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ABSTRACT
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An approach to generalizing number in explanation-based learning is presented. Generalizing 
number can involve generalizing such things as the number of entities involved in a concept or the 
number of times some action is performed. This issue has been largely ignored in previous 
explanation-based learning research. Instead, other research has focused on changing constants into 
variables and determining the general constraints on those variables. In the approach presented. 
generalization to N  is triggered by the detection of inference rules of a specific syntactic form. 
When one is found, it is extended into the rule that results from an arbitrary number of repeated 
applications of the original rule. If the preconditions of the extended rule are met. the results of 
multiple applications of the original rule are immediately determined. There is no need to apply the 
underlying rule successively, each time checking if the preconditions for the next application are 
satisfied.
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An Explanation-Based Approach

to G eneralizing Number

I INTRODUCTION

This paper addresses the important issue in explanation-based learning of generalizing 

number. Generalizing number can involve generalizing such things as the number of entities 

involved in a concept or the number of times some action is performed. This issue has been largely 

ignored in previous explanation-based learning research. Instead, other research has focused on 

changing constants into variables and determining the general constraints on those variables.

Consider the LEAP system [Mitchell85]. The system is shown an example of using NOR gates 

to compute the boolean AND of two OR’s. It discovers that the technique generalizes to computing 

the boolean AND of any two inverted boolean functions. However, LEAP cannot generalize this 

technique to allow constructing the AND of an arbitrary number of inverted boolean functions 

using a multi-input NOR gate. This is the case even if LEAP'S initial background knowledge were 

to include the general version of DeMorgan’s Law and the concept of multi-input NOR gates. 

Generalizing the number of functions requires alteration of the original example's explanation. 

This generalization cannot be performed using their goal regression algorithm alone.

Ellman’s system [Ellman85] also illustrates the need for generalizing number. From an 

example of a four-bit circular shift register, his system constructs a generalized design for an 

arbitrary four-bit permutation register. A design for an iV-bit circular shift register cannot be 

produced. As Ellman points out, such generalization, though desirable, cannot be done using the 

technique of changing constants to variables.

Many other explanation-based generalization algorithms [Fikes72, Mitchell86, Mooney86, 

Rosenbloom86] also cannot alter the structure of their explanations. No additional objects nor
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inference rules can be incorporated into the explanation. These algorithms work by changing 

constants in the observed example to variables with constraints. Another algorithm [DeJong86] 

allows for the elimination of easily-reconstructed details. However, extensive augmentation of the 

explanation can be often required to produce the appropriate concept.

Many important concepts require generalizing number. For example, physical laws such as 

momentum and energy conservation apply to arbitrary numbers of objects, building blocks-world 

towers requires an arbitrary number of repeated stacking actions, and setting a table involves an 

arbitrary number of guests. This paper presents an explanation-based approach to the problem of 

“generalizing to N .”

II AN APPROACH

Observations of repeated application of a rule or operator may indicate that generalizing the

number of rules in the explanation may be appropriate. However, alone this is insufficient. To be
\

conducive to number generalization there must be a certain recursive structural pattern. That is, 

each application must achieve preconditions for the next. For example, consider stacking blocks. 

The same sort of repositioning of blocks occurs repeatedly, each building on the last. We adopt the 

vocabulary of predicate calculus to investigate this notion of structural recursion. The desired 

form of structural recursion is manifested as repeated application of an inference rule in such a 

manner that a portion of each consequent is used to satisfy some of the antecedents of the next 

application. Figure 1 illustrates the concept of repeated rule application.

Consider inference rule 1. Notice that the consequent of this inference rule can be used to 

partially satisfy the antecedents of another application of the rule (via the predicate P). as 

illustrated in figure 1. The antecedents of this rule involve three qualitatively different types of 

variables. (The differences between the three types will become clear when the extended version of 

this rule is described.) Predicate P involves all three types of variables, while predicate R specifies 

a necessary relationship between the (i-l)//i and ith collection of X 's. Predicate S constrains the (i- 

l)i/i collection of x  *s and predicate T constrains the ith collection. Lastly, the ith collection of y ’s
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Figure 1. Repeated Rule Application 

are partially defined by terms in the (i-1 )rA application/

Chaining together several applications of rule 1 produces rule le. In this extended inference 

rule all references to the y t j  for i > 0  are eliminated and the Z q terms remain unchanged from one 

application of the original rule to the next. Hence, besides the initial situation, all that needs to be 

specified for an arbitrary number of applications of rule 1 is a sequence of x t j  terms. The 

predicates R. S, and T place constraints on possible sequences of x ’s. In particular, the predicates S 

and T constrain which terms can be members of the sequence, while predicate R specifies the 

relationship between successive members of the sequence.

The general form of a sequence is shown below. It consists of an ordered collection of />-ary 

vectors.

^•X  q  j ,  •  •  •  » X  Q p , ^ X  j  j ,  .  •  .  ,  X  j  p ,  . .  .  ,  ^ X f t  J ,  . . .  ,  x n p

* Although not done here for reasons of clarity, the approach presented can be extended to situations where there are 
relations among the (i-k)t/» through the ith collections of X 's.
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P (Xj —1,1* * * * * _ \ tp » z  a , . . . » Z jg* 3̂ t —1,1* * • * * — l,ç ^
and

R (Xj —1,1 » • • • * Xj —i,p » ,1* * * • ' ,p * z  8' * * * *  ̂ tp
and

S (Xj _ i l» . . . , p , Z y ,  . . . * Z k)
and

T U j ,i * • • • » Xj ,p * Z \* • • • » Z 
and

V  j  € 1, . . . , q y t j  f j  (Xj i » • • • * •*•£ ,p * %i —1 ,1 * • • • * — l,p  » z  v' •

P (Xj j ,  . . . , p Z a , . . . * Vj ,i» • • • * y i  fq )

* -̂ <y* T i—1,1* • * * * 3̂ ' — \,q  ̂

(1)

P U  0,1* • . .  , x 0 ,p * Z a* . . . »z  /3* y  o, i  * • • -
and

V j e  1 , . • . , n
R ( x j - 1 , 1 ’ ■' * * ’ X ; ■- 1  >p » X,j « • « , Xj

and
S ( x j -1,1» * * * ’ Xy *-1 ,p '> y» • • • t Z 1̂ )

and
T ( Xj ,1* * * ‘ ' Xj  >P '
and

V j  e 1, . . • -<? ŷ n J F  y i n )

P U n  ,i* • • • * x n p , z  a , . . .  * z  0 , y n ,i* • • • * y n ,q )
where

F j ( 1 ) =  f j (x o j, . . . , x o p »Xj j , . . . , x i p , z v, . . . , z w, y qi  , • • • , y oq )

F j (i ) — f j . . . >X\̂ yp , Xj i, Xj 'P , z z  F 1), . , F ç (i l ) )

(le)

for i >  1

III SOME EXAMPLES

Two simple examples that concretely illustrate the above procedure are presented below.

A. Blocks World

Imagine an explanation-based learning system that deals with the blocks world. Assume that 

in the course of its operation this system has to determine the position of the top of block which is 

resting on a table. Also assume that in the course of doing this it produces an explanation structure
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that can be transformed into rule 2 below. (Figure 2 illustrates this rule.) This rule is in a form 

that matches rule 1. Rule 2e .is the extended form of rule 2. (In these rules, all terms beginning 

with a ? are universally quantified variables.)

(AND (Yposition ?objecti_ i ? y i- 1 )
(On ?objecti ?objecti )
(= ?yt (+ (height ?objecti )

(Yposition ?objecti ?yt ) (2)

Yposit ion i 

Yposition I _ j

block

table

height i

Figure 2. Determining the Y-Position of a Block

(Sequence ?s ) and (InitialElement ?object 0 ?s )
and

(Yposition ?object 0 ?y0) and (FinalElement ?objectn ?s )
and

((Member ? j  ?s ) and (Member ?k ?s ) and (Successor ? j  ?k ?s ) —» (On ?k ? j  ))
and

(= ?yn (V (derived-sequence (sub-sequence ?S 1 n) height) ?yo^
— ►

(Yposition ?objectn ?yn ) (2e)

In rule 2e the sequence is made explicit. For all consecutive pairs of sequence elements, the 

first must be on the second. In addition, the function +' is introduced. This recursive function has 

two arguments: a sequence of numbers and a “seed” number. It maps these into a single number - 

the sum of all the numbers. The function derived-sequence takes a sequence and a unary function 

and maps them into another sequence - the one which results from applying the function to each
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member of the original sequence.

0 The extended rule can be used to find the y  -position of a block supported by several other 

blocks when the y  -positions of the underlying blocks are not directly known. All that needs to be 

known is the heights of each block and the y-position of the table top (or the y  -position of one 

intervening block). In this case the extended rule is obtained from an example that involved no 

repeated actions nor structures.

An important task for a system that generalizes number is to loosen the preconditions of a 

rule as far as possible while still maintaining the veracity of the rule. Also, as much guidance as 

possible should be provided so that a problem solver can most easily determine when a rule is both 

applicable and appropriate.

Imagine using rule 2e in a backward-chaining fashion. If a problem solver is to find the y  - 

position of an object it needs to choose a sequence that satisfies the specified constraints. This task 

is simplied if the preconditions are specified in terms of sets or bags*, rather than sequences. In this 

case, there is no need to test each permutation of a given collection of elements. If a bag satisfies 

the rule’s preconditions, then any sequence derived from that bag suffices. Other derivable 

properties, such as the cardinality of the bag or the length of the sequence, might also usefully 

constrain a problem solver.

One case where it is easy to specify the preconditions in bag terms occurs when there are no 

inter-element constraints (i.e., predicate R in rule 1 is not used). If an inter-element predicate does 

appear in the preconditions, the properties of that predicate determine how loosely the 

preconditions can be expressed. For example, if R is an equivalence relation (that is, R is reflexive, 

symmetric, and transitive), then the elements must form an equivalence class, a property that is 

order independent.

In the above example, R is (the atransitive version of) On. In bag terms, rule 2e requires a 

collection of elements where, (i) except for one element {object 0), every element is on one and

* A bag (or multi-set) is an unordered collection of elements in which an element can occut more than once.
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only one other element, (ii) except for possibly one element (?objectn ). every element has one and 

only one element on it, and (iii) the sum of the heights of all elements other than object 0 plus the 

y  -position of object 0 equals ?yn . If a bag with these properties is obtained, the necessary sequence 

can easily be constructed.

B. Digital Circuit Design

The second example involves a simplified version of circuit design. Figure 3 shows two flip- 

flops. When the clock is pulsed, the input of a flip-flop is passed to its output, provided its select 

line is on. Assume that from observing the connection of two flip-flops, a learning system derives 

rule 3. That is. it determines that if two flip-flops are connected together and the select line of the 

first is on, after the next clock pulse the current output of the first flip-flop becomes the second’s 

output. Rule 3 is also of the form of rule 1. The extended form of rule 3 is rule 3e. (Notice that 

all of the select lines are required to be on.) In constructing this rule, knowledge about repeated 

incrementing is used to define ?yn in terms of the number of flip-flops connected. The new rule can 

be used to build such things as a delay line and can lead to the concept of an N  -bit shift register.

(Output ?FFi_l ?value ?timei_l)
and

(Connected ?FFi_\ ?FFL)
and

(Selected ?FFt )
and

(= ?timei (increment ?timei_j))

(Output ?FFt ?value ?time{ ) (3)
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clock

output

select select

Figure 3. Two Flip-Flops

(Sequence ?s ) and (InitialElement ?FF0 ?S )
and

(Output ?FFq ?value ?time0) and (FinalElement ?FFn ?s)
and

((Member ? j  ?s ) and (Member ?k ?s ) and (Successor ? j  ?k ?s ) -* (Connected ?k ? j  )) 
and

((Member ? j  ?s ) -* (Selected ? j  ))
and

(= ?timen (+ (length ?s ) ?time0))

(Output ?FFn ?value ?timen ) (3e)

IV RELATED WORK

Several other approaches to generalizing number have been recently proposed. Prieditis 

[Prieditis86] has outlined plans for a system which learns macro-operators representing sequences 

of repeated STRIPS-like operators. While we agree very much with the spirit of Prieditis' work, 

we feel that STRIPS-like operators impose unwarranted restrictions. For one thing, our use of 

predicate calculus allows generalization of repeated structure and repeated actions in a uniform 

manner. In the FERMI system [Cheng86], cyclic patterns are recognized using empirical methods 

and the detected repeated pattern is generalized using explanation-based learning techniques. 

However, unlike the techniques presented in this paper, the rules acquired by FERMI are not 

guaranteed to always work. After a significant amount of work, a learned problem-solving
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strategy may terminate unsuccessfully. A third system. Physics 101 [Shavlik85, Shavlik87a], 

differs from the above two approaches in that the need for augmenting explanation structures is 

motivated by an analytic justification of an example’s solution and general domain knowledge. In a 

sample problem, information about number, localized in a single physics formula, leads to a global 

restructuring of a specific solution’s explanation. However, Physics 101 takes advantage of 

properties of mathematical calculations. To be a broad solution of the generalization to N  

problem, non mathematically-based domains must also be handled.

V CONCLUSION

Most research in explanation-based learning involves relaxing constraints on the entities in a 

situation, rather than generalizing the number of entities themselves. This paper presents an 

approach to generalizing to N  in explanation-based learning. Generalization is triggered by the 

detection of rules of a certain syntactic form (i.e., rule 1). and a technique for extending these rules 

is presented. The extended versions are modified so that a problem solver can efficiently apply 

them. This involves attempting to expression the preconditions for these rules in terms of order- 

independent data structures such as sets and bags. If the preconditions of the extended rule are 

met. the results of multiple applications of the underlying rule are immediately determined. There 

is no need to apply the rule successively, each time checking if the preconditions for the next 

application are satisfied.

A first computer implementation of the ideas presented here has been developed. The 

BAGGER system [Shavlik87b] analyzes explanation structures and attempts to construct inference 

rules of the form of rule 1. When one is found, it is extended into the rule that results from an 

arbitrary number of repeated applications of the original rule. This system is being tested on 

problems from various domains, including the blocks world, digital circuit design, and 

mathematical problem solving.
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