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Abstract

A path confidence estimate indicates the likelihood that 
the processor is currently fetching correct path instruc­
tions. Accurate path confidence prediction is critical for  
applications like pipeline gating and confidence-based SMT 
fetch prioritization. Previous work in this domain uses a 
threshold-and-count predictor, where the number o f unre­
solved, low-confidence branches serves as an estimate o f 
path confidence. This approach is inaccurate since it im­
plicitly assumes that all low-confidence branches have the 
same mispredict rate, and that high-confidence branches 
never mispredict. We propose an alternative path confi­
dence predictor designed from first principles, called PaCo, 
that directly estimates the probability that the processor 
is on the goodpath, and considers contributions from all 
branches, both high and low confidence. Even though it 
uses only modest hardware, PaCo can estimate the proces­
sor’s goodpath likelihood with very high accuracy, with an 
RMS error o f 3.8%.

We show that PaCo significantly outperforms threshold- 
and-count predictors in pipeline gating and SMT fetch pri­
oritization. In pipeline gating, while the best conventional 
predictor can reduce badpath instructions executed by 7% 
with a small loss in performance, PaCo can reduce bad- 
path instructions by 32% without any performance loss. 
In SMT fetch prioritization, using PaCo instead o f conven­
tional path confidence predictors improves performance by 
upto 23%, and 5.5% on average.

1 Introduction
Branch confidence predictors [8, 18, 7] identify branches 
that have a relatively high likelihood of misprediction. 
Branch confidence prediction can be used to derive a path 
confidence estimate, which indicates the likelihood that the 
processor is fetching correct path instructions. Path confi­
dence prediction has a number of applications. For exam­
ple, SMT processors can use it to allocate fetch bandwidth 
to threads that are more likely to fetch goodpath instruc­
tions [12,13]. Path confidence estimates can also be used to 
reduce power by gating instruction fetch when the processor

is unlikely to be on the correct path [14, 3], and to reduce 
cache pollution caused by mispredicted instructions [4]

Conventional path confidence predictors use the count 
of unresolved, low-confidence branches as an estimate of 
path confidence. In other words, it is implicitly assumed 
that all low-confidence branches have the same mispredic­
tion rate, while high-confidence branches never mispredict 
at all. We find that because of these two approximations, the 
same path confidence can represent vastly different good- 
path likelihoods across different benchmarks, and across 
different phases of the same benchmark.

The contributions of this paper include, first, the pro­
posal o f using misprediction probabilities o f branches to 
compute path confidence. We show that a path confidence 
predictor can directly produce the probability that the pro­
cessor is on goodpath.

Second, we present a simple yet highly accurate hard­
ware implementation o f such a path confidence predictor, 
called PaCo. PaCo uses logarithms to convert floating point 
multiplication and division into integer addition and sub­
traction. It uses less than 60 bytes worth of small counters, 
and a 10-bit shift register to produce goodpath likelihood 
estimates. We find that for the SPEC2000 integer bench­
marks, the goodpath likelihood provided by PaCo is highly 
accurate, with an RMS error of 3.8%.

Third, we evaluate PaCo’s performance in w o  applica­
tions o f path confidence: pipeline gating and SMT fetch pri­
oritization, and compare it with the performance o f con­
ventional counter-based predictors. We show that PaCo 
performs significantly better than traditional predictors in 
both these applications. In pipeline gating, PaCo can re­
duce the number of badpath instructions executed by the 
processor by 32%, with only a 0.01% reduction in perfor­
mance. On the other hand, the best conventional path con­
fidence predictor can only reduce the number of badpath 
instructions by 7%, with a 0.1% loss in performance. With 
respect to SMT fetch prioritization, using PaCo instead of 
traditional threshold-and-count predictors improves perfor­
mance by upto 23%, and 5.5% on average.



2 Motivation
This section describes the current state of the art in 
branch confidence prediction and path confidence predic­
tion. While current branch confidence predictors are good at 
qualitatively classifying branches as high or low confidence, 
they do not do a good job of estimating the probability that 
a particular branch will be predicted correctly. Similarly, 
while current path confidence predictors qualitatively clas­
sify the current state of the fetch unit, they do not estimate 
the important metric: the probability with which the fetch 
unit is fetching instructions that will eventually retire.

2.1 Branch Confidence Prediction
Modem processors use branch prediction to speculate past 
control hazards. Branch confidence prediction is the pro­
cess of qualitatively classifying particular dynamic predic­
tions made by a branch predictor as likely correct (high con­
fidence) or likely incorrect (low confidence) [8].

Branch confidence prediction is useful for a number of 
purposes. For example, it has been proposed that multi- 
path processors [19, 11] fetch instructions from both tar­
gets of a low-confidence branch, to eliminate mispredic­
tion penalties. Additionally, checkpoint-repair based pro­
cessors could create checkpoints of the processor’s register 
alias table (RAT) only when low-confidence branches are 
renamed [1].

Jacobsen et al [8] proposed the JRS branch confidence 
predictor, which leverages the insight that most mispredicts 
can be attributed to a relatively small set of branches; a ma­
jority of branches almost never mispredict. In particular, if 
a branch was mispredicted in the recent past, it is likely to 
be mispredicted again. To identify branches that were mis­
predicted in the recent past, the JRS predictor uses a table 
of 4-bit saturating miss-distance counters (MDCs). The ta­
ble entry corresponding to a particular branch is found by 
XOR-ing the branch PC with the global branch history. The 
table entry (an MDC) is incremented every time the branch 
is correctly predicted, and is reset to zero when the branch is 
mispredicted. Thus, the MDC stores the number of consec­
utive correct predictions seen by a branch. For example, an 
MDC value of 10 indicates that the corresponding branch 
has seen 10 correct predictions, which were preceded by a 
mispredict.

The MDC value of a branch is indicative of its pre­
dictability. The higher the MDC value, the more predictable 
the branch. Branches whose MDC value is at or above a cer­
tain threshold (say, 3) are classified as high-confidence (un­
likely to mispredict), while branches with a MDC value less 
than the threshold are classified as low-confidence (likely to 
mispredict). Thus, with a threshold of 3, branches need to 
be predicted correctly three consecutive times before they 
are considered high-confidence. Among other branch confi­
dence predictors, Grunwald et al [7] proposed the enhanced

JRS predictor, where the global history used to hash into 
the MDC table also includes the predicted direction of the 
branch in question. This predictor was shown to be superior 
to the original JRS predictor.

2.2 Path Confidence Prediction
The applications mentioned previously, like multi-path pro­
cessing and register file checkpointing, use branch confi­
dence predictors directly: they require information about 
a particular branch being low-confidence. Other applica­
tions, however, require aggregate information about all the 
branches that are outstanding in the machine. In particular, 
these applications require the likelihood that the processor 
is fetching correct-path instructions. The probability that a 
processor is on the goodpath is indicated by a path confi­
dence estimate.

Applications of path confidence include pipeline gat­
ing [14], which conserves power by completely stopping 
instruction fetch when the path confidence estimate is very 
low (i.e, the processor is very likely to be fetching bad- 
path instructions). Selective throttling [3] improves pipeline 
gating by slowly reducing instruction fetch bandwidth as 
path confidence decreases. In the context of simultaneously 
multi-threaded (SMT) processors, Luo et al [12, 13] pro­
posed giving fetch bandwidth to the thread that has higher 
path confidence (and thus more likely to be fetching good- 
path instructions). Path confidence can also be used to re­
duce cache-pollution caused by wrong-path instructions [4],

While branch confidence prediction is a mature field that 
has been researched extensively, path confidence predic­
tion has not been investigated deeply. Applications like 
pipeline gating, selective throttling, SMT fetch prioritiza­
tion and cache-pollution reduction have simply used a count 
of unresolved low-confidence branches to classify the cur­
rent path as high or low confidence. In the next section, 
we explain why this rough estimation of path confidence is 
sub-optimal.

Figure 1 shows a conventional, threshold-and-count path 
confidence predictor. When a branch is fetched, the MDC 
value corresponding to the branch is read from the JRS ta­
ble. A thresholding function converts this MDC value in a 
1 bit high/low-confidence estimate. If the branch is low- 
confidence, a counter is incremented. The output of the 
counter, which is the number of unresolved, low-confidence 
branches is used as a measure of Path Confidence. The 
higher the counter value, the lower the likelihood that the 
processor is on the goodpath.

2.3 Inefficiencies with threshold-and-count 
predictors

Threshold-and-count predictors coarsely map a 4-bit MDC 
values to a 1 bit confidence prediction, without considering 
the misprediction rate that an MDC value corresponds to. In 
the next section, we show that as a result of this coarseness,



Miss distance ___________  JRS 1-bit branch ________ Traditional path
Branch JRS

countervalue
...... W Threshold

confidence prediction
Sum

confidence prediction

table function

Figure 1: Conventional threshold-and-count Path Confidence prediction

Figure 2: Misprediction Rates of branches with different 
MDC values

the number of unresolved low-confidence branches is not an 
accurate measure of the probability that the processor is on 
the goodpath.

Coarseness
Threshold-and-count predictors make the implicit assump­
tion that all low-confidence branches have the same mispre­
dict rate, while none of the high-confidence branches ever 
mispredict. Both of these approximations can lead to inac­
curacies in path confidence estimation.

Treating all low-confidence branches the same can lead 
to inaccuracies in path confidence: depending on the MDC 
value, different low-confidence branches can have vastly 
different misprediction rates, as shown in Figure 2. As­
sume that a confidence threshold of 3 was being used. 1 All 
branches in the gray area in Figure 2 would be considered 
low-confidence. However, the misprediction rates of these 
branches vary significantly, both across benchmarks, and 
for the same benchmark. For example, the mispredict rate 
of a low confidence branch could be as high as 43% (for gcc, 
with MDC value 0) or as low as 15%(gcc, with MDC value 
2), or 12% (vortex, with MDC value 2). With a fixed thresh­
old based approach to path confidence, these branches with 
very different misprediction rates are considered equal.

As an example of how this can be detrimental, consider 
SMT fetch prioritization. Assume that gcc and vortex were 
being executed together. Further, assume that two branches 
in vortex with MDC values of 2 were unresolved, while one 
branch with a MDC value of 1 was unresolved in gcc. A 
counter-based path confidence estimator would indicate that 
gcc has a higher likelihood of being on the goodpath, and

*3 is a good threshold to use for for path confidence's indicated by 
our experiments and previous research [2]

thus, more fetch bandwidth should be allocated to gcc. In 
reality, however, vortex is much more likely (probability of 
goodpath = 0.882, or 0.78) to fetch goodpath instructions 
than gcc (probability of goodpath 0.55)!

Moreover, none of the high-confidence branches affect 
path confidence, even though they can have significant mis­
prediction rates. With a threshold of 3, there are high- 
confidence branches (twolf and vortex, MDC value 3) that 
have a mispredict rate of 21% but don’t affect the proces­
sor’s path confidence.

To summarize, binary branch-confidence mechanisms 
classify branches into two categories. Generating path con­
fidence estimates by just using this coarse classification is 
not enough.

Counter value does not indicate Goodpath 
Probability
As a result of the coarseness introduced by the threshold­
ing mechanism, the count of low-confidence branches is not 
a direct measure of the likelihood that the processor is on 
the goodpath. This makes it difficult to choose a counter 
value for pipeline gating (since the optimal value varies 
across benchmarks, and across phases of a single bench­
mark), or to compare counter values of different threads 
in an SMT processor to find which one is more likely to 
be on goodpath. Figure 3(a) shows, for a few SPEC2000 
benchmarks, the probability of being on the goodpath when 
5 low-confidence branches are outstanding.

As can be seen, a low-confidence branch count of 5 
corresponds to quite different goodpath probabilities, from 
very low (10% for vpr-route) to reasonably high (40% for 
gzip). If pipeline gating was employed, and the proces­
sor was gated when 5 low-confidence branches were out­
standing, gating would be too aggressive for gzip (thus 
leading to significant performance degradation), and too 
conservative for vpr-route (would not significantly reduce 
power) 2. Similarly, an SMT processor might allocate 
equal fetch bandwidth to vpr-route and gzip when 5 low- 
confidence branches were outstanding in both applications, 
even though gzip would be four-times more likely to fetch 
goodpath instructions.

The same counter value can represent different goodpath 
probabilities not only across applications, but also for dif­
ferent phases of the same application. Figure 3(b) shows the 
goodpath likelihood for a counter value of 5, for two differ-

2Section 5.1 shows that optimally, the processor should be gated when 
goodpath probability is 20%



Goodpath Probability for counter_value = 5
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(a) Across different benchmarks

Figure 3: Goodpath Likelihood when 5

ent phases of mcf and gcc. This figure indicates that the best 
counter-value for pipeline gating (for example) changes not 
only across benchmarks, but also between different phases 
of the same benchmark.

To summarize, the previous two sections indicate that 
using low-confidence branch count as a surrogate for path 
confidence is inaccurate because of coarseness in classifica­
tion. As a result of this coarseness, counter values don’t cor­
respond directly to goodpath probabilities. Hence, it is dif­
ficult to accurately compare goodpath probabilities of two 
different threads, and to select counter values for pipeline 
gating.

2.4 Probability-based Path Confidence 
Estimation

In this paper, we propose PaCo, which is a path confidence 
predictor that tries to address the shortcomings of conven­
tional predictors. Instead of keeping a count of low confi­
dence branches, PaCo directly outputs the probability that 
the processor is on the goodpath. In doing so, PaCo con­
siders contributions from both low-confidence and high- 
confidence branches (in fact, there is no concept of a con­
fidence threshold in PaCo). Even though PaCo can predict 
goodpath probability with remarkable accuracy, it only adds 
a small amount of hardware to the existing JRS predictor. 
Since PaCo addresses fundamental shortcomings in conven­
tional path confidence predictor, it significantly outperforms 
counter-based predictors in both Pipeline Gating and SMT 
fetch prioritization.

In the next section, we present the design of the PaCo 
predictor. We evaluate the accuracy of PaCo’s goodpath 
probability prediction in Section 4. Finally, we compare the 
performance of PaCo against conventional path confidence 
predictors in pipeline gating and SMT fetch prioritization in 
Section 5.

3 Designing a Probability-based Path 
Confidence Predictor
The probability-based path confidence predictor that we 
propose was designed from first principles. We describe the

Goodpath Probability for counter value = 5

mcf_phase1 mcf_phase2 gcc_phase1 gcc_phase2

(b) Across phases of the same benchmark 

low-confidence branches are outstanding.

theory behind PaCo, and then present a realizable hardware 
implementation.

3.1 Finding Goodpath Probability
The probability that the processor is on the goodpath is the 
same as the probability that every unresolved branch was 
correctly predicted. Assuming that branch predictions are 
independent3, this probability is given by Equation 1.

An important practical issue with using Equation 1 is es­
timating the term inside the product, the correct prediction 
probability for a particular branch. We use the MDC ta­
ble of the JRS predictor for this purpose. As shown by 
Figure 2, the MDC table classifies branches into buckets 
by their MDC values, where the buckets have very differ­
ent misprediction rates. PaCo measures the misprediction 
rate for each MDC bucket by using hardware counters, and 
assigns a correct prediction probability to each branch de­
pending on the MDC bucket that the branch belongs to. In 
other words, the branch confidence predictor is used as a 
stratifier, which allows us to distinguish between branches 
with different probabilities of misprediction. Figure 4 pic- 
torially represents the process of arriving at a path confi­
dence estimate, contrasted with the conventional threshold- 
and-count technique.

Dynamically calculating the misprediction rate for each 
MDC value is not the only way to estimate the correct- 
prediction probability for a branch.Other approaches in­
clude both more hardware-intensive (using a per-branch 
misprediction rate table, indexed by a hash of the branch PC 
and the global history), and simpler (using static, profile- 
driven misprediction rates for each MDC value) techniques 
to estimate misprediction rates for a branch. Appendix A 
shows that dynamically measuring the misprediction rates 
of each MDC bucket strikes the right balance between ac­
curacy and hardware complexity.

Unlike conventional path confidence predictors, the 
goodpath probability in Equation 1 includes contributions 
from all branches, low confidence and high confidence.

3 Branches may actually be correlated. We show in Section 4 that this 
assumption doesn’t affect the estimation of path confidence appreciably.
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Miss distance JRS 1-bit branch Traditional path

Figure 4: The PaCo path confidence predictor contrasted with the conventional threshold-and-count predictor.

Moreover, the weight assigned to a branch is directly re­
lated to its mispredict rate.

Note that equation 1 requires a floating point multipli­
cation whenever a branch is fetched: the current goodpath 
probability is multiplied with the correct-prediction proba­
bility of the branch being fetched. Conversely, a floating 
point division is required whenever a branch is executed. 
Floating point multiplication and division are complex op­
erations that take multiple clock cycles. In the next section, 
we present a hardware implementation that measures path 
confidence using integer addition and subtraction.

3.2 Hardware Implementation
To remove the need for multiplication and division, the 
PaCo predictor calculates the log of the goodpath probabil­
ity, instead of directly calculating the goodpath probability. 
Taking the log of both sides of Equation 1 results in Equa­
tion 2, which requires addition of the (logs of) correct pre­
diction probabilities of branches, instead of multiplication. 
However, note that the correct prediction probability of a 
branch is a number between 0 and 1, and thus, its log will 
still be a (negative) floating point number. To remove the 
need for floating point addition, we scale this number ap­
propriately (by multiplying it with -1024), and round off to 
the closest integer. In other words, the PaCo predictor works 
with an encoded version of the correct prediction probabil­
ity of branches, as shown by Equation 3.

If the encoded probability is greater than 212, it is con­
verted to 212. 4 Thus, the encoded probability of the correct

4An encoded probability greater than 212 represents a branch with a 
misprediction rate greater than 93.5%. No such branches were found while 
executing the Spec2000 integer benchmark suite

prediction rate of a branch is a positive 12-bit integer, with 
higher values indicating higher mispredict probabilities.

Computing the logarithm of the correct prediction rate of 
a branch and scaling it is a computationally complex oper­
ation. However, as we will describe, this operation is per­
formed very infrequently. The cost of logarithmizing and 
scaling the correct prediction probability is amortized over 
a large number of cycles where floating point multiplica- 
tion/division is converted into integer addition/subtraction 
in the path confidence predictor.

Figure 5 shows the two components of PaCo: a path con­
fidence calculator, and a Mispredict Rate Table (MRT). The 
MRT uses information about executed branches (whether 
or not the branch was mispredicted) to calculate the correct 
prediction probability corresponding to each MDC value. 
For each MDC value, the MRT keeps two counters: a 10-bit 
counter stores the number of correct predictions observed, 
and a 6-bit counter stores the number of mispredictions. 
Whenever either of these counters overflows, both counters 
are halved, thus preserving the overall mispredict rate.

Periodically 5, a logarithmizing and scaling circuit takes 
the values in the MRT counters, and converts them into 12- 
bit integer encoded probabilities, which are stored in the 
path confidence calculator. The MRT counters are reset to 
zero at this point.

Logarithms with base 2 can be calculated with a 
very simple circuit consisting of a shift register and a 
counter [15].The path confidence calculator consists of 12- 
bit registers storing encoded probabilities calculated above,

5 For the experiments in this paper, we chose a period of 200,000 cy­
cles. Thus, the log-circuit is invoked so rarely that its power consumption 
and complexity are not an issue. PaCo's performance is not very sensitive 
to this period.



and a counter which computes a running sum of the encoded 
probabilities of all outstanding branches. When a branch is 
fetched, the encoded probability of its MDC value is added 
to the path confidence register. Conversely, when a branch 
is executed, the encoded probability of its MDC value is 
subtracted from the path confidence register.

To summarize, we replaced floating point multiplication 
and division that were required to calculate the goodpath 
probability by integer addition and subtraction. The result­
ing path confidence predictor works with encoded correct 
prediction probabilities of branches, and outputs an encoded 
probability that the processor is fetching goodpath instruc­
tions.
Reconverting to real Goodpath Probability
PaCo never needs to convert the encoded probability that 
it calculates into real probabilities. Instead, the target real 
probability for an application (say, pipeline gating) is con­
verted into encoded probability. For example, if the archi­
tect wants instruction fetch to be gated whenever the pro­
cessor’s goodpath probability is less than 10%, PaCo would 
convert 10% into an encoded probability (which happens to 
be 3321) just once. Whenever the encoded goodpath prob­
ability increases beyond 3321, the processor is gated.

Hardware Complexity
The PaCo predictor uses relatively modest hardware. The 
MRT contains 32 counters, which use 32 bytes of storage. 
The encoded probability table has a 12-bit register for each 
MDC value, or 24 bytes. The log-circuit uses a counter 
and a shift register to calculate binary logarithms of a 10 bit 
binary number. To summarize, the PaCo predictor requires 
less than 60 bytes of counters, and a 10-bit shift register. 
Next, we evaluate the accuracy of PaCo’s path confidence 
prediction.

4 Evaluation
In this section, we investigate whether PaCo can accurately 
predict the probability that the processor is fetching good- 
path instructions. In Section 5, we compare the perfor­
mance of PaCo against conventional counter-based predic­
tor in two applications of path confidence, pipeline gating 
and SMT Fetch prioritization.

4.1 Machine Architecture
For all experiments in this paper (except for SMT Fetch 
prioritization), we model a 4-wide out-of-order superscalar 
processor, with parameters shown in Table 6. The SMT pro­
cessor is an 8-wide machine with parameters specified later.

We use a large, aggressive, tournament branch predictor, 
and an 8 KB enhanced JRS confidence predictor, where the 
MDCs are 4-bit counters.

4.2 Simulation Methodology
Our experimental evaluation was performed on a fully 
execution-driven simulator running a variant of the 64-bit

Parameter Value
Pipeline Width 4 instrs/cycle
Branch Predictor 96KB hybrid, 32KB gshare, 

32KB bimodal, 32KB selector, 
8 bits o f global history

Misprediction Penalty At least 10 cycles
Reorder Buffer 256 entries, dynamically shared
Scheduler 64 entries, dynamically shared
Functional Units 4 identical general purpose units
LI I-Cache 32Kbytes, 4-way set assoc., 

128 byte lines, 10 cycle miss
LI D-Cache 32Kbytes, 4-w ay set assoc., 

64 byte lines, 10 cycle miss
L2 Cache 512Kbytes, 8-way set assoc., 

128 byte lines, 100 cycle miss

Figure 6: Pipeline parameters.

Benchmark PaCo Overall Cond. Br.
RMS Mispredict Mispredict
Error Rate Rate

bzip2 0.0545 9.03 10.5
crafty 0.0528 5.43 5.49
gcc 0.0874 3.07 2.61
gap 0.0830 6.05 5.16
gzip 0.0640 2.86 3.17
mcf 0.0447 3.95 4.51
parser 0.0415 3.98 5.26
perlbmk 0.0613 9.73 0.11
twolf 0.0175 11.8 14.8
vortex 0.0332 0.50 0.65
vprPlace 0.0244 9.47 11.7
vprRoute 0.0322 8.85 11.9
mean 0.0377 6.22 6.32

Figure 7: RMS error between Predicted and Actual Good- 
path Probabilities. The table also shows Branch Mispredict 
Rates. The overall mispredict rate represents all control- 
flow instructions that retire (including conditional branches, 
jumps, indirect jumps, calls, returns etc.)

MIPS instruction set ISA. It not only simulates timing, but 
also executes instructions out-of-order in the backend, writ­
ing results to the register file out of program order. When 
a branch mispredict is discovered, the simulator immedi­
ately reclaims backend resources (ROB and scheduler en­
tries, etc.) and recovers using the rename checkpoint asso­
ciated with the branch.

We present results from running all the SPEC2000 in­
teger benchmarks except for eon. Eon was not simulated 
since our toolchain is incapable of compiling C++ bench­
marks. All benchmarks were compiled with g cc  at op­
timization level 03. The simulator fast forwards through
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the initialization phase of all benchmarks, and executes 
100 million instructions. The mispredict rates observed are 
shown in Table 7.

4.3 Reliability Diagrams and Correlation
The proposed path confidence predictor falls in the gen­
eral category of Probabilistic Forecast Systems. These sys­
tems are used to predict probabilities in binary experiments. 
For example, weather forecasting systems indicate the like­
lihood that it will rain on a certain day. Similarly, PaCo 
outputs a predicted probability that the processor is on the 
goodpath at any given point in time, given the branches that 
are as yet unresolved.

The accuracy of Probabilistic Forecast Systems is mea­
sured using graphs called Reliability Diagrams [16] [10], 
which, as the name suggests, are indicative of the relia­
bility of prediction. These diagrams plot predicted proba­
bilities against corresponding observed probabilities. More 
formally, Reliability Diagrams for a rain forecasting system 
would plot the predicted precipitation probability, x (output 
from predictor), against observed probability f, as shown by 
Equation 4

As an example of what Reliability Diagrams aim to 
quantify, assume that during the execution of a program, at 
1 Million distinct instances, the path confidence predictor 
claimed that there was a 0.25 probability of the processor 
being on the goodpath. If the path confidence predictor was 
accurate, out of these 1 Million instances, 250,000 times the 
processor would actually be on the goodpath, and 750,000 
times the processor would actually be on badpath. In other 
words, if the predicted probability was 0.25 for 1 Million 
instances, the observed probability (Equation 5) for these 1 
Million instances would also be 0.25.

A Reliability Diagram plots predicted probability on the 
x-axis against observed probability on the y-axis. If the

Path Confidence predictor is accurate, the reliability dia­
gram would have a slope of 1, i.e, the predicted and ob-

Figure 8: Reliability Diagram for parser. The x-axis plots 
predicted probability. The left y-axis corresponds to the scat­
ter plot and shows observed probability. The right y-axis 
corresponds to the histogram and plots percentage of occu- 
rance for the corresponding predicted probability. A line with 
a slope of 1 is also shown for reference

Figure 8 is the reliability diagram for the path confidence 
predictor, when executing the SPEC benchmark parser for 
100 million instructions. The x-axis plots predicted good- 
path probability (as a percentage), and the y-axis plots ob­
served goodpath probability (also as a percentage). The 
curve also shows a bar-graph of the number of instances 
for each predicted probability. For example, consider the 
point outlined by a small rectangle, which represents the 
point (99, 96) on the scatter plot. This point represents a 
predicted likelihood of 99% (x-axis value). The bar-chart 
entry for this point is at 40 million, indicating that during



f(x) = p ( i t  ra ined  | predicted  p recip ita tion  probab ility  =  x) 

observedProbabilityo.25 =  p(pTocessor is  on  goodpath  | predicted  probab ility  =  0.25)

(4)

(5)

parser’s execution, for 40 Million instances6 , the predicted 
goodpath probability was 99%. Out of these 40 Million in­
stances, 38.5 Million times the processor was actually on 
the goodpath, 7 and 1.5 Million times, the processor was 
on badpath. Hence, the observed goodpath probability was 
about 96% (y-axis value on the scatter plot). As can be seen 
from the figure, PaCo can predict goodpath likelihood with 
remarkable accuracy on p a r s e r .  Next, we look at PaCo’s 
performance on different benchmarks.

4.4 Benchmark Behavior
Figure 9 shows Reliability Diagrams for a few represen­
tative SPEC integer benchmarks, as well as a cumulative 
curve with data from all applications. The graphs of twolf 
and vpr-route show extremely high prediction accuracy, and 
the graphs of mcf, parser, vortex and place look very simi­
lar. On crafty, bzip2 and gzip, PaCo does a very good job, 
although it is not quite as accurate as it is on twolf etc.

The PaCo predictor does worse on gcc and gap, although 
it is still relatively accurate. Gcc has a number of short 
phases, each with different misprediction rates for differ­
ent JRS buckets. Since PaCo calculates branch mispre­
dict rates periodically, it is unable to adjust when program 
phases are shorter than this period. On the other hand, gap 
has highly correlated branches (mispredicts are clustered to­
gether, globally). PaCo assumes that branches are indepen­
dent, and when this assumption is not true, the predictor 
doesn’t do very well. However, overall, PaCo still predicts 
goodpath probability on gcc and gap with reasonably high 
accuracy.

The graph for perlbmk is quite different from all other 
benchmarks. The PaCo predictor is unable to predict good- 
path probability with high accuracy on perlbmk. This hap­
pens because the JRS predictor assigns MDC values only 
to conditional branches, while more than 95% of the mis­
predicts on perlbmk can be attributed to a single indirect 
function call. Thus, the JRS predictor is unable to identify 
low-confidence branches on perlbmk. Figure 9(f) shows cu­
mulative data from all benchmarks, which indicates that the 
PaCo predictor is quite accurate, with predicted probability 
being very close to observed probability.

While Reliability Diagrams are an excellent tool for vi­
sual evaluation of probabilistic predictors, the RMS Er­
ror between predicted and observed probabilities is a good 
quantitative measures for the same. Table 7 shows the RMS 
error for PaCo. On average, PaCo can predict goodpath

6An instance refers to an event that can possibly change path con­
fidence. Two such events are fetching an instruction, and executing an 
instruction

7An oracle was used to find when the processor was on the goodpath

probability with very high accuracy, as indicated by the 
small average RMS error (0.0377).8 In Section 5, we show 
that this high accuracy directly results in better performance 
applications that use path confidence.

4.5 Systematic error at low goodpath 
probability

Almost all the reliability diagrams show a systematic un­
derestimation of goodpath probability in the very low- 
confidence region (goodpath probability less than 10%). 
For example, in Figure 9(f), when PaCo estimates good- 
path probability to be 0%, the observed goodpath probabil­
ity is actually 4%. This underestimation happens because 
PaCo does not take correlation among branches into ac­
count. Grunwald et al [7] showed that globally, branches are 
correlated. In other words, branches fetched immediately 
after a misprediction are more likely to mispredict. Con­
versely, if the last misprediction was seen a long time ago, 
the branches that are currently being fetched are more likely 
to be correctly predicted. Now, note that goodpath proba­
bility is very low when a large number of branches are out­
standing. In other words, the scheduler and the machine’s 
frontend have very high occupancy. This happens only if 
the machine has not seen a mispredicted branch for a long 
time. In this case, the branches that are fetched are more 
likely to be correctly predicted than estimated by PaCo, and 
hence, PaCo underestimates the processor’s goodpath like­
lihood.

5 Applications
The previous section showed that PaCo is very accurate in 
estimating goodpath probability. In this section, we evalu­
ate whether this accuracy translates into better performance 
(compared with conventional predictors) in two applica­
tions of path confidence: pipeline gating, and SMT fetch 
prioritization.

5.1 Pipeline Gating
About 27% of the total power consumed by a superscalar 
processor is spent on fetching and executing badpath in­
structions [3]. With multiple processing cores in a single 
die, reducing this wasteful power has become even more 
important. Manne et al. [14] proposed pipeline gating as 
a mechanism to reduce power spent on badpath instruc­
tions without reducing performance. Pipeline gating stops 
fetching instructions when the processor is very likely to be

8 The RMS error is refers to error in goodpath likelihood. An RMS 
error of 0.0377 implies that when the predicted goodpath probability is 
0.20 or 20%, the real goodpath probability is expected to be in the range 
0.20 +- 0.0377
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Figure 9: Reliability Diagrams for a few benchmarks. Twolf and vprRoute show high correlation between observed and 
predicted probabilities (the graphs for mcf, parser, vortex and place look similar to these two). Crafty shows decent correlation 
(graphs for bzip2 and gzip are very much like crafty). Goodpath probability is somewhat less predictable for gcc (and for gap). 
Finally, Figure 9(f) shows data from all benchmarks put together, indicating that the PaCo predictor is accurate across a wide 
variety of behaviors.



Figure 10: Pipeline gating. The x-axis plots performance 
loss (in percent) as gating becomes more aggressive. The y- 
axis shows the corresponding reduction in badpath instruc­
tions executed, also in percent.

on badpath, thereby reducing power consumption without 
significantly affecting performance. The mechanism used 
to estimate the processor’s goodpath likelihood will have a 
strong effect on the effectiveness of pipeline gating. Con­
ventionally, a count of low-confidence branches is used as 
an estimate of the, processor’s badpath likelihood. When 
this count is above a specified number (called gate-count), 
instruction fetch is turned off.

In this section, we evaluate the effectiveness of pipeline 
gating when using two different mechanisms to estimate 
path confidence: PaCo, and conventional counter-based 
predictors. To explore the entire design space for the 
counter-based approach, we performed experiments with 
four different .1RS thresholds: 3, 7, 11 and 15. We also 
used a number of gate-counts for all these thresholds, from 
1 to 10. For PaCo, instead of a gate-count, we specify a 
target goodpath probability, say 20%. When the predicted 
goodpath probability false below 20%, instruction fetch is 
gated. We evaluated different gating probability thresholds, 
from 2% to 90%, in increments of 4.

Figure 10 shows the results of our experiments, with per­
formance reduction on the x-axis plotted against reduction 
in badpath instructions executed on the y-axis. The graph 
shows an average across all benchmarks. All confidence 
predictors start from the origin, which represents no gating. 
As we increase the gating probability for PaCo (or decrease 
the gate-count for conventional predictors below 10), we 
see increasing reductions in badpath instructions executed, 
and a corresponding reduction in overall performance. In­
terestingly, as we start gating with PaCo, performance im­
proves slightly in the beginning. We found that badpath 
instructions often pollute the data-cache (as in the bench­
mark gap) and/or the branch-target buffer (BTB) (for ex­
ample, in perlbmk). Gating very conservatively (at a good- 
path probability of 10%, for example) gets rid of these pol-

Param eter Value
Pipeline Width 8 instrs/cycle
Misprediction Penalty At least 20 cycles
Reorder Buffer 512 entries
Functional Units 8 identical general purpose units
Number of threads 2

Figure 11 : Pipeline Parameters in SMT mode.

lution effects, and improves performance slightly, counter­
ing the reduction in goodpath instruction fetch. Note that 
this phenomenon is not seen in conventional counter-based 
predictors: the performance loss from gating goodpath in­
structions far outweighs any beneficial effects from reduced 
cache/BTB pollution.

Overall, the PaCo predictor does significantly better than 
threshold-and-count predictors. For example, the PaCo pre­
dictor (with a confidence gating threshold of 20%) can re­
duce badpath instructions executed by 32% with a 0.01% 
reduction in performance. In comparison, the best counter- 
based predictor (JRS threshold 3) can only reduce badpath 
instructions by 7% with a 0.2% loss in performance, which 
is similar to results in previous research [14] [2].

While a detailed power analysis is required to find how 
a one-third (32%) reduction in badpath instructions ex­
ecuted translates to a reduction in power, note that the 
reduction in the number of badpath instructions fetched 
is even higher(70%).With badpath instructions (including 
their fetch, rename, execute etc) consuming 27% of the to­
tal power [3], reducing their execution by a third should 
significantly reduce power consumption, without affecting 
performance.

5.2 SMT Fetch Prioritization
Luo et al. [12, 13] proposed a fetch prioritization mecha­
nism for an SMT processor that allocates more fetch band­
width to the thread that is more likely to be fetching good- 
path instructions. We compared the PaCo predictor against 
conventional counter-based predictors in SMT fetch prior­
itization in an 8-wide SMT processor capable of execut­
ing two threads. Processor parameters are shown in Ta­
ble 11. Other parameters are the same as the 4-wide pro­
cessor shown in Table 6.

We executed 16 pairs of benchmarks in SMT mode for 
100 million instructions. The SMT simulator that we use 
is incapable of executing parser. Every benchmark is ex­
ecuted in SMT mode with 3 other benchmarks (except for 
gzip, which is executed with 2 benchmarks). We use the 
harmonic mean o f weighted IPCs, or HMWIPC as a mea­
sure of SMT performance. HMWIPC has become the met­
ric of choice in SMT fetch prioritization [6] since it has been 
shown to balance throughput and fairness [13]. HMWIPC 
is defined in Equation 6, where N is the number of threads, 
SinglelPC i is the IPC of a tHreadi running by itself, and



i p q  is the IPC of thTeadj when the processor is in SMT 
mode.

HMWIPC =  N /^ T  (S in g le lP C i/IP Q ) (6)
l

Figure 12 shows the perfonnance of 16 pairs of bench­
marks for a number of different fetch policies. We used 4 
different JRS threshold-and-count predictors (with thresh­
olds of 3,7 , 11 and 15). We compare these against a fetch 
prioritization scheme that uses PaCo to estimate path confi­
dence. For reference, we also show the perfonnance of the 
ICount [17]fetch prioritization scheme.

The figure demonstrates that PaCo does a better job than 
counter-based predictors at allocating fetch bandwidth to 
the thread that is more likely to fetch goodpath instructions. 
On average, PaCo shows a 5.4% perfonnance improvement 
compared to the best counter-based predictor (JRS thresh­
old 3). Figure 12 also indicates that among threshold-and- 
count predictors, while a threshold of 3 is the best for most 
applications, higher confidence thresholds sometimes per­
form better (e.g, gap-mcf). Since PaCo doesn’t use a fixed 
threshold, it automatically adjusts to application behavior 
and beats the best among the JRS predictors for 14 out of 
16 applications.

6 Related Work
All previous work in dynamic path confidence estimation 
has used a count of low-confidence branches as an indicator 
of goodpath likelihood.

Aragon[3] and Akkary [2] have proposed dividing low- 
confidence branches into two buckets, very low confidence, 
and just low-confidence. The branch prediction for very 
low confidence branches is often inverted [2], While this 
technique somewhat alleviates the issue of treating all low- 
confidence branches as the same, it is unclear how a very- 
low-confidence branch should affect path confidence (recall 
that a low-confidence branch increases path confidence by 
1). We show in this paper that the correct weight to add to 
the path confidence for any branch is the log of its mispre­
dict rate.

There has been recent research in branch-confidence pre­
dictors based on perceptron [2], which was shown to be bet­
ter than the enhanced JRS predictor. There has also been 
some work on ’hybrid’ branch confidence predictors that 
combine branch confidence estimates from more than one 
predictor [9], We consider branch confidence prediction 
to be orthogonal to our work: the PaCo predictor uses the 
branch-confidence predictor as a ’stratifier’. A better branch 
confidence predictor would simply provide a better strati­
fier, hopefully improving PaCo’s accuracy.

In the context of pipeline gating, while the original 
mechanism proposed by Manne is an all-or-nothing mech­
anism (instruction fetch is completely turned off when

more than gate-count low-confidence branches are pend­
ing), Aragon et al. [3] have proposed a more sophisticated 
version that gradually reduces instruction fetch bandwidth 
as the number of unresolved low-confidence branches in­
crease. Gradual reduction of fetch bandwidth should work 
even better with PaCo, since PaCo gives very fine-grained 
information about path confidence (as opposed to a counter 
value provided by conventional branch confidence predic­
tors).

With regard to SMT fetch prioritization, there have been 
a number of proposals [5] [6] that have been shown to be 
better than ICount, specially for applications that suffer a 
lot of cache misses (eg., SPEC floating point benchmarks). 
A path confidence based scheme that uses PaCo can com­
plement these mechanisms, particularly when integer appli­
cations are being executed.

7 Conclusion
We showed that conventional threshold-and-count path con­
fidence predictors do not consider branch misprediction 
rates, and thus, can lead to inaccurate path confidence esti­
mates. We proposed PaCo, which directly predicts the prob­
ability that the processor is on the goodpath. To simplify 
hardware implementation, PaCo uses logarithms to elimi­
nate the need for floating point multiplication and division, 
and instead uses integer addition and subtraction.

We found that the path confidence estimate derived from 
PaCo was very accurate, with a low RMS error. Finally, 
we showed that PaCo’s high accuracy directly leads to 
much better performance than counter-based predictors in 
pipeline gating and SMT fetch prioritization.
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A Appendix
We assign a correct-prediction probability to a branch based 
solely on its MDC value. There are a number of other ways 
to estimate the misprediction probability for a particular 
branch. Instead of dynamically calculating the mispredic­
tion rate for each MDC value, one could statically assign



probabilities to MDC values using profile information, an 
approach that we call Static MRT. This would remove the 
need for a log circuit, and counters to measure mispredict 
rates (i.e, the Mispredict Rate Table or MRT), at the cost 
of some loss in accuracy. Another more hardware-intensive 
and possibly more accurate technique would be to not use 
the MDC table at all. Instead, a per-branch mispredict rate 
table (indexed by a hash of the branch and the global his­
tory) is used to estimate the correct-prediction probability 
for a branch. Figure 13 pictorially shows these two ap­
proaches, while Table ?? shows the RMS error. The table 
indicates that the static MRT approach almost triples the 
RMS error, with only modest savings in hardware.

A per-branch MRT predictor performs significantly 
worse than dynamically measuring the mispredict rates of 
MRT buckets. While this result is surprising, we find that 
the reason for this is that the per-branch MRT predictor 
gives the same weight to mispredictions that happened re­
cently, and mispredictions from the more distant past. For 
example, a branch P that has seen 1 mispredict followed 
by 100 correct predictions has the same mispredict rate as 
another branch Q that has seen 100 correct predictions fol­
lowed by a mispredict; these two branches would be given 
the same weight w.r.t Path Confidence by a per-branch MRT 
predictor. However, we know from the work of Jacobsen [8] 
and Grunwald [7] that these two branches have very differ­
ent predictabilities.

To summarize, measuring the correct-prediction proba­
bility of a branch by using the MDC value ensures that 
branches that have mispredicted in the recent past are 
assigned lower correct-prediction probabilities. In other 
words, PaCo uses the JRS table to leverage correlation in- 
formation to better indicate the predictability of branches.

Benchmark MRT Static MRT Per-branch MRT
bzip2 0.0545 0.0608 0.0850
crafty 0.0528 0.0498 0.1232
gap 0.0874 0.1103 0.0683
gcc 0.0830 0.1011 0.0770
gzip 0.0640 0.1180 0.2209
mcf 0.0447 0.0779 0.0850
parser 0.0415 0.0467 0.1023
perlbmk 0.0613 0.0389 0.0500
twolf 0.0175 0.3060 0.0739
vortex 0.0332 0.0981 0.8028
vprPlace 0.0244 0.0566 0.0453
vprRoute 0.0322 0.1059 0.0557
Mean 0.0377 0.1038 0.8895

Table 1: RMS error between Predicted and Actual Good- 
path Probabilities for different approaches to estimating 
correct-prediction probability of a branch.
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Figure 13: Alternative ways of measuring correct-prediction probabilities for a branch. Static MRT uses profiling to assign 
fixed probabilities to each MDC value. Per-branch MRT uses a per-branch table


