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ABSTRACT

This paper also appears in the Proceedings of the Ninth Annual Conference of the Cognitive 
Science Society. Seattle, WA, July 1987.

Much of expertise in problem-solving situations involves rapidly choosing a tightly 
constrained schema that is appropriate to the current problem. The paradigm of explanation-based 
learning is being applied to investigate how an intelligent system can acquire these "appropriately 
general schemata. While the motivations for producing these specialized schemata are 
computational, results reported in the psychological literature are corroborated by a fully 
implemented computer model. Acquiring these special case schemata involves combining schemata 
from two different classes. One class contains domain-independent problem-solving schemata, 
while the other class consists of domain-specific knowledge. By analyzing solutions to sample 
problems, new domain knowledge is produced that often is not easily usable by the problem­
solving schemata. Special case schemata result from constraining these general schemata so that a 
known problem-solving technique is guaranteed to work. This significantly reduces the amount of 
planning that the problem solver would otherwise need to perform elaborating the general schema 
in a new problem-solving situation. The model and an application of it in the domain of classical 
physics are presented.
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ACQUIRING SPECIAL CASE SCHEMATA 

IN EXPLANATION-BASED LEARNING

INTRODUCTION

We are investigating the role of specialized knowledge in schema-based problem solvers. This 

research illustrates the importance of special-purpose knowledge and demonstrates how the 

knowledge can be acquired. Furthermore, this specialized level of knowledge is computationally 

motivated and corroborates a number of findings in the psychological literature.

In a schema-based approach to problem solving, a few general schemata are brought to bear on 

a problem. Very little searching is performed, therefore the system can only solve those new 

problems that can easily be made to fit into an existing general schema. We are examining how a 

computer system can learn new problem-solving schemata for itself. The paradigm we adopt is 

explanation-based learning [DeJong81, DeJong86, Mitchell86], for which there is already some 

psychological evidence [Ahn86]. In this type of learning, a specific problem solution is generalized 

into a form that can be later used to solve conceptually similar problems. The generalization 

process is driven by the explanation of why the example solution worked. Extensive knowledge 

about the domain at hand allows the explanation to be developed and then extended. The resulting 

schema is quite general. Its generality is limited in part by characteristics of the observed example, 

but primarily by the system’s domain model.

One would expect that such problem-solving schemata should be as general as possible so that 

they might each cover the broadest class of problems. Indeed, our previous research has been 

primarily aimed at the acquisition of such maximally general schemata. Recently, for 

computational reasons, we have adopted an intermediate level of generalization for various 

schemata. The class of intermediate generality schemata improves the performance of the problem 

solver by supplying "appropriately general” schemata instead of forcing the system to rely on its



maximally general schemata. This results in much improved efficiency at a relatively minor cost in 

generality.

Automatically acquiring schemata of the intermediate level of generality requires that the 

system's schemata be organized into two classes: a) schemata that represent knowledge of the 

domain of application and b) schemata that represent general problem-solving knowledge, which 

apply across many application domains. New schemata are learned by our implemented system as 

described in [Shavlik87a]. As well as storing the new schema in its general form, the system also 

stores special cases. These special cases are the result of composing the new. general schema with a 

small number of problem-solving schemata. A successful composition results in a specialization 

which is guaranteed to work using the composed problem-solving technique. This frees the 

problem solver from performing the planning that would otherwise be required to elaborate the 

general schema to fit the current problem-solving episode. The system can. of course, always resort 

to its collection of maximally general schema.
9

An example (discussed further in a later section) that illustrates this idea involves 

momentum conservation, a fundamental concept in physics. The explanation-based generalization 

of a sample collision problem leads to a physics formula that describes how external forces change 

a system’s momentum. This general schema is broadly-applicable, but ascertaining that it will lead 

to the solution of a given problem requires a good deal of work. The constructed special case states 

that when there are no external forces, momentum is conserved.

Although the motivation for this intermediate level of generalization was computational, the 

use of this level helps to reconcile our approach with a variety of psychological evidence showing 

that problem solvers use highly specific schemata [Chase73, Hinsley77. Schoenfeld82, Sweller85]. 

Much of expertise consists of raidly choosing a tightly-constrained schema appropriate to the 

current problem. However, the difference between the knowledge of an expert and a novice cannot 

be explained on the basis of number of schemata alone. The scope and organization of these 

schemata have been shown in psychological experiments to be qualitatively different [Chi81. 

Larkin80. Schoenfeld82]. In representing a problem, novices make great use of the specific objects



mentioned in the problem statement, while experts first categorize according to the techniques 

appropriate for solving the problem.

We have found that the intermediate-level schemata generated by our system are similar in 

scope of applicability to those that human experts appear to possess. For example, the conservation 

of momentum problem results in a special case schema characterized by the absence of external 

forces and the specification of a before and after situation. These features are those cited by experts 

as the relevant cues for the principle of conservation of momentum (see table 12 of [Chi8l]). It 

should be noted that it was not our explicit intent to model this psychological data. Rather, 

computational efficiency considerations led to a system that produced results matching this 

empirical data.

OVERVIEW OF THE MODEL

Our model involves combining two types of schemata: domain-independent problem-solving 

schemata (e.g.. a schema for utilizing a conserved quantity to solve a problem) and schemata that 

represent domain-specific knowledge (e.g., Newton’s laws). People with mature problem-solving 

backgrounds possess the first type of schema and are told schemata of the second type when 

introduced to a new domain. Through study they acquire a large collection of schemata that 

combine aspects of both types, thereby increasing their performance in the domain. Combining 

general problem-solving techniques with domain specific knowledge produces schemata that, when 

applied, lead to the rapid solution of new problems.

Figure 1 contains an overview of our model. We assume a known problem-solving schema is 

used to understand a solution to a specific problem. The explanation-based analysis of the solution 

may lead to the construction of a new broadly-applicable schema. The generalization process often 

produces a new schema that, in its fullest form, is not usable by the originally applied problem­

solving schema. Constraining the general result so that this problem-solving schema does apply 

produces a special case. In the special case schema, the constrained schema, its constraints, and the 

original problem-solving schema are packaged together to produce a specialized problem-solving
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Figure 1. Overview of the Model

strategy.

Figure 2 shows the relation we propose between a general schema and its special cases. 

Although not shown in the figure, there can be special cases of the special cases. Retrieval cues 

directly index the special cases.1 If the indexed special case is not applicable, the general concept is 

then accessed. Besides being constructed when the general case is acquired, a new special case may 

be created whenever the general case is used to solve a later problem.

/|\ /IN /IN
cues l cues 2 cuesN

Figure 2. Inter-Schema Organization

1 The method of using these special case cues to select the appropriate schema is not addressed in this paper. Possible in­
dexing techniques include approaches based on discrimination nets [Feigenbaum63, Kolodner84, Schank82] and approaches 
based on spreading activation [Anderson83, Quillian68].



The next section presents examples of the construction of general and specific case schemata in 

the domain of classical physics.

AN APPLICATION OF THE MODEL IN CLASSICAL PHYSICS

We have implemented a psychologically-plausible model of the process by which a 

mathematically-sophisticated student becomes a better problem solver in a new domain. In 

particular, we have been investigating the transition from novice to expert problem solver in the 

field of classical physics. Our model, implemented in a computer system named Physics 101, 

assumes the student has an understanding of mathematics through introductory calculus.

There are three main components of our model. The first is a model of how operators are 

chosen during problem solving [Shavlik86a]. The* second explores the processes by which one can 

understand and generalize solutions to novel problems [Shavlik85]. The third, the topic of this 

paper, addresses the process of storing learned results so that they can be used to improve 

subsequent problem solving.

The next sections discuss two sample problems analyzed by Physics 101. One involves 

momentum conservation, and the other, energy conservation. The general schema produced in 

these two cases, the resulting special cases, and their selection cues are presented.

The schema that makes use of conserved quantities during problem solving is contained in 

table 1. (Terms beginning with a question mark are universally instantiated variables.) To apply 

this schema, a formula that is constant with respect to some variable is needed. This formula is 

instantiated at two different points. If the values of all but one variable at these two points are 

known, simple algebra can be used to easily find the unknown.

Example 1 - Momentum Conservation

One of the problems presented to Physics 101 involves a collision among three balls. In this 

one-dimensional problem (shown in figure 3), there are three balls moving in free space, without 

the influence of any external forces. Nothing is specified about the forces between the balls.



Table 1. Conserved Quantity Schema

Preconditions
(AND (IsaFormula ?formula )

(ConstantWithRespectTo ?formula ?x)
(SpecificPointOf ?x x ?x)
(SpecificPointOf ?x 2 ?x )

?X 1 ?x 2)
(= ?leftHand Side (InstantiatedAt ? formula ?x 2))
(= ?rightHand Side (InstantiatedAt ? formula ?x2))
(= ?equation (CreateEquation ?leftHandSide ?rightHandSide )) 
(AllButOneValueKnown ?equation ) )

Schema Body
(SolveForSingleUnknown ?equation )

Besides their mutual gravitational attraction, there could, for example, be a long-range electrical 

interaction and a very complicated interaction during the collision. In the initial state (state A) the 

first ball is moving toward the two stationary ones. Some time later (state B) the second and third 

balls are recoiling from the resulting collision. The task in this problem is to determine the 

velocity of the first ball after the collision.



A teacher’s solution to figure 3’s problem is analyzed by Physics 101. The teacher’s solution 

uses the concept of momentum (mass x velocity ) conservation to solve the problem. Since this is a 

conservation law. the time between the two states need not be known.2 (Another important 

attribute of momentum conservation is that the properties of the inter-object forces need not be 

provided.) In verifying the provided solution, the system applies a problem-solving schema in 

which a constant function is equated at two different points (table 1). In accordance with the 

explanation-based learning approach, the system’s justification of the provided solution is 

generalized as far as possible while maintaining the veracity of the solution technique. This results 

in the general schema presented in table 2. (See [Shavlik86b] or [Shavlik87a] for more details on 

the construction of this schema.)

The explanation-based approach results in a formula that applies to situations significantly 

different from the sample problem. In addition to not being restricted to problems containing 

exactly three objects, the newly-acquired formula is not restricted to situations where the external 

forces are all zero. Instead, an understanding of how the external forces effect momentum is

Table 2. The General Momentum Law

Formula
d n N

—  £  mass, velocity;, ?c (t ) = £  f° rce external. i , ?c (* )
a l  / = 1  i = 1

Preconditions
(AND (IsaComponent ?c )

V i e l ,  . . .  ,n  (NOT (ZeroValued mass, )
V i e l ,  . . .  ,n  (IndependentOf mass, t ) )

Eliminated Terms

V i V j  5*i force , j ?c (t )

2 When the inter-state time is unknown, simply solving the equations of motion resulting from Newton’s laws is not 
possible.



obtained. This process also determines that there is no constraint that restricts this formula to the 

x-direction. It applies equally well to the y- and z-components of velocity. Hence, the acquired 

formula is a vector law. The mathematical operations used in the specific solution require, for the 

solution strategy to be valid, that all objects have non-zero mass and that these masses are constant 

over time. Finally, the generalization algorithm determines that the inter-object forces need not be 

known, since they are algebraically cancelled during the derivation of the momentum law.

Notice that the result in table 2 is not a conservation law. It describes how the momentum of 

a system evolves over time. Although this new formula applies to a large class of problems, 

recognizing its applicability is not easy. The external forces on the system must be summed and a 

possibly complicated differential equation needs to be solved. Applying this law requires more 

than counting the number of unknowns in the equation, determining there is only one, and then 

using simple algebra to find its value.

In order for the originally used problem-solving schema (table 1) to be applicable to this new 

formula, it must be the case that momentum be constant with respect to time and easily calculable 

at two different times. This means that the derivative of momentum be zero, which leads to the 

requirement that the external forces sum to zero. When this occurs, the momentum of a system 

can be equated at any two distinct states. The special case schema for momentum conservation is 

contained in table 2sc. Since this is a conservation schema, the time at which each state occurs need 

not be provided in a problem for this schema to apply.

Example 2 - Energy Conservation

A second problem (figure 4) presented to Physics 101 involves a brick falling under the 

influence of gravity. Again, information at two different states is presented. The mass of the 

brick, its initial velocity, and its height in the two states are provided. The goal is to find its 

velocity in the second state. The teacher’s solution to this problem uses energy conservation. The 

kinetic energy (L  mass x velocity 2) plus the potential energy (mass x g x height ) in the two states

is equated. The general law Physics 101’s produces by analyzing the sample solution is presented



Table 2sc. The Special-Case Momentum Law

Formula
n n
£  mas Si velocity, ?c (?t 2) = ]T mass-, velocity, ?c(?t2)
1=1  i =  1

Preconditions
(AND (IsaComponent ?c ) (Tim ePij) (T im e?i2) (^ ? t l ?t2) 

V i € 1, . . . ,n  (NOT (ZeroValued mass, ))
V i e l .........n (IndependentOf mass, t ) )

Eliminated Terms
V i V ;  s*i force lfj ? c (.t). ?t lP ?t2

Special Case Conditions
V i e 1, . . . ,n  force external /t ?c = 0

State A State  B

I
brick

u t »  brick

Figure 4. A Falling Brick

in table 3.

The general energy conservation law applies whenever the total force on an object is known. 

Notice, though, that a rather complicated vector integral involving the scalar (dot) product of two 

vectors needs to be computed if this general law is to be used. To use this formula, it is not 

sufficient to possess knowledge of the values of variables at two different times. A problem solver 

must also know how the net force depends on position for a continuum of times. In the specific 

problem there is a constant net force (gravity). When the force is constant the problem is greatly 

simplified. Integrating a constant force leads to a potential energy determined by that constant 

force multiplied by the object's position. The position only needs to be known at the two distinct



Table 3. The General Energy Law

Formula

-i-  [ 2. massn velocity 2 (t ) — f  force net ?i (t ) * dposition ] = 0 m2 

Preconditions
(AND (Object ?i ) (IndependentOf massn t ) (NOT (ZeroValued mass-?t )) )

times, and not for all intervening times. The special case schema for energy conservation is 

contained in table 3sc. Again, since this is a conservation schema, the time at which each state 

occurs need not be known.

Table 3sc. The Special-Case Energy Law

Formula

L mass?t velocity2?i(?t i) + m a s s g  position ?i ?c (?i j) 

= i. mass-», velocity2 ?i(?t 2) + mass?,• g position ?i ?c (?f 2)

Preconditions
(AND (Object ?i ) (Component ?c ) (Time ?t {) (Time ?t2) ( ^  ?t  ̂ ?t 2) 

(IndependentOf t ) (NOT (ZeroValued )) )

Eliminated Terms
? ii .  ?i2

Special Case Conditions

force net ?i (i ) = mass-}i g ?c



SIMILARITY-BASED APPROACHES TO LEARNING SPECIAL CASES

A common induction scheme is to posit that learners compare particular instances of a concept 

(such as specific problems of a problem type) and abstract out those aspects that are common to 

both problems [Anderson83, Michalski83, Mitchell78. Posner68]. The fact that problem solvers 

use highly specific schemata supports such a view, since these schemata would arise whenever two 

problems from an intermediate level problem type are compared. Although we believe that 

similarity-based generalization is an important means of learning, especially for novices 

[Gentner87, Ross84, Ross87j, the research described in this paper shows that many of these highly 

specific schemata can arise from an explanation-based approach. Even some strong proponents of 

example comparison learning have begun to incorporate some explanation-based ideas in order to 

account for how much is learned from one example [Anderson87].

Because explanation-based learning requires extensive domain knowledge, it clearly is not 

appropriate for all learning in a new domain. However, it may be useful even in early learning if 

the new domain relies heavily upon a domain for which the novice does have substantial 

knowledge. Because mathematics underlies many other domains, a novice with some mathematical 

sophistication may be able to make use of explanation-based techniques without extensive 

knowledge of the new domain.

CONCLUSION

Much of expertise in problem-solving situations involves rapidly choosing a tightly- 

constrained schema that is appropriate to the current problem. We are applying the paradigm of 

explanation-based learning to investigate how an intelligent system can acquire these 

“appropriately general" schemata. While our motivations for producing these specialized schemata 

are computational, results reported in the psychological literature are corroborated by our fully- 

implemented computer model.

A major issue in explanation-based learning concerns the operationaLity/ generality trade-off 

[DeJong86, Keller87, Mitchell86, Segre87], A schema whose relevance is easy to determine may



only be useful in an overly-narrow range of problems. Conversely, a broadly-applicable schema 

may require extensive work before a problem solver can recognize its appropriateness. Other 

approaches to selecting the proper level of generality involve pruning easily-reconstructable 

portions of the explanation structure. Our approach to this problem is to produce as general a 

schema as possible from the analysis of a specific solution, and then construct a special case of this 

general schema. In constructing the general schema, the original explanation structure is often 

substantially altered during generalization [Shavlik87a, Shavlik87b]. Augmentation of the 

explanation is needed in order to generalize such things as the number of entities in a concept or the 

number of times some action is performed. A special case is produced by constraining a general 

schema in such a way that its relevance is easily checked. This results in additional features that a 

situation must possess if the special case is to apply.

Acquiring these special case schemata involves combining schemata from two different classes. 

One class contains domain-independent problem-solving schemata, while the other class consists of 

domain-specific knowledge. In our model, learning by analyzing sample problem solutions 

produces broadly-applicable schemata that, often, are not usable by the originally applied 

problem-solving schemata. Special case schemata result from constraining these general schemata 

so that the originally used problem-solving techniques are guaranteed to work. This significantly 

reduces the amount of planning that the problem solver would otherwise need to perform 

elaborating the general schema to match a new problem-solving episode.

Besides improving a problem solver’s efficiency, special cases also indicate good assumptions to 

make. For instance, if you do not know what the external forces are, assume they are zero. Physics 

problems often require one to assume things like “there is no friction”, “the string is massless”.

the gravity of the moon can be ignored”, etc. Problem descriptions given to students contain cues 

such as these, and students must learn how to take advantage of them. Facts in the initial problem 

statement suggest possible problem-solving strategies, while any additional requirements of the 

special case situations indicate good assumptions to make (provided they do not contradict 

anything else that is known).



This paper demonstrates that these highly-specific schemata can arise in an explanation-based 

fashion. Explanation-based learning requires extensive knowledge, and seems particularily suited 

for modelling learning by experts. Although all learning cannot be of this type, explanation-based 

learning can prove useful even in early learning in a new domain. This can occur if the new 

domain relies heavily upon another domain in which the novice learner has substantial abilities.
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