() - - ;

}
Output Gate: ServeMultiPhaseSucc

Function

i f (E s c a p e d M u l t i P h a s e - > M a r k ()) {
E s c a p e d M u l t i P h a s e - > M a r k () - - ;
s h o r t f l a g = 0;
i f (C o r r u p t i o n - > M a r k () < P h a s e s N e e d e d - > M a r k ()) {

C o r r u p t i o n - > M a r k () + + ;
f l a g = l ;

}
i f (C o r r u p t i o n - > M a r k () >= P h a s e s N e e d e d - > M a r k ())

{
E s c a p e d M u l t i P h a s e - >Mark 0 = 0 ;
P h a s e s N e e d e d - > M a r k () = 0;
C o r r u p t i o n - > M a r k () = M a x P h a s e s ;
i f (f l a g = = l)

N u m C o r r u p t - > M a r k () + + ;

1
Output Gate: ServeSinglePhase

Function

i f (E s c a p e d S i n g l e P h a s e - > M a r k ()) {
E s c a p e d S i n g l e P h a s e - > M a r k () - - ;
i f (C o r r u p t i o n - > M a r k () < MaxPhas es)

N u m C o r r u p t - > M a r k ()++ ;
C o r r u p t i o n - > M a r k () = M ax P h as e s ;

>...
Output Gate: detected

Function c o n f i g R e q u e s t Q - > M a r k () = 1;
R e q S e n t - > M a r k () = 1;

Model: M RCM

Rep Node Reps Shared State Variables
NumActive

Repl Num Servers NumCorrupt
configReplyQ
configRequestQ

Join Node: Joinl :
State Variable Name Submodel Variables

EscapedMultiPhase Server->EscapedMultiPhase
Firewall->EscapedMultiPhase

EscapedSinglePhase Server->EscapedSinglePhase
F irewall->EscapedSinglePhase

GoodReqs
Server->GoodReqs
Firewall->GoodReqs

NumActive Server->Num Active
F irewal l->Num A cti ve

NumCorrupt Server->NumCorrupt

Offline
Server->0ffline
Firewall->Offline
...

PhasesNeeded
Server->PhasesNeeded
F irewal l->Ph asesN eeded

configReplyQ Server->configReplyQ
configRequestQ Server->configRequestQ

1j
Join Node: Join2 :

State Variable Name Submodel Variables

configReplyQ
Repl ->configReplyQ
ConfigManager->configReplyQ

configRequestQ
Rep 1 ->configRequestQ
ConfigManager->configRequestQ

Performance Variable Model: MRCM PV
Child Model Name MRCMTop Level Model Information
Model Type Rep/Join

Performance Variable : throughput
Affecting Models Server

Server->ServeReq_case3
Impulse Functions (Reward is over a ll Availab le Models)

return 1;

Reward Function
(Reward is over a ll Available Models)

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0. ______1

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable: arrivalrate
Affecting Models Firewall

F irewall->F ilterRequestscase 1
(Reward is over a ll Available Models)

return 1;
F irewall->F i lterRequests_case2

Impulse Functions (Reward is over a ll Available Models)

return (1+(MaxPhases/2.0));
F irewal 1->F i lterRequests_case3
(Reward is over a ll Available Models)

return 1 ;

Reward Function
(Reward is over a ll Availab le Models)

j

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : fracCorruptServers
Affecting Models Server
Impulse
Functions

(Reward is over a ll Available Models)

Reward Function

Simulator
Statistics

if (Server->NumActive->Mark() > 0)
return Server->NumCorrupt->Mark()*1.0/(Server->NumActive-

>Mark()*NumServers);
Type Instant of Time

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 30.0

Confidence
1

Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : StrongUnavailability T..._ J
Affecting Models Server
Impulse Functions j

(Reward is over a ll Available Models)
Reward Function if(Server- >NumCorrupt->Mark()>0 || Server->NumActive->Mark()==0)

return 1.0/NumServers;
Type Time Averaged Interval of Time

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : WeakUnavailability
Affecting Models Server
Impulse Functions

(Reward is over a ll Available Models
Reward Function if (Server->NumActive->Mark() == Server->NumCorrupt->Mark ())

return 1.0/NumServers;
Simulator Statistics Type Time Averaged Interval of Time

Options Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities

Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : numCorrupt
Affecting Models Server
Impulse Functions

Reward Function (Reward is over a ll Available Models)
return (Server-Corruption->Mark()>=MaxPhases?l.0:0);
Type Instant of Time

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Simulator Statistics Estimate out of Range Probabilities

Confidence Level is Relative
Parameters Start Time 30.0
^ _, Confidence Level 0.95vUllilUvllvC

Confidence Interval 0.01
Performance Variable : goodthroughput

Affecting Models Server

Impulse Functions
Server->ServeReq_case3
(Reward is over a ll Available Models)
if (Server->Corruption->Mark() < MaxPhases) return 1;

Reward Function (R e w a rd i s o v e r a l l A v a i l a b l e M o d e ls)

|

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics

i

Estimate out of Range Probabilities
Confidence Level is Relative

„ Start Time 0.0Jl Ctl all ICICI b
Stop Time 30.0

„ _ , Confidence Level 0.95V_sUlll lUClIvv
Confidence Interval 0.01

Performance Variable : badthroughput
Affecting Models Server

Server->ServeReq_case3

Impulse Functions <Reward is over al! ÄvailMe Models>
if (Server-¡»Corruption->Mark () == MaxPhases)

return 1 ;
(Reward is over a ll Available Models)

Reward Function

Simulator Statistics Type Time Averaged Interval of Time
Options Estimate Mean

Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable Model: MRCM PV SS

Top Level Model Information Child Model Name MRCM
Model Type Rep/Join

Performance Variable : SSfracCorruptServers
Affecting Models Server
Impulse
Functions

Reward Function
i

(Reward is over all Available Models)
if (Server->NumActive->Mark() > 0)

return Server->NumCorrupt->Mark()*1.0/(Server->NumActive-
>Mark()*NumServers);
Type Steady State

Simulator
Statistics

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative _._.._..._..I

„ Initial Transient 5.0
Batch Size 000.0

„ _, Confidence Level ().95oUl 11 IUCI1LC
Confidence Interval ().01

Performance Variable : SSStrongUnavailability
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over all Available Models)
if(Server->NumCorrupt->Mark()>0 | | Server->NumActive->Mark()==0)

return 1.O/NumServers;

Simulator Statistics

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative
Initial Transient 5.0
Batch Size 1000.0

„ _, Confidence Level 0.95v/UllllUvllvv
Confidence Interval 0.01

Performance Variable : SSWeakUnavailability
Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function if (Server->NumActive->Mark() == Server->NumCorrupt->Mark())

return 1.O/NumServers;
Type Steady State

Options

Simulator Statistics

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSnumCorrupt
Affecting Models
Impulse Functions

Server

Reward Function
(Reward is over all Available Models)
return (Server- ¡»Corruption->Mark () >=MaxPhases?l .0:0) ;

Simulator Statistics

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

„ Initial Transient 5.0i dl alllCLCI j
Batch Size 1000.0

_ _ , Confidence Level 0.95v̂ UllI IUCIIvC
Confidence Interval 0.01

Performance Variable : SSgoodthroughput
Affecting Models Server

Server->ServeReq_case3

Impulse Functions <Reward over Available Models)
if (Server->Corruption->Mark() < MaxPhases)

return 1;
(Reward is over all Available Models)

Reward Function

Simulator Statistics Type Steady State
Options Estimate Mean

Include Lower Bound on Interval Estimate

Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSbadthroughput
Affecting Models Server

Server->ServeReq_case3

Impulse Functions (Reward is over all Available Models)
if (Server->Corruption->Mark() == MaxPhases)

return 1;

Reward Function
(Reward is over all Available Models)

Simulator Statistics

Type Steady State

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient
Batch Size

Confidence Confidence Level
Confidence Interval

5.0
1000.0

0.95
0.01

Range Study Variable Assignments for Study Detection in Project MRCM :

Variable Type Range
Type Range Increment Increment

Type
s

Function „

ConfMgrRate double Fixed 10 _ .

Detection Rate double Fixed 1 - -
FilterRate double Fixed 10 - - _

M axGwQLen short Fixed 10 - l
.

M axPhases short Fixed 5 _ - ■
NumServers short Fixed 11 ~ - 1

ProbDetection double Manual
[0. .1, .2, .3, .4. .6, .8.

1]
ProbFiltering double Fixed .4 - !

ProbMultiPhase double Fixed .001 - -
ProbSinglePhase double Fixed .002 - - - -
RepairRate double Fixed .06 - - - -

ServiceRate double Fixed 16 - - - -

fracPhases double Fixed .6 - - - -

Range Study Variable Assignments for Study MRCM_Study in Project MRCM :

V ariab le
r---------------

T ype R an ge T yp e R ange In crem en t
i

In crem en t _
F unction

T ype
n

ConfM grRate double Fixed 10 - -
D etectionRate double Fixed 1 - -
FilterRate double Fixed 10 - -
M axGwQLen short Fixed ,0

r-i i
Max Phases short Fixed 5 . . -
NumServers short Fixed 11 ”
ProbDetection double Fixed .5 - - .

ProbFiltering double Fixed .4 r -

ProbM ultiPhase double Fixed .001 _ _ -

ProbSinglePhase double Fixed .002 1 . -
RepairRate double Fixed .06 r !-

i

ServiceRate double Fixed 16 -

fracPhases double Fixed .6 i- " -

R ange S tudy V ariab le A ssignm ents for S tudy M RCM StudySS in P roject MRCM:

.

:
V ariab le T yp e R an ge T ype R ange ¡Increm ent

In crem en t _
F unction

T ype
n !

i 1
ConfM grRate double Fixed 10 1-

.
........
DetectionRate double Fixed 1 - J

7 I

FilterRate double Fixed 10 . -
M axGwQLen short Fixed 10 - -
M axPhases short Fixed 5 r ■

] . j

NumServers short Fixed 11 -
ProbDetection double Fixed .5 -
ProbFiltering double Fixed .4 - - -
ProbMultiPhase double Fixed .001 _ - -
ProbSinglePhase double Fixed .002 - -
RepairRate double Fixed .06 _ - -
ServiceRate double Fixed 16 - - -
fracPhases double Fixed .6 - - -

Range Study Variable Assignments for Study MultiPhase in Project MRCM :

Variable Type Range
Type

_ Increment _Range Increment ^ Function n

ConfM grRate double Fixed 10

D etection Rate double Fixed 1 -

FilterRate double Fixed 10

M axGwQLen short Fixed 10 - - -

M axPhases short Fixed 5

N um Servers short Fixed 11 -

ProbDetection double Fixed .5 -

ProbFiltering double Fixed .4

ProbM ultiPhase double Incremental [0 .0 ,0 .009000000000000001] .001 Additive

ProbSinglePhase double Fixed 0

RepairRate double Fixed .06 F - -

Service Rate double Fixed ¡16

frac Phases double Fixed .6

Range Study Variable Assignments for Study NumServers in Project MRCM:

Variable Type Range Type
:

Range Increment Increment Function nType
ConfM grRate double Fixed 10 f L L 1. |

Detection Rate double Fixed 1
FilterRate double Fixed 10 .

M axGwQLen short Fixed 10
-

r
_

M axPhases short Fixed 5 17

NumServers short Incremental [3.12] 3 A dditive

ProbDetection double Fixed .5 -

ProbFiltering double Fixed .4

ProbMultiPhase double Fixed .001 \ -

ProbSinglePhase double Fixed .002 - -

RepairRate double Fixed .06 - -

ServiceRate double Fixed 16 - -

frac Phases double Fixed .6 - .

Range Study Variable Assignments for Study Repair in Project MRCM :

Variable _ Increment Range Increment _Type Function n
fC

ConfM grRate double Fixed 10 - -
DetectionRate double Fixed 1 - -
FilterRate double Fixed 10 - -
M axGwQLen short Fixed 10 - - 1 : I
Max Phases short Fixed 5 - -
NumServers short Fixed 11 - - -
ProbDetection double Fixed .5 - .
ProbFiltering double Fixed .4 - - -
ProbM ultiPhase double Fixed .001 - - - '
ProbSinglePhase double Fixed .002 - " J
RepairRate double Manual

[0. .01. .02, .03, .04, .05, .1.
.1 5 ..2]

ServiceRate double Fixed 16 .
fracPhases double Fixed .6 -

Range Study Variable Assignments for Study SinglePhase in Project MRCM
!
;

Variable Type Ra"ge ,ype Type
Increment

Range Increment Type Function
t

n
i

ConfM grRate double Fixed 10 - 1- ' :
---- _ ------ - ~ T

DetectionRate double Fixed 1 - -
FilterRate double Fixed 10 - .
M axGwQLen short Fixed 10 -
Max Phases short Fixed 5

NumServers short Fixed 11 - - -
ProbDetection double Fixed 5 - -
ProbFiltering double Fixed 4 “ -
ProbMultiPhase double Fixed 0 - -
ProbSinglePhase double Incremental [0 .0 ,0 .009000000000000001] 0.001 Additive - -
RepairRate double Fixed .06 _ -
ServiceRate double Fixed 16 - -
fracPhases double Fixed .6 - -

APPENDIX A.3

SAN Modeling of the State Machine Replication (SMR) Architecture

Model: Client

Place Names Initial Markings
N urn Active NumReps
Requests 0

Timed Activity: GenerateReqs
Exponential
Distribution
Parameters

Rate

GenReqRate
Activation Predicate (none) 1

Reactivation Predicate (none)
Input Gate: MaxReqs

Predicate (Requests->Mark()) ==0

Function
f

Requests->Mark() = NumActive->Mark() ;

Model: ManualRepair

HostsToRepair RepairHosts IdleHosts

Place Names Initial Markings
HostsToRepair 0
IdleHosts NumHosts-NumReps

Timed Activity: RepairHosts
Exponential
Distribution

Rate

Parameters H ostR epairR ate
Activation Predicate (none)

Reactivation Predicate (none)

Model: Server

Place Names Initial Markings
Corruption ! 0
HostsToRepair j 0
IdleHosts 1 NumHosts-NumReps
N urn A ctive NumReps
NumCorrupt Ì 0
Replies 0
Requests 0
SentReply 0
Shutdown 0
Sync In Progress 0

Timed Activity: Attack
Exponential Rate
Distribution
Parameters A ttack R ate

Activation Predicate (none)
Reactivation Predicate (none)

Timed Activity: Service
Exponential Rate
Distribution
Parameters S e r v i c e R a t e

Activation
Predicate 1

Reactivation
Predicate 1

—--- ------------ ---- ;--- —....~~ -------------------------- --- — -

case 1

(C o r r u p t i o n - > M a r k () > 0) ? ((3 *N um C orrup t - > M ar k () <
. NumA ct ive ->M ark ()) ? P r o b M i s b e h a v i o r : 0) : 0 Case Distributions „ case 2

(C o r r u p t i o n - > M a r k () > 0) ? ((3 *Nu m Corrup t - > M ark () <
N u m A c t i v e - > M a r k ()) ? (1 - P r o b M i s b e h a v i o r) :1) :1

Timed Activity: StartupServer
Exponential
Distribution
Parameters

Rate

S e r v e r s t a r t R a t e
Activation Predicate (none)

Reactivation Predicate (none)
Instantaneous Activities Without Cases:

Ready
Input Gate: Process

Predicate
|

R e q u e s t s - > M a r k () >0 && S e n t R e p l y - > M a r k () ==0 &&
S h u t d o w n - > M a r k () ==0

Function v „R e q u e s t s - > M a r k () - - ;
S e n t R e p l y - > M a r k 0 = 1 ;

Input Gate: ReadyServer

Predicate S y n c I n P r o g r e s s - > M a r k () ==0 && S e n t R e p l y - > M a r k () ==1

Function S e n t R e p l y - > M a r k 0 = 0 ;

Input Gate: StartServer

Predicate S h u td o w n - > M a r k () && I d l e H o s t s - > M a r k () >0

Function

S h u td o w n - > M a r k () = 0 ;
I d l e H o s t s - > M a r k () - - ;
S e n t R e p l y - > M a r k ()=0 ;
N u m A c t i v e - > M a r k ()+ + ;
C o r r u p t i o n - > M a r k () = 0 ;

Input Gate: corrupt

Predicate C o r r u p t i o n - > M a r k () ==0

Function

C o r r u p t i o n - >Mark 0 = 1 ;
NumCorrupt->Mark()+ + ;

Output Gate: ConvictRepIy

Shu td ow n - >Mark 0 = 1 ;
Function N umActive- >M ark () - - ;

N u m C o r r u p t - > M ark () - - ;
H o s t s T o R e p a i r - > M a r k () ++ ;

Output Gate: SimpleReply

Function R e p l i e s - > M a r k () ++;
i f (S y n c I n P r o g r e s s - > M a r k () = = 0)
S e n t R e p l y - >Mark 0 = 1 ;

S y n c I n P r o g r e s s - > M a r k 0 = 1 ;

Model: Synchronizer

SyncInProgress

Send. Agreement

NumCorrupt

Place Names Initial Markings
NumAct i ve NumReps

NumCorrupt 0

Replies 0

SyncInProgress 0

Timed Activity: Agr e e me nt

Exponential
Distribution
Parameters

Rate

1 . 0 / (A g r e e m e n t D e l a y + I n c r e m e n t a l D e l a y * ((N u m A c t i v e - > M a r k () -
l) / 3))

Activation
Predicate 1

Reactivation
Predicate 1

Input Gate: Send

Predicate R e p l i e s - > M a r k () ==N umA ct ive -> M ar k()

Function S y n c I n P r o g r e s s - > M a r k ()=0 ;
R e p l i e s - > M a r k 0 = 0 ;

Model: SMR

Rep Node Reps Shared State Variables
HostsToRepair
IdleHosts

S e rve rs NumReps

i

NumActive
NumCorrupt
Replies
Requests
SyncInProgress

Join Node: Joinl :
State Variable Name Submodel Variables

HostsToRepair Servers->HostsT oRepair
ManualRepair->HostsToRepair

IdleHosts
Servers->IdleHosts
ManualRepair->IdleHosts
Servers->NumActive

NumActive Sy n chron i zer->Num A cti ve
Client->NumActive

NumCorrupt Servers->NumCorrupt
Synchronizer->NumCorrupt

Replies
Servers->Replies
Synchronizer->Replies

Requests
Servers->Requests
Client->Requests

SyncInProgress Servers->SyncInProgress
Synchronizer->SyncInProgress

Performance Variable Model: SMR PV

Top Level Model Information Child Model Name SMR
Model Type Rep/Join

Performance Variable : arrivalrate
Affecting Models Client

Client->GenerateReqs
Impulse Functions (Reward is over a ll Available Models)

return 1;

Reward Function
(Reward is over a ll A va ilab le Models)

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics
•

■
Estimate out of Range Probabilities
Confidence Level is Relative

_ Start Time 0.0
Stop Time 30.0

_ Confidence Level 0.95vUIliluCIlvC
Confidence Interval 0.01

Performance Variable : totalth rough put
Affecting Models Synchronizer

Synchronizer->Agreement ;

Impulse Functions (Reward is over a ll Ava ilab le Models)

return 1;

Reward Function
(Reward is over a ll Available Models)

i

1

Type Time Averaged Interval of Time
Estimate Mean i

_______!
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : Unavailability
Affecting Models Server
Impulse Functions

(Reward is over a ll Availab le Models)
Reward Function if((3*Server->NumCorrupt->Mark()+1)>Server->NumActive-

return 1.0/NumReps;
>Mark())

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : goodthroughput
1.

__i
Affecting Models Synchronizer

Synchronizer->Agreement

Impulse Functions (Reward is over a ll Available Models)

if (3*Synchronizer->NumCorrupt->Mark() < Synchronizer->NumActive->Mark())
return 1;

Reward Function
(Reward is over a ll Available Models)

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

....I
Confidence Confidence Level 0.95

Confidence Interval 0.01

Performance Variable : badthroughput
Affecting Models Synchronizer

Synchronizer->Agreement

Impulse Functions (Reward is over a ll Available Models)

if (3*Synchronizer->NumCorrupt->Mark() >= Synchronizer->NumActive->Mark())
return 1 ;

Reward Function (Reward is over a ll Available Models)

Type

Options

Simulator Statistics

Parameters

Confidence

Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative
Start Time 0.0
Stop Time 30.0
Confidence Level 0.95
Confidence Interval 0.01

Performance Variable Model: SMR PV SS

Top Level Model Information Child Model Name SMR
Model Type Rep/Join

Performance Variable : SSUnavailability
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over a ll A va ilab le Models)

if((3*Server->NumCorrupt->Mark 0+1)>Server->NumActive->Mark()
return 1.0/NumReps;

Simulator Statistics

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSgoodthroughput
Affecting Models Synchronizer

Synchronizer->Agreement

Impulse Functions (Reward “ over al' Available Models)
if (3*Synchronizer->NumCorrupt->Mark() < Synchronizer->NumActive->Mark())

return 1;

Reward Function
(Reward is over a ll Available Models)

Type

Options

Simulator Statistics

Parameters

Confidence

Steady State
Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative
Initial Transient 5.0
Batch Size 1000.0
Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSbadthroughput
Affecting Models Synchronizer

Impulse Functions

Synchronizer->Agreement
(Reward is oxer a ll Available Models)

if (3*Synchronizer->NumCorrupt->Mark() >= Synchronizer->NumActive->Mark())
return 1;

Reward Function
(Reward is over a ll Available Models)

Simulator Statistics

Type Steady State

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Range Study Variable Assignments for Study Attack in Project SM R -pro ject :

Variable Type ^ an§e Range Incrément n̂<̂ ement Function nType Type
AgreementDelay double Fixed .01 -

Attack Rate double Incremental [0.0,0 . 09999999999999999] .01 Additive -

GenReqRate double Fixed 100 . . . -

HostRepairRate double Fixed 0.02 -

IncrementalDelay double Fixed .005 -

N urn Hosts short Fixed 15 . . . -

NumReps short Fixed 12 . . . -

ProbMisbehavior double Fixed .5 . . . -

ServerStartRate doubl e Fi xed 2 . . . -

Servi ceRat e doubl e Fi xed 19 . . . -

Range Study Variable Assignments for Study SMR_Study in Project SMR-project:

Variable Type Range Type Range Increment Increment _^ Function Type n

AgreementDelay double Fixed .01 - - - -
AttackRate double Fixed .03 - - - -
GenReqRate double Fixed 100 - - - -

HostRepairRate double Fixed 0.02 - - - -

IncrementalDelay double Fixed .005 - - - -

N urn Hosts short Fixed 15 - - - -
NumReps short Fixed 12 - - - -
ProbMisbehavior double Fixed .5 - - - -
ServerStartRate double Fixed 2 - - - -
ServiceRate double Fixed 19 - - - -

Range Study Variable Assignments for Study SM R StudySS in Project SMR-project :

Variable Type Range Type Range Increment Increment „_ Function Type

]
n
....

AgreementDelay double Fixed .01 - " -
AttackRate double Fixed .03 '

_ .

GenReqRate double Fixed 100 - - 1
|-

j
-__J

HostRepairRate double Fixed .02 - _
-

IncrementalDelay double Fixed .005 - - -

N um Hosts short Fixed 15 - 1 -

NumReps short Fixed 12 - -
j i

ProbMisbehavior double Fixed •5 - .
'

ServerStartRate double Fixed i- " - -

ServiceRate double Fixed 12 ~ - r
:

Range Study Variable Assignments for Study Misbehavior in Project SM R -pro ject :

Variable Type Range
Type Range Increment Increment „^ Function Type n

AgreementDelay double Fixed .0 - - -

AttackRate double Fixed .03 - - .

GenReqRate double Fixed 100 - - -

HostRepairRate double Fixed 0.02 - -

IncrementalDelay double Fixed .005 - - -
Num Hosts short Fixed 15 - - -
NumReps short Fixed

ProbMisbehavior double Manual

ServerStartRate double Fixed

ServiceRate double Fixed

12

w,
1]
2
19

1, .2, .3, .4, .6, .8,

Range Study Variable Assignments for Study NumServers in Project SMR-project:

Variable Type Range Type Range T . Increment Increment __Type Function n

AgreementDelay double Fixed .01 - - -
AttackRate double Fixed .03 - - -
GenReqRate double Fixed 100 - - -
HostRepairRate double Fixed 0.02 - 1- -
IncrementalDeiay double Fixed .005 - - -
Num Hosts short Incremental [7,16] 3 Additive -
NumReps short Incremental [4 J 3] Additive -
ProbMisbehavior double Fixed .5 _ - -
ServerStartRate double Fixed 2 - -
ServiceRate double Fixed 19 L -

_____ ___ .. , - . _ _ _ __.......... ... _ ____ _____ j
Range Study Variable Assignments for Study Repair in Project SMR-project :

Variable Type Range
Type Range , , Increment Increment _Type Function n

AgreementDelay double Fixed .01 ” - -
AttackRate double Fixed .03 - . - -
GenReqRate double Fixed 100 - ! j

V.
HostRepairRate double Manual

[0, .01, .02. .03, .04,
-1, -15]

.05, - f j
IncrementalDeiay double Fixed .005 - _ - .

Num Hosts short Fixed 15 ” !" - -
NumReps short Fixed 12 " ” - . j
ProbMisbehavior double Fixed •5 - ... - -
ServerStartRate double Fixed 2 ‘ - .

.......
ServiceRate double Fixed 19

TIT'
~ - :

APPENDIX A.4

SAN Modeling of the Multicast Routing Decentralized Management
(MRDM) Architecture

M odel: Firewall

Place Names ! Initial Markings
EscapedMultiPhase j o
EscapedS inglePhase 0
GoodReqs 0
NumActive Num Servers
Offline 0
PhasesNeeded 0

Timed Activity: FilterRequests

Exponential
Distribution
Parameters

Rate

F i l t e r R a t e * (N u m A c t i v e
>M ar k ()) : 0)

s

- > M a r k () ? (N u m S e r v e r s * l . O/NumAct ive-

Activation Predicate 1
Reactivation

Predicate 1

case 1
P r o b F i 1t e r i n g * P r o b S i n g l e P h a s e

Case Distributions case 2
P r o b F i l t e r i n g * P r o b M u l t i P h a s e
case 3
1 - (P r o b S i n g l e P h a s e + P r o b M u l t i P h a s e)

Input Gate: Filter

Predicate
(E s c a p e d S i n g l e P h a s e -

MaxGwQLen
&& O f f l i n e - > M a r k ()==

>M ark() + GoodR eqs- >M ark ()) <

0

Function

MPAttackOutput Gate:

s h o r t x = M a x P h a s e s > 2 ? ((s h o r t) (r a n d () % (M a x P h a s e s - 2)) + 2) : 2 ;
/ / u n c o m m e n t t h i s
/ / s h o r t x = l ; / / c o m m e n t t h i s
i f (E s c a p e d M u l t i P h a s e - >M ark() ==0) {

E s c a p e d M u l t i P h a s e - > M a r k () = x ;
}
e l s e {

/ / p r o b o f c h o o s i n g num p h a s e s i n v e r s e l y p r o p t o #
Function p h a s e s

}

s h o r t y = x + E s c a p e d M u l t i P h a s e - > M a r k () ;
s h o r t z = 1 + (r a n d () % (y - 1)) ; / / u n c o m m e n t t h i s
/ / s h o r t z = l ; / / comment t h i s
i f (z > x) {

E s c a p e d M u l t i P h a s e - > M a r k () = x ;
}

P h a s e s N e e d e d - > M a r k () = 1 + (s h o r t) (E s c a p e d M u l t i P h a s e - > M a r k ()
* f r a c P h a s e s) ;

Model: Server

Place Names
Corruption

EscapedMultiPhase

EscapedSinglePhase

GoodReqs

N um A ctive

NumCorrupt

Offline

PhasesNeeded

detected

Timed Activity:
Exponential
Distribution
Parameters

Activation Predicate
Reactivation Predicate

Case Distributions

Timed Activity:
Exponential
Distribution
Parameters

Activation Predicate
Reactivation Predicate

Initial Markings
0
0
0
0

Num Servers
0
0
0
0

Detection
Rate

D e t e c t i o n R a t e

case 1
(P r o b D e t e c t i o n * C o r r u p t i o n - > M a r k ()) / M a x P h a s e s
case 2
1 - ((P r o b D e t e c t i o n * C o r r u p t i o n - > M a r k ()) /M a x P h a s e s)

(none)
(none)

Rate

R e p a i r R a t e

Repair

(none)
(none)

--- — — ... '• 1
Timed Activity: ServeReq

Exponential Rate
Distribution
Parameters S e r v i c e R a t e
Activation |
Predicate 1

Reactivation
Predicate 1 _ .. .

Case
Distributions

case 1
(E s c a p e d S i n g l e P h a s e - > M a r k () * 1 . 0) / (E s c a p e d S i n g l e P h a s e - > M a r k ()
+ E s c a p e d M u l t i P h a s e - > M a r k () + G o o d R eq s - > M ar k ())
case 2
(E s c a p e d M u l t i P h a s e - > M a r k () * (NumAct ive-
>Mark() ? (1 . 0 / N u m A c t i v e - >Mark()) : 0)) / (E s c a p e d S i n g l e P h a s e -
>Mark() + E s c a p e d M u l t i P h a s e - >M ark() + G oodR eqs - >M ark ())
case 3
(E s c a p e d M u l t i P h a s e - > M a r k () * (1 - (NumAct ive-
>Mark() ? (1 . 0 / N u m A c t i v e - >M ar k ()) : 0))) / (E s c a p e d S i n g l e P h a s e -
>Mark() + E s c a p e d M u l t i P h a s e - > M a r k () + GoodR eqs- >M ark ())
case 4
(G ood Reqs- >M ark() * 1 . 0) / (E s c a p e d S i n g l e P h a s e - > M a r k () +
E s c a p e d M u l t i P h a s e - > M a r k () + G o o d R eq s -> M ark ())

Timed Activity: agreement

Exponential
Distribution
Parameters 1 . 0 / (A g r e e m e n t D e l a y + I n c r e m e n t a l D e l a y * ((N um A ct iv e -> M ar k () -

1) 1 3))
Activation
Predicate 1

Reactivation
Predicate 1

Input Gate: Detect

Predicate C o r r u p t i o n - > M a r k () > 0 && O f f l i n e - > M a r k () ==0 &&
d e t e c t e d - > M a r k () ==0

Function •

Input Gate: RepairServer

Predicate O f f l i n e - > M a r k ()

Function Of f l i n e - >Mark 0 = 0 ;
N u m A c t i v e - > M a r k ()++;

Input Gate: Service

Predicate (E s c a p e d S i n g l e P h a s e - > M a r k () + E s c a p e d M u l t i P h a s e - > M a r k () +
G o o d R eq s -> M ark ()) > 0
&& O f f l i n e - > M a r k () ==0

Function 1
/

Input Gate: byzantine

Predicate

i

(3 * N u m C o r r u p t - > M ar k () < N u m A c t iv e - > M ark ()) && d e t e c t e d -
>M ark () > 0

Function d e t e c t e d - > M a r k 0 = 0 ;

Output Gate: ServeGoodReq

Function i f (G o o d R e q s - > M a r k ()) {
Go odReq s - >M ark () - - ;

}
Output Gate: ServeMultiPhaseFail

Function

i f (E s c a p e d M u l t i P h a s e - > M a r k ()) {
E s c a p e d M u l t i P h a s e - > M a r k () - - ;
i f (E s c a p e d M u l t i P h a s e - > M a r k () = = 0) {

i f (C o r r u p t i o n - > M a r k () < MaxPhases) {
C o r r u p t i o n - >Mark 0 = 0 ;

}
P h a s e s N e e d e d - > M a r k () = 0;

}
}

Output Gate: ServelMultiPhaseSucc

Function

i f (E s c a p e d M u l t i P h a s e - > M a r k ()) {
E s c a p e d M u l t i P h a s e - > M a r k () - - ;
s h o r t f l a g = 0 ;
i f (C o r r u p t i o n - >M ark () < P h a s e s N e e d e d - > M a r k ()) {

C o r r u p t i o n - >M ark ()++ ;
f l a g = l ;

}
i f (C o r r u p t i o n - > M ar k () = = P h a s e s N e e d e d - > M a r k ())

{
E s c a p e d M u l t i P h a s e - > M a r k () =0 ;
P h a s e s N e e d e d - > M a r k () = 0;
C o r r u p t i o n - >M ar k () = M a x P h a s e s ;
i f (f l a g) N u m C o r r u p t - > M a r k () + + ;

}
}

Output Gate: ServeSinglePhase

Function

i f (E s c a p e d S i n g l e P h a s e - > M a r k ()) {
E s c a p e d S i n g l e P h a s e - > M a r k () - - ;
i f (C o r r u p t i o n - >M ar k () < M axPhas es) {

C o r r u p t i o n - >M ark () = M ax P h as e s ;
N u m C o r r u p t - > M a r k () + + ;

) }
Output Gate: TakeOffline

Function

E s c a p e d S i n g l e P h a s e - > M a r k 0 = 0 ;
i n t f l a g = 0 ;
E s c a p e d M u l t i P h a s e - > M a r k 0 = 0 ;
GoodReqs - >Mark 0 = 0 ;
Of f l i n e - > M a r k 0 = 1 ;
N u m A c t i v e - > M a r k () - - ;
i f (C o r r u p t i o n - >Mark() ==MaxPhases) f l a g = l ;
C o r r u p t i o n - >Mark 0 = 0 ;
i f (f l a g ==1) N u m C o r r u p t - >M ark () - - ;

/ / i f (C o r r u p t i o n - >M ark() ==MaxPhases) N u m C o r r u p t - > M a r k () -
" /
/ / C o r r u p t i o n - >Mark 0 = 0 ; -

Model: M RDM

Rep Node Reps Shared State Variables

Rep 1 NumServers NumActive
NumCorrupt

Join Node: Joinl :
State Variable Name Submodel Variables

EscapedMultiPhase F irewal l->EscapedMultiPhase
Server->EscapedMultiPhase

EscapedSinglePhase F ire wall->EscapedS inglePhase
Server->EscapedSinglePhase

GoodReqs Firewall->GoodReqs
Server->GoodReqs

NumActive F irewall->N um Active
Server->NumActive

NumCorrupt Server->NumCorrupt

Offline
Firewall->Offline
Server->Offline

PhasesNeeded Firewall->PhasesNeeded
Server->PhasesNeeded

Performance Variable Model: MRDM PV
, , , T _ . Child Model Name MRDM Top Level Model Information

Model Type Rep/Join

Performance Variable: throughput
Affecting Models Server

Server->ServeReq_case4
Impulse Functions (Reward is over all Available Models)

return 1;
(Reward is over all Available Models)

Reward Function

Type

Options

Simulator Statistics

Parameters

Confidence

Time Averaged interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative
Start Time 0.0
Stop Time 30.0
Confidence Level 0.95
Confidence Interval 0.1

Performance Variable: arrivalrate
Affecting Models Firewall

Firewal 1 ->Fi IterRequests case 1
(Reward is over a ll Available Models)

return 1;
Firewall->FilterRequests_case2

Impulse Functions (Reward is over a ll Available Models)

return {1+(MaxPhases/2.0));
Firewall->FilterRequests_case3
(Reward is over a ll Availab le Models)

return 1;
(Reward is over a ll Available Models)

Reward Function

Simulator Statistics

Type Time Averaged Interval of Time ■

Estimate Mean 1
- .. . 1

Include Lower Bound on Interval Estimate
Options Include Upper Bound on Interval Estimate

Estimate out of Range Probabilities
Confidence Level is Relative i

Parameters Start Time 0.0
Stop Time 30.0.

Confidence Confidence Level 0.95
Confidence Interval 0.1

Performance Variable: fracCorruptServers
Affecting Models Server
Impulse
Functions

(Reward is over a ll Available Models)

Reward Function if (Server->NumActive->Mark() > 0)
return Server->NumCorrupt->Mark()*1.0/(Server->NumActive-

>Mark()*NumServers);
Simulator Type Instant of Time

Statistics

Options

Parameters

Confidence

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative
Start Time
Confidence Level
Confidence Interval

Performance Variable : StrongUnavailability
Affecting Models Server
Impulse Functions

Reward Function
(Reward is over all Available Models)
if(Server->NumCorrupt->Mark()>0 ¡| Server->NumActive-

return 1.0/NumServers;
>Mark()==0)

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
j Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

_ _ ...--1
Performance Variable : WeakUnavailability

Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function

Simulator Statistics

if (Server->NumActive->Mark() == Server->NumCorrupt->Mark())
return 1.O/NumServers;

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

30.0
0.95
0.1

Performance Variable : numCorrupt
Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function

return (Server->Corruption->Mark()>=MaxPhases);
Type Instant of Time

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Simulator Statistics Estimate out of Range Probabilities

Confidence Level is Relative
Parameters Start Time 30.0

Confidence
1

Confidence Level 0.95
Confidence Interval 0.1

Performance Variable : goodthroughput
Affecting Models Server

Impulse Functions

Server->ServeReq_case4
(Reward is over all Available Models)
if (Server->Corruption->Mark() < MaxPhases)

return 1;

Reward Function
(Reward is over all Available Models)

Type Time Averaged Interval of Time

Simulator Statistics

Estimate Mean

Options
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

:

Performance Variable : badthroughput
Affecting Models Server

Server->ServeReq_case4

Impulse Functions <Rmard ismer a!l Avai,ahle
if (Server-¡»Corruption->Mark () == MaxPhases)

return 1;
(Reward is over all Available Models)

Reward Function

Simulator Statistics

Type Time Averaged Interval of Time
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 30.0

Confidence Confidence Level 0.95
Confidence Interval 0.1

Performance Variable Model: MRDM PV SS

Top Level Model Information Child Model Name MRDM
Model Type Rep/Join

Performance Variable : SSfracCorruptServers
Affecting Models Server
Impulse
Functions

Reward Function

Simulator
Statistics

(Reward is over all Available Models)
if (Server->NumActive->Mark() > 0)

return Server->NumCorrupt->Mark()*1.0/(Server->NumActive-
>Mark()*NumServers);
Type

Options

Steady State
Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters
!

Initial Transient
Batch Size

Confidence Confidence Level
Confidence Interval

5.0
1000.0
0.95
0.01

Performance Variable : SSStrongUnavailability
Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function if(Server-■>NumCorrupt->Mark()>0 | | Server->NumActive->Mark()==0)

return 1.0/NumServers;
Simulator Statistics Type Steady State

Options Estimate Mean
Include Lower Bound on Interval Estimate

Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSWeakUnavailability
Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function if (Server->NumActive->Mark() == Server->NumCorrupt->Mark())

return 1.0/NumServers; __
Type Steady State

1 Estimate Mean
Include Lower Bound on Interval Estimate !

Options Include Upper Bound on Interval Estimate _i

Simulator Statistics
Estimate out of Range Probabilities
Confidence Level is Relative

i
Parameters Initial Transient 5.0

Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

.

Performance Variable : SSnumCorrupt
Affecting Models Server
Impulse Functions

(Reward is over all Available Models)
Reward Function

Simulator Statistics

return (Server->Corruption->Mark()>=MaxPhases);
Type Steady State

Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSgoodthroughput
Affecting Models Server

Server->ServeReq_case4

Impulse Functions <Reward is over a,t Models)
if (Server-¡»Corruption->Mark () < MaxPhases)

return 1;
(Reward is over all Available Models)

Reward Function

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Performance Variable : SSbadthroughput
Affecting Models Server

Server->ServeReq_case4

Impulse Functions (Reward is over all Available Models)
if (Server->Corruption->Mark() == MaxPhases)

return 1;

Reward Function
(Reward is over all Available Models)

Type Steady State
Estimate Mean
Include Lower Bound on Interval Estimate

Options Include Upper Bound on Interval Estimate

Simulator Statistics Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Initial Transient 5.0
Batch Size 1000.0

Confidence Confidence Level 0.95
Confidence Interval 0.01

Range Study Variable Assignments for Study Detection in Project MRDM :

Variable Type Range
Type Range Increment Increment

Type Function n

AgreementDelay double Fixed .15 -

DetectionRate double Fixed 1 -

FilterRate double Fixed 10 -

IncrementalDelay double Fixed .01 -

MaxGwQLen short Fixed 10 -

Max Phases short Fixed 5

Num Servers short Fixed 12 -

ProbDetection double Manual
[0. .1, .2, .3, .4, .6, .8.

1]
-

ProbFiltering double Fixed 0.4

ProbMultiPhase double Fixed 0.001
ProbSinglePhase double Fixed .002 -
RepairRate double Fixed .06

'' ' j ;

ServiceRate double Fixed 16 _

fracPhases double Fixed .6 -

Range Study Variable Assignments for Study MultiPhase in Project MRDM :

Variable Type “ an ge Type Range T . Increment Increment __Type
t j j
Function n
...............

AgreementDelay double Fixed .15 _ -

DetectionRate double Fixed i - i- .
- 4 j

FilterRate double Fixed 10 ” j.
.......... - j

IncrementalDelay double Fixed .01 - - -

MaxGwQLen short Fixed 10 - r
} }

MaxPhases short Fixed 5 ” ■ : - j
Num Servers short Fixed 12 - .

ProbDetection double Fixed 0.5 > -

ProbFiltering double Fixed 0.4 .
... - -j—j

ProbMultiPhase double Incremental [0 .0 ,0 .009000000000000001] .001 Additive - -

ProbSinglePhase double Fixed 0

RepairRate double Fixed .06 - - -

ServiceRate double Fixed 16 - -

fracPhases double Fixed .6 - - -

Range Study Variable Assignments for Study NumServers in Project MRDM :

Variable Type Range Type Range T , Increment Increment ^Type Function n

AgreementDelay double Fixed .15 - - - -

DetectionRate double Fixed 1 - - - -

FilterRate double Fixed 10 - - - -

Incrementai Delay double Fixed .01 - - - -

MaxGwQLen short Fixed 10 - - - -
Max Phases short Fixed 5 - - - -

NumServers short Incremental [4,13] 3 Additive -

ProbDetection double Fixed 0.5 - - - -

ProbFiltering double Fixed 0.4 - - - -

ProbMultiPhase double Fixed 0.001 - - - -

ProbSinglePhase double Fixed .002 - - -

RepairRate double Fixed .06 _ - -

ServiceRate double Fixed 16 _ L - -

fracPhases double Fixed .6 - - - -

Range Study Variable Assignments for Study M R D M S t u d y in Project M R D M :

Variable
1

Type Range Type Range
j
Increment Increment

Type Function n
1 i

AgreementDelay double Fixed .15 - . -
DetectionRate double Fixed 1 r L
FilterRate double Fixed 10 ' - !_ i 1

*
IncrementalDelay double Fixed .01 .

ì - "
MaxGwQLen short Fixed 10 * - _ -
MaxPhases short Fixed 5 r - -

NumServers short Fixed 12 - L i
ProbDetection double Fixed 0.5 - - -
ProbFiltering double Fixed 0.4 - - - _

ProbMultiPhase double Fixed 0.001 - - -
ProbSinglePhase double Fixed .002 - - -

RepairRate double Fixed .06 - - -
ServiceRate double Fixed 16 - - - -
fracPhases double Fixed .6 - - - -

Range Study Variable Assignments for Study M RD M StudySS in Project MRDM:

Variable Type Range Type Range T , in crem en t _Increment ^ Function n Type
AgreementDelay double Fixed .15 -

DetectionRate double Fixed 1 -

FilterRate double Fixed 10 -

IncrementalDelay double Fixed .01 -

MaxGwQLen short Fixed 10 -

MaxPhases short Fixed 5 -

Num Servers short Fixed 12 -

ProbDetection double Fixed .5 -

ProbFiltering double Fixed •4 -

ProbMultiPhase double Fixed .001 -

ProbSingiePhase double Fixed .002 '
RepairRate double Fixed .06 .

ServiceRate double Fixed 16

fracPhases double Fixed .6 -

;

Range Study Variable Assignments for Study Repair in Project MRDM :

Variable Type Range
Type Range Increment Increment

Type Function n

AgreementDelay double Fixed .15 - - -

DetectionRate double Fixed 1 - _
"

FilterRate double Fixed 10 -

IncrementalDelay double Fixed .01 - -

MaxGwQLen short Fixed 10

MaxPhases short Fixed 5 - - ‘
NumServers short Fixed 12 “
ProbDetection double Fixed 0.5 - - -

ProbFiltering double Fixed 0.4 - - -

ProbMultiPhase double Fixed 0.001 - - -

ProbSingiePhase double Fixed .002 - - -

RepairRate double Manual
[0. .01, .02. .03. .04, .05,
-1, -15]

- - -

ServiceRate double Fixed 16 - - -

fracPhases double Fixed .6 - - -

Range Study Variable Assignments for Study SinglePhase in Project MRDM :

Variable Type Range
Type Range Increment Increment

Type Function

AgreementDelay double Fixed .15 - - -
DetectionRate double Fixed 1 - - -

FiiterRate double Fixed 10 - - -

IncrementalDelay double Fixed .01 - - -
MaxGwQLen short Fixed 10 - - -
Max Phases short Fixed 5 - - -

Num Servers short Fixed 12 - - -

ProbDetection double Fixed 0.5 - - -

ProbFiltering double Fixed 0.4 - - -

ProbMulti Phase double Fixed 0 - - -

ProbSinglePhase double Incremental [0 .0 ,0 .009000000000000001] .001 Additive

RepairRate double Fixed .06 - - -

ServiceRate double Fixed 16 - -

frac Phases double Fixed .6 -

