
REPORT R-1036 MARCH 1985 U ILU -EN G  85-2211

S U M  COORDINATED SCIEN CE LABORATORY

ANALYSIS OF PULSE PROPAGATION 
IN COUPLED MICROSTRIP 
TRANSMISSION LINES
J. E.SCHUTT-AINE 
R. MITTRA

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

UNIVERSITY OF ILLINOIS -  URBANA, ILLINOIS



U tíc la s s if  ied
S E C U R IT Y  C L A S S IF IC A T IO N  OF T H IS  PAGE

REPORT DOCUMENTATION PAGE
1a. R EPO R T S E C U R IT Y  C L A S S IF IC A T IO N

Unclassified
1b. R E S T R IC T IV E  M A R K IN G S

None
2a. S E C U R IT Y  C L A S S IF IC A T IO N  A U T H O R IT Y

N/A
3. O IS T R I BU T IO N /A V A I L A B IL IT Y  OF R E P O R T

Approved for public release, distribution 
unlimited.2b. DECLASS I F IC A T IO N /O O W N G R A D IN G  S C H E D U LE

N/A
4. P E R F O R M IN G  O R G A N IZ A T IO N  R E P O R T N U M B E R (S )

R-report #1036
5. M O N IT O R IN G  O R G A N IZ A T IO N  R E P O R T N U M B E R (S )

N/A
6a. N AM E OF P E R F O R M IN G  O R G A N IZ A T IO NCoordinated Science Lab 

Univ. of Illinois
6b. O F F IC E  S Y M B O L  

(If applicable)

N/A
7a. N A M E  OF M O N IT O R IN G  O R G A N IZ A T IO N

Office of Naval Research
6c. AOO RESS (City, State and ZIP Code)1101 W. Springfield Avenue 

Urbana, Illinois 61801
7b. A O O R ESS (City, State and ZIP Code)

800 N. Quincy Street 
Arlington, VA 22217

8«. N A M E  OF F U N O IN G /S P O N S O R IN G  
O R G A N IZ A T IO N

8b. O F F IC E  S Y M B O L  
(If applicable)

N/A
9. P R O C U R E M E N T  IN S T R U M E N T  ID E N T IF IC A T IO N  N U M B E R

Contract #N00014-84-C-0149
8c. AO O RESS (City, State and ZIP Code) 10. SO U R C E OF F U N D IN G  NOS.

P R O G R A M  
E L E M E N T  NO.

PR O JEC T
NO.

T A S K
NO.

W O R K  U N IT  
NO.

11. T IT L E  (Include Security Classification) Analysis O f  Pulse
propagation in coupled microstrip transmissior

J. E. Schutt-aine and R. Mittra
13«. TYPE OF REPO R T

Technical
13b. T IM E  C O V E R E D 14. D A T E  OF R EPO R T (Yr.. Mo., Day) 15. PAG E C O U N T

F R O M  TO March 1985
16. S U P P L E M E N T A R Y  N O T A T IO N

N/A
17. C O SATI COOES

F IE L D GROUP SUB. GR.

18. S U B JE C T T E R M S  (Continue on reverse if necessary and identify by block number)

High speed Digital Circuits; Pulse Propagation; 
Coupled Microstrip Lines; Cross Talk

19. A 8 S T R A C T  iContinue on reverse if necessary and identify by block number)

In this report the problem of propagation of high speed pulses is considered, 
The purpose of this analysis is to investigate effects such as RC delays, reflection 
cross-coupling or cross talk, etc. in coupled microstrip lines. Two-, three-, and 
coupled N-line configurations are considered under various conditions of terminations.

20. O ISTRI 8 U T IO N /A V  A l L A B I L IT  Y OF A B S T R A C T  

U N C L A S S IF IE D /U N L IM IT E O  X X  SAM E AS RPT. □  O T IC  USERS □

21. A B S T R A C T  S E C U R IT Y  C L A S S IF IC A T IO N

Unclassified
22a. N AM E OF R ESPO N SIBLE  IN D IV ID U A L 22b. T E L E P H O N E  N U M B E R  

(Include Area Code)
22c. O F F IC E  S Y M B O L

None
DO FORM 1473, 83 APR E D IT IO N  OF 1 JA N  73 IS O B S O LE TE . Unclassified

S E C U R IT Y  C L A S S IF IC A T IO N  OF T H IS  PAGE



S E C U R IT Y  C L A S S IF IC A T IO N  OF T H IS  PAGE

S E C U R IT Y  C L A S S IF IC A T IO N  OF T H IS  PAGE



ANALYSIS OF PULSE PROPAGATION IN COUPLED 
MICROSTRIP TRANSMISSION LINES

BY

J. E. Schutt-Aine and R. Mittra

Department of Electrical & Computer Engineering 
University of Illinois 

Urbana, Illinois

The work reported in this paper was supported in part by the Joint Services 
Electronics Program, N00014-84-C-0149.



IV

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION_________________________________________...

1.1 Characterstics of Microstrip Transmission L ines_________

1.2 Close Form Expressions and Design Equations___________

1.3 Frequency Dependence and Dispersion___________________

1.4 Time and Frequency Domain Characterization_________

Page

1

2

4

7

8

CHAPTER 2 COUPLED TRANSMISSION LINE CHARACTERISTICS

2.1 General Expressions and Propagation Modes_____________

2.2 Application and Coupling Parameter Measurement __ .....

CHAPTER 3 TRANSIENTS IN COUPLED MICROSTRIP LINES______

3.1 Passive Terminations.....................................................................

3.2 Capacitive Terminations___________________________________

CHAPTER 4 ANALYSIS OF MULTIPLE LINE STRUCTURES________

4.1 Three-Line Structures and Modes of Propagation ________

4.2 N-Line Structures and Generalization ____________________

CHAPTER 5 CONCLUSION ______________________________________________

REFERENCES ________________________

19

20 

26

34

34

45

54

54

63

66

67



1

CHAPTER 1 

INTRODUCTION

High speed digital circuits have resulted from the miniaturization of solid-state devices 

and the implementation of those circuits into dense systems (VLSI and VHSI). Switching 

devices presently used have rise times and pulse widths in the range of a few  nanoseconds. 

Moreover, devices with switching delays of less than 10 picoseconds are being developed 

from which delays of less than 50 picoseconds w ill probably result in large computers. 

Aside from the physical characteristics of the devices, interconnections are another parame

ter which determine the speed of these systems. Today, interconnections represent the main 

limiting factor in the reduction of speed because of the inevitable RC delay they introduce. 

Moreover, with increased density and speed, the problem of cross-coupling has become more 

critical since noise resulting from unwanted signals must be limited. Finally, reflections at 

the terminals due to mismatch along with device nonlinearities, contribute to the complica

tions which have posed some severe constraints for switching network design.

In this study, the problems associated v/ith the propagation of fast pulses in microstrip 

interconnections w ill be analyzed. The purpose of this analysis is to investigate each effect 

such as RC delay, reflections, cross-coupling, nonlinearities, and to propose a model for the 

combined effect. Such a model is essential since it provides the engineer with the necessary 

elements from which design guidelines can be implemented while giving a better under

standing of noise phenomenon.

In order to develop the model, it w ill be necessary to determine the physical characteris

tics of the interconnections as w ell as those of the propagation medium. Unfortunately, 

analytical expressions predicting those physical characteristics are not alw?ays realistic and 

do not account for processing variations, nor can they be applied to arbitrary geometries. To
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circumvent this obstacle, several measurement techniques w ill have to be developed in order 

to obtain the important physical parameters.

A n  overview of the presently available microstrip technology along with the theoreti

cal foundations is first explained. Some techniques of measurements in the time domain and 

in the frequency domain are then discussed for both single and coupled lines. Experimental 

results are finally analyzed and extensions to multiple lines are attempted.

1.1 Characteristics of Microtrip Transmission Lines

Numerous investigators have studied the properties of microstrip transmission lines , pro

posed models, design equations, and various approaches for the analysis. Figure 1.1 shows a 

cross section of a microstrip line which consists of a strip conductor of width W resting on 

a substrate of thickness h and dielectric constant e, , and a ground plane which serves as the 

return path. The conductor can be either copper, gold, or an alloy of tin and nickel.

Since the fields between the strip and the ground plane are not entirely within the sub

strate, the propagating mode along the strip is not purely tranverse electromagnectic (TEM) 

but quasi-TEM with a phase velocity v0 given by

where c is the speed of light in vacuum and ec , the effective dielectric constant of the sub

strate. The wavelength \0 in the line is :

(1.2)

where /  is the frequency of the propagating signal. Moreover, if the line is assumed to be 

lossless its characteristic impedance (or wave impedance) Zfl, is expressed by
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h = SUBSTRATE THICKNESS 
t = STRIP CONDUCTOR THICKNESS 
w = STRIP CONDUCTOR WIDTH 
€ r -  DIELECTRIC CONSTANT

(a) CROSS SECTION OF MICROSTRIP LINE

------------ ELECTRIC FIELD LINES
------------MAGNETIC FIELD LINES

(b) FIELD CONFIGURATION

I igure 1.1 : Microstrip transmission line: (a) cross section showing the geometric "parameters
b) field lines. Since all the lines do not pass through the dielectric, a uuasi-TIiVl 

analysis must be used.
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where L s and Cs are the self-inductance and self-capacitance per unit length, respectively. 

From Maxwell’s equations it can be shown that Z 0 and v0 are related by

Z 0 =
1

v0c (1.4)

At lower microwave frequencies, the quasi-TEM model can be shown to be fairly accurate. 

At higher frequencies a hybrid mode analysis would be required. This analysis is far more 

rigorous, and we w ill restrain ourselves to the frequency range where the quasi-TEM model 

is valid.

1.2 Close Form Expressions and Design Equation

Based on the quasi-TEM model, several techniques for characterizing microstrip transmis

sion lines have been proposed. These techniques include conformal mapping [l], [2], the 

method of Green s functions [3], [4], [5], the moment method [6], and variational techniques

[7], [8j. Close form expressions from Wheeler [2], Schneider [9], and Hammerstad [10] have 

been reported. They contain useful relationships between the effective dielectric constant, 

the physical dimensions and the electrical parameters of the line. For instance, Hammerstad’s 

equations give the width to height ratio as a function of the desired characteristic impedance 

(Figure 1.2).

For W / h ^  =2 ,

—  =  8exp(A ) 
h exp(2A) — 2 (1.5)
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j

figure 1.2 : Characteristic impedance 7.,, versus width to height ;W  /h .  Solid line • theoreti
cal express,ons from Hammerstad with e, = 4 .5  ; points: experimental measure
ment using time domain reflectometry. For the experimental points, the lines 
have a dielectric constant 4 ^ 6 , ^ 5 .
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For W / h  >  2,

E -  =  2l.[B  _  j _  ln(2£  -  i )  +  - i - — —(ln(J9 -  1) +  0.39 -  ^ - ) ]  
h n  2er ( 1.6)

where

>4 € /• -!

€ ,+ l
(0.23 O H )

€,•

and

(1.7)

_  377tr

~ 2Z 0 V i 7 ( 1.8)

These relations assume an infinitely thin conductor strip ; in practice, the thickness must be 

considered, which is done by defining an effective width of the strip, Wc for use with Equa

tions (1.5) -(1.8) instead of W .

For W /h
27r

=  ~  +  - ~ ( 1  +  2 - )  
h n h  t

For W /h  , 
27T

(1.9)

+  - ~ [ l  +  ln( 
n h

4 n W
)] ~  (1.10)

It has been found that for t / h  ^  0 .0 0 5 ,2  ^ 6 ,  <  1 , and 0.1 /h  ^  0.5 , neglecting
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the thickness of the strip introduced very little error. Since these values represent mast 

practical cases, correction for finite thickness is often neglected.

1.3 Frequency Dependence and Dispersion

The relations derived above were based on the quasi-TEM model. A t higher frequencies 

this model is not accurate for microstrip lines because of the propagation of hybrid modes. 

As the frequency increases, the phase velocity decreases which reveals an increase of the 

effective dielectric constant; an increase of the characteristic impedance is also observed.

The frequency f  0 below which dispersion effects can be ignored is given by [ l l ]

/  „ ( C h z ) =  0.3 A  /  Z > ~ — ~  (1.11)V h ( c m ) y f c  -  1

and the effective dielectric constant €e( f  ), is given by [12]

€„ =  e.

where

1 +  G ( - ^ — )2
J  p

(1.12a)

I p = 87rh (1.12b)

G =  0.6 +  0.009Z„ (1.12c)

The frequency dependence of the characteristic impedance Z 0, was reported by Owens [13] 

377/i
£ , ( / )  =

w , ( /  ) V i 7 ( /  ) (1.13)

where We( f  ) is the effective width given by
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We( f  ) =  W
wc(o) -  w
1 +  ( - £ - )

f p

We(0) is obtained from (1.13) when /  = 0 .

(1.14)

. 1.4 Time and Frequency Domain Characterization

The steady-state, single frequency solutions for the voltage and current on a transmission 

line derived from Maxwell’s equations [14] have the form

_• .<!>* OiX

v(r^c) = U e  l° + b e l’° ] e yu* (i-i5)

I ( t j c ) =  -— { a - B e ]e jlüt
( 1.16)

where A  and B are constants which depend on the terminations. This can be rewritten in a 

more general form which accounts for the transients in the line :

V ( i^ r )  =  V +(i^c) +  V S t j c )  (1.17)

I ( t j c )  =  ~ ^ - [ V +( t p c ) -  V _ ( i ,x ) ]  ( 1 1 8 )

1.4.1 Time Domain

Experimental determination of microstrip line characteristics is classically performed 

using Time Domain Reflectometry (TDR) techniques. Reference [15] gives a complete over

view of the basic principles and their uses for network transient measurement. To visualize 

the technique, let us consider the test set up shown in Fig. 1.3a : the system consists of a
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(b )

Figure 1.3 : Time Domain Reflectometrv. Applications to transmission line
characterization.^) experimental setup , (b) voltage reading. The time axis can 
also be used as position axis which allows to determine and locate discontinuities 
along the test line. Rise time of applied step p s .
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ramp generator V g of internal resistance Zg (usually 50 H). A coaxial cable of characteris

tic impedance Zr and length l is connected to the line to be tested (characteristic impedance 

Z0 and length 1). When the switch is closed at t —t0, a forward moving wave C + is gen

erated at point a . For voltage and current continuity, it must satisfy

~  C +  =  £ +  

from which we obtain

(1.19)

( 1.20)

Upon reaching the test line at point b ,  a backward wave C _  as well as a forward wave T  + 

appear. They must satisfy

C + +  C _  =  T  +

C + — C _  =  7 \

Zs zQ

which yields

c - = ( r r l r ) c + = r «c+

r + =
2Z0C + 

Zo + Z ?

(1.21a)

(1.21b)

(1.22a)

(1.22b)

where Tg is the reflection coefficient from the test line at b . When T  + reaches the end of the
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test line at point c , a reflected wave T  _ is produced such that

= ( f 1 ~ z° yr+ = r LT+ d .23)

where T^ is the reflection coefficient at the load. Upon reaching b ,  T _  w ill generate twro 

new waves : C _  on the coaxial line and T'+on the test line. These successive reflections wrill 

keep taking place indefinitely. The expression for the voltage at any point along the line 

w ill have the form of a geometric series of r^T^ which converges to the final value (for 

very large t)

V =
Zi + Zg (1.24)

Figure 1.3b shows a graph of the voltage at point a , V a(t )  as a function of time. Since the 

phase velocity in both coaxial and test lines are assumed constant, there exist a linear rela

tionship between time and position. The first step in the voltage is the magnitude of the for

ward wrave traveling the coaxial cable C +. Its duration is 21 /v c where vt. is the velocity in 

the coaxial line. The second step is T  +. If the magnitudes are normalized to C +, the 

difference between C + and T  + is the reflection coefficient TQ due to the test line

r 0
Zq - z ,  
Z0 + z g (1.25)

W hen r o is read from the Time Domain Reflectometer, it allows direct calculation of Z 0 :

- Z . <
i +  r .

i - r (
) (1.26)
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Whereas the phase velocity v0 can be obtained from the time delay r0 :

(1.27)

Capacitance and inductance per unit length can be extracted using (1.1 M l .3).

(1.28a)

and

(1.28b)

1.4.2 Frequency Domain - Scattering Parameter Model

The information obtained from the TDR, although complete, does not provide us with 

any insight of the frequency dependence of the transmission line parameters. Because of ins

tability concerns at large frequencies (RF and microwave) and because of their manoeuvra

bility at those frequencies, Scattering parameters (S parameters) can be used for a frequency 

domain analysis. A  good introduction to S parameters is given in References [16] and [17]. 

W e briefly summarize the essentials of these parameters and their meanings.

Figure 1.4 shows a two-port network inserted on a line of characteristic impedance Z 0. 

Both ends of the line can be regarded as connected to generators of internal impedance Zs . 

E, ! and E iZ are the incident portions of the voltages in ports 1 and 2, respectively. Simi

larly, E, i and E / 2 are the reflected portions of the same voltages. W e can then define four 

traveling waves on the line :
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- c Zg

b ,

PORT

02

Zg

b2

PORT 2

2 r

+ SI2a2 

+ ^22a 2

Figure 1.4 : Scattering matrix. Definition in terms of the power waves.

MICROSTRIP LINE l

V g© R F SOURCE
Vo

TWO PORT

(jj I
C .  O .  ( l - e ~ 2 l Vo ) r

• 322 • i - r 2e"2i w !
v0

Z p - Z g

Z o + Z g

O : CjuI
- C  .  ( l - r 2 )e~i

I 2 ' 3 2l '  | . r 2 p -2i0 JI
Vo

igure 1-5 : Experimental setup for determining the characteristic of a microstrip line as a 
function of frequency. Equations are shown that relate the velocity and the 
impedance to the measured reflection and transmission parameters.
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a , = En

J T o
a , = E g

a¡T o (1.29a)

b , =
Er l

- fz .
b , = ' r  2

•Jzl (1.29b)

The square of the magnitude of these new variables has the dimension of power ; l u j ! 2 is 

the incident power to port 1 ; \b2\2 is the reflected power from port 2 of the network. The 

four S parameters characterizing the two-port relate the traveling waves as follows :

b\ -  S i , a  j +  S l2a 2 (1.30a)

b 2 ~  S  2\Cl i 4" S 22ci 2 (1.30b)

From these relations, the four S parameters can be defined alternatively as

b i b ?
S „  =  —  s 21 =  —

û  1 Ia 2=0 Û j la 2=0 (1.30c)

b i
5  12= —

Q  2 la j =0
5 22 = —

CL 2 la j= 0 (l.30d )

If both ends of the line are connected to generators with internal impedance Zg, then a x and 

a 2 are simply the incident waves from the generators. Since the incident power from either 

generator can be deliberately set to zero, Equations ( 1.30c) and (l.30d) provide the main 

scheme for determining the S parameters of a network. It is of interest to note that S n and 

S 22 are reflection coefficients and relate traveling waves of one given port whereas S i2 and 

S  2i are the transmission coefficients of the two-port.
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1.4.3 Scattering Matrix for Transmission Line

When the network to be characterized is a transmission line, it can be modeled as a tw o- 

port (Fig. 1.5). Consider an unknown transmission line of characteristic impedance Z c and 

length l embedded between two coaxial lines of impedance Zg terminated with their 

characteristic impedance. On the left is an RF source of frequency /  =o>/27r. Setting the ori

gin at the first intersection , the voltage and current equations for the system are

.atx , Mir- J —  +J----
v j(jc ) = a e s + b e Vg

Mix , .wa-J—  +y-
/,(*) = 4~[a e ' ' - « e  "«]

MiX , Mix- J ---- +y----
v£x ) = c e  V° + D e  |,£

(1.31a)

(1.31b)

(1.32a)

I ¿ x ) =  -~[c e
- j - +J—

- d e J°] (1.32b)

vg and v0 are the propagation velocities in the coaxial and test lines, respectively. A ,  B , C , 

and D are constants which depend on the terminations. Applying the boundary conditions 

at x  = 0  and r = / , w e  obtain

=  V ^  _  (1 -  T2)3  
A  i -  r 20 2 (1.33a)

= B_ = (1 -  /32)T 
11 A i -  r 2/32 (1.33b)

where
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0 = (1.34a)

and

r  = Zq - z ,
Z 0 +  Zg (1.34b)

T is the reflection coefficient at the ends of the unknown line. Adding (1.33) to (1.34), we 

get

S  21 'S’ 11
r  +  a 

l +  r/3

Subtracting (1.34) from (1.33) gives

(1.35)

S  21 ‘S’ il 1 -  P
1 -  Tj3 (1.36)

Combining (1.35) and (1.36) yields

S i i - S f r  ±  V l  + ( S | !  - 5 121) - 2 ( 5 221 H-Sft)  
2S n

sfr - S f i  ± V l  + (Sfi -SiQ-XSfr +51 ,)  
25 2i

(1.37a)

(1.37b)

Since 5  u and S 21 can be measured with a network analyzer, Equation (1.37) allows a direct 

determination of T from which Z Q can be obtained. The propagation velocity and the 

effective dielectric constant can also be obtained. Figure 1.6 shows experimental plots of 

characteristic impedance versus frequency for various geometries of lines. The measure

ments were performed on an HP 8505 automated network analyzer. A t higher frequencies,
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FREQUENCY (GHz)

Hgure 1.6 : Experimental plot of the characteristic impedance Z„ as a function of frequency 
for different geometries. The dashed lines are the best fit curves. Measurements 
were performed on an HP 8505 RF network analyzer and Equation (1.37) 
allowed determination of Z 0 .
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the measurements become more difficult and external effects such as junction discontinuities, 

capacitance, and inductance become more significant.
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CHAPTER 2

COUPLED TRANSMISSION LINE CHARACTERISTICS

The theory of coupled transmission lines arose with the early applications to multicon

ductor systems. Its development continued with the advent of directional electromagnetic 

couplers [l S]. Several methods using the quasi-TEM approximation have been proposed to 

obtain the parameters of coupled microstrip lines. A  comparison of these methods is given in 

[ l9]. Krage and Haddad [20], [21] have determined the inductive and capacitive coupling 

coefficients as well as the directivity for various geometries of coupled lines. Bryant and 

Weiss [22] have established the relationship between the electrical and physical parameters 

of coupled line pairs using the Green’s function approach. Their MSTRIP computer program 

has been validated after comparison with various authors. Garg and Bahl [23] derived semi- 

empirical equations for the even and odd mode parameters. Hammerstad and Jensen [24] suc

ceeded in implementing a model with errors less than those caused by physical tolerance. 

Recently, Kirshing and Jensen [25] reported frequency dependent expressions with unpre

cedented accuracy. Most of the solutions provided by these numerical techniques suffer from  

the lack of experimental data which would validate their application to microstrip coupler 

design. The main difficulty arises with the presence of different modes of propagation and 

the parameters associated with these modes which impose more complex measurement tech

nique requirements. 1 he goal of this chapter consists of implementing the electrical model 

for coupled lines and determining experimentally the coupling parameters. Correlations 

between physical dimensions and electrical parameters can then be established empirically. 

Altough this method limits the flexibility of the microstrip designer, it provides more accu

racy for parameter determination while giving a better insight of the coupling phenomena.
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2.1 General Expressions and Propagation Modes

The differential equations relating the propagating voltage and current along two cou

pled transmission lines are

a v i

dx
= LU—  Up— 

&  ' &
(2.1a)

d V 2

d x
— l  « L . +  

21 »
(2.1b)

d x
=  C h

e v ,  q v 2
t  L, |2‘

ôf df
(2.2a)

a / 2 _ „  a v ,
— — U 21 +  c (2.2b)

V , and V  2 are the voltages along line 1 and line 2, respectively, and I  { and /  2 are the 

corresponding currents. The L tJ and C,2 are the matrix inductance and capacitance 

coefficients. The mutual terms are equivalent, C 12= C 2i and L 12= L 21. Moreover for sym

metric structures we also have L  U=L 22 and C n=C 22. Those matrix elements can be related 

to the electrical parameters. Figure 2.1b is the distributed model for two coupled identical 

lines for which Cs and L s are the self-inductance and self-capacitance, respectively, and L m 

and Cm, the mutual inductance and capacitance. Kirchhoff’s law in differential form gives

à V j

d x
+  L,

st
(2.3a)

e v 2

dx
— L„

d1 1 , 2-r L s

St St
(2.3b)
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w

ÆZZZtiZZZZZL

h

zszzzzzzzzzzzzzzzzzzzzzzzzs

(a) COUPLED MICROSTRIP PAIR

-? i  r :  I
T  L s t  c s

+ 0-
V,

•mnr̂- -CftftT'-

+ 0 = ;
V2 l2

1r i
: Ls ;- cs • -

r
(b) CIRCUIT MODEL

Figure 2.1 : Coupled microstrip lines : (a) geometry, (b) distributed circuit equivalent It is 
assumed that the two lines are identical. L ,  and Cs are the self-inductance and 
capacitance of each line. L m and C„, are the mutual parameters of the pair.
These parameters can be measured and related to the matrix elements usino 
Equations (2.5M 2.8). *



22

a /» „  QV2 
+  Cm

d x &

„  dVi , „ a v2-  cm + c ,-----dx & dt

Comparison with Equations (2.1M 2.2) with (2 .3K 2 .4 ) gives the equivalences.

(2.4a)

(2.4b)

C 11 — Cs +  Cm (2.5)

C 12 =  -Cm (2.6)

t* II Jt
-

(2.7)

L  i2 ~  L m (2.8)

For the symmetrical case one solution can be found by adding (2.1a) to (2.1b) and (2.2a) to

(2.2b).

(2.9a)
d x  Qt

a / '  = ( C 11 +  Cl2) av; (2.9b)
d x  Qt

where

V , =  j ( v ,  +  v 2) (2.10a)

/ ,  =  j ( / ,  +  / 2) (2.10b)(2.10b)
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are the common mode voltage and current. Equations (2.9a) and (2.9b) have the same form 

as the well-known single line Telegraph Equations ; therefore the solutions in the fre

quency domain assuming a time harmonic dependence are

V ' ( x )  =  A e + Be e (2.11a)

(2.11b)

where A e and Bc are constant coefficients associated with the forward and backward trav

eling waves, respectively. Zc and ve are the even mode impedance and propagation velocity, 

respectively :

n + L
,1+C (2 .1 2 )

V(-E 11+-E 12X C 11+ C 12) y/(Ls + L m )CS (2.13)

and 0) 'll» f  is the angular frequency of the propagating signal. Subtracting (2.1b) from  

(2.1a) gives

d v d
=  U n - L 12) - ^

d x dt

=  ( C n - C , 2) —
d x y

(2.14a)

(2.14b)

where
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v ,  = y ( v , - v 2) (2.15a)

I ,  =  y ( V , - V 2) (2.15b)

are the differential mode voltage and current. As before this system can be solved to give

V A x )  =  A d e  'd + B , e
+ j —

vd (2.16a)

i A x ) = ^ - e  Vd -
Bd

(2.16b)

A d and Bd are as before constant coefficients associated with the forward and backward 

waves, respectively, and Zd and vd are the odd mode impedance and propagation velocity

defined as

=vPïP~=V  C u - c 12 V  Cs + 2 C n
(2.17)

■'/(-i'u zXC n —C  l2) V i i 'j  —L m XCS + 2 Cm ) (2.18)

Using Equations (2.10) and (2.15) we obtain the general solution for the line currents and 

voltages :

V l( x )  =  V , ( x )  +  V d ( x ) (2.19a)

I  ¡ (x )  -  I ' ( x )  +  / ¿ ( x ) (2.19b)
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V / r )  =  V e ( x ) - V d( x ) (2.20a)

/ /  x )  =  I e( x )  — I d ( x ) (2.20b)

which gives

V ^ jc) Ae e v* + Be e  v' + A d (2.21a)

(2.21b)

V / x )  =  A P
- j - +j-

+ b * e - a , e - b ,  e (2.22a)

, 0>X
A ~J—

e v‘ -
Bc e v‘

UiX .IÙX—J—  d +y—
e Vd + —  e  Vd (2.22b)

Zc z e z d z d

Equations (2.21) and (2.22) give the general form for the line currents and voltages for a 

time harmonic excitation. The constants Ae, Be, Ad, and Bd are determined by the boun

dary conditions at the four ends of the lines. Determination of these constants depends on 

the nature of the problem. For the case where the excitation is periodic, a Fourier series form 

must be assumed as the general solution for which the constants become the Fourier series 

coefficients. Finally for nonperiodic excitation, a Fourier transform approach must be used 

for the general solution. This w ill be illustrated in the next chapter. In all cases, the time- 

dependent solutions have the form :

v ,(;c  ) =  a , ( i  -  -£ - )  +  b j t  + - £ - ) +  adu - - £ - ) +  bdu +  - ï - )
Ve V d  V d

(2.23a)
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1 1(*) =  4 - 1  a A ‘  b , ( t  +  -* - ) ]  +  -  - 2 - )  -  6 „ ( t  +  -£ -) ]
v c Vo V* V j

(2.23b)

V / * )  =  a , a  - — ) +  6 ca  + - £ - ) -  - * - ) + — ) (2.24a)

- ~ - ) - 6 , ( i  + — ) 3 - - ^ - [ a , ( f  ) - 6 </(t +  — )] (2.24b)

G e and are the forward functions for the even and odd modes, respectively, bc and bd 
are the backward functions for the same modes.

2.2 Application and Coupling Parameter Measurement

The major advantage of Equations (2.23) and (2.24) is that the solutions are put in a 

form where the reflected waves are separated in time from the forward waves. This can be 

applied with TDR measurements to obtain the coupling parameters of a microstrip pair since 

only the forward voltage waves.need to be considered. In Figure 2.2a, two identical coupled 

lines of length L are connected at x = 0. A  coaxial cable of characteristic impedance Z g con

nects the TDR to the pair. A  forward traveling voltage step of magnitude V j  upon reach

ing the junction generates a backward step, V b. From Kirchhoff’s law we must have

vtdr = ac(t, o) + ad(t ,o) = v f + vb (2.25a)

11  dr CL (t, 0) + (t, 0)
(2.25b)

v[d/ = acu,o ) -  ad(t ,o) (2.26)

This implies that
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(b) " p a r a l l e l " c o n n e c t io n

Figure 2.2 : Experimental determination of the even and odd mode characteristics of a pair 
of coupled transmission lines : (a) even mode measurement since no odd mode is 
present both velocity and impedance for this mode can be measured ; (h>parallel 
connection since it is difficult to excite the odd mode, this configuration is used to 
determine the parallel combination of Zcvcn and .
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a d (t ,0) =  0  (2.27)

and

(2.28)

Therefore, the reflection coefficient measured at x -Q , pc = V h/V  f can be related to the even 

mode impedance of the pair :

2 , = 2( 1+ P e 

1 ~ P e
)Z0 (2.29)

Since no odd mode exists, the measured time delay t c , can be related to the even mode velo

city :

(2.30)

Another configuration is that of Figure 2.2b in which line 2 is connected to ground at x = 0 

and line 1 is connected to the coaxial line. The equations are

vtdr = a , a , o) + ad(t, o) = vf +vb

I  td r +  CLd 0 , o )
2 ,

(2.31a)

(2.31b)

(2.32a)a Po ,o)=  a , o,o)
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^rdr _  ^ Zd
lid, Ze + Zj (2.32b)

The associated reflection coefficient p p= V b/ V f  can be measured directly and using the 

above relations we obtain

¿ A
ze+zd =  z g( l ± ^ )

g l-p „ (2.33)

Since both even and odd modes are propagating , a direct relation between the time delay 

and either velocity cannot be established. Nevertheless, Equations (2.29), (2.30), and (2.33) 

provide the necessary relationship for extracting Ze , Z d , vc and, if the single line parame

ters are known, Equations (2.12), (2.13), (2.17), and (2.18) can be used to determine the 

mutual capacitance and inductance as well as the odd mode propagation velocity of the pair 

(Figure 2.3). From these equations we see that

Zd <  Z Q <  Z c (2.34)

which suggests that for weak coupling

Z* =  Z 0 *5 Z c (2.35)

Table 1 shows experimental values of self and coupling parameters obtained for several 

microstrip pairs. These values were extracted by using the methods outlined above. As 

expected mutual parameters depend strongly on the spacing between the lines ; it is also 

observed that the mutual inductance is stronger even at wider spacings between the edges of 

the coupled lines.
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'go

1
_ =cs C9d r 

er
— Cs

Z///////////7777?.

Cs : SELF-CAPACITANCE 
Cm : MUTUAL CAPACITANCE 
Ls : SELF-INDUCTANCE 
Lm : MUTUAL INDUCTANCE

© ®
EVEN MODE = V, = V,

L j + L ,  
Cs

2 ,  = , ±

=
\/CsT

ODD MODE  ̂ V. = V-

E s “  l - m

Cc+ 2C m

vd =
y /(L ,-L j(C i* -2 C J

Figure 2.3 : Diagram showing the configurations for exciting even and odd modes.and rela
tions between characteristic impedance, propagation velocity, and the self- and 
coupling parameters of the pair.
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■ TABLE 1 : EXPERIMENTAL D A T A  OBTAINED FOR VARIOUS GEOMETRIES OF
TRANSMISSION LINES W ITH GLASS-EPOXY DIELECTRIC GEOMETRICAL 
DIMENSIONS ARE AS DEFINED IN FIGURE 2.1, THEIR UNIT IS IN MILS, 

f  IMPEDANCES ARE IN OHMS AND VELOCITIES ARE IN m /  n s . INDUC-
|  TANCES AND CAPACITANCES ARE IN n l i  lm  AND p F  /m , RESPECTIVELY.

D e s i g n  

S  Zo

W i d t h  =  

Vo

10 M i l s  

Zd

D i e l e c t r  i c  

Vd Ze

h e i g h t

Ve

; 2 i  Mils 
L s C s L m C m

5 9 3 . 18 7 4 5 . 1 6 2 1 2 7 . 1 5 6 4 9 6 5 8 2 1 9 . 7 40
7 9 3 . 1 8 7 51 . 1 6 7 1 2 2 . 1 5 9 4 9 6 5 3 1 9 1 . 3 30

10 9 3 . 1 3 7 5 4 . 1 7 7 1 2 2 . 1 5 9 4 9 6 5 3 1 9 1 . 3 2 3
12 9 3 . 1 8 7 5 3 . 1 8 2 120 . 1 6 1 4 9 6 5 3 1 7 7 . 5 18
14 9 3 . 1 3 7 60 . 1 6 7 1 1 3 . 1 6 6 4 9 6 5 3 1 3 3 . 1 21
16 9 3 . 1 8 7 6 2 . 1 6 2 1 0 3 . 1 6 9 4 9 6 3 8 1 1 3 . 2 21
18 9 3 . 1 8 7 6 4 . 1 5 7 1 0 4 . 1 7 2 4 9 6 S 3 3 9 . 2 21

20 9 3 . 1 8 7 6 5 . 1 5 6 1 0 2 . 1 7 4 4 9 6 5 3 7 7 . 6 20

D e s i g n  

S3 Zo

W i d t h  =  

Vo

15 M i l s  

Zd

D i e l e c t r i c  

Vd Ze

h e i g h t

Ve

: 21  M i l s  

L s C s L m C m

3 7 8 . 1 8 2 3 9 . 1 9 2 1 1 6 . 14 3 4 2 9 70 2 2 4 . 8 31
s 7 8 . 1 8 2 44 . 1 9 3 1 1 3 . 150 4 2 9 70 2 0 5 . 4 2 2
7 7 8 . 1 8 2 47 . 2 0 0 111 . 151 4 2 9 70 1 9 2 . 3 13

10 7 8 . 1 3 2 5 2 . 2 0 6 1 0 7 . 1 5 4 4 2 9 70 1 7 4 . 4 11
12 7 8 . 1 3 2 5 8 . 2 1 2 1 0 4 . 1 5 6 4 2 9 70 1 5 6 , 5 6
14 7 3 . 1 8 2 5 9 . 2 0 7 1 02 . 1 5 3 4 2 9 70 1 4 4 . 9 6
16 7 3 . 1 8 2 60 . 2 0 3 100 . 1 5 9 4 2 9 7 0 1 3 3 . 6 6
18 78 . 1 8 2 61 . 1 9 8 9 3 . 161 4 2 9 70 1 2 2 . 4 6
20 7 8 . 1 8 2 62 . 1 90 9 4 . 1 6 4 4 2 9 70 1 0 0 . 8 7

]

S3

D e s i g n

Zo

W i d t h  = 

Vo

20 M i l s  

Zd

D i e l e c t r i c  

Vd Ze

h e i g h t

Ve

: 2 1  M i l s

L s C s L m C m

3 7 2 . 1 8 2 3 7 . 16.1 9 9 . 1 5 4 3 9 5 7 6 1 6 2 . 3 45
5 7 2 . 1 8 2 42 . 1 7 6 9 8 . 1 5 4 3 9 5 7 6 1 5 6 . 7 30
7 7 2 . 1 8 2 4 5 . 1 7 4 9 4 . 1 57 3 9 5 7 6 1 3 5 . 1 25

10 7 2 . 1 8 2 5 2 . 2 0 0 9 2 . 1 5 7 3 9 5 7 6 1 3 5 . 5 t o
12 7 2 . 1 8 2 5 4 . 2 0 5 90 . 1 5 8 3 9 5 7 6 1 2 9 . 4 7
14 7 2 . 1 8 2 5 7 . 2 0 6 88 . 160 3 9 5 7 6 1 1 9 . 0 4
16 7 2 . 1 8 2 S 3 . 2 0 2 3 6 . 161 3 9 5 7 6 1 0 8 . 8 5
18 7 2 . 1 8 2 5 9 . 2 0 4 3 5 . 1 6 2 3 9 5 7 6 1 0 4 . 1 3
20 7 2 . 1 8 2 60 . 1 9 4 8 2 . 1 6 5 3 9 5 7 6 8 6 . 3 5
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Since different charge distributions arise with the two modes, some authors have found it 

convenient to define an even mode capacitance and Cex, and an odd mode capaciance C ^  and 

base the complete analysis in terms of these parameters [8], [9]. Figure 2.4 shows a decompo

sition of the total capacitance of a microstrip pair in terms of even and odd mode capaci

tances. The existing expressions for Cev and are semi-empirical, however, using our 

model, it can be shown that Cev = Cs and = Cs + 2Cm.

The major advantage of the techniques of measurement introduced above is that they are 

very accurate, since no approximation was made in deriving the model and the relations 

between the coupling and propagation parameters. As a consequence, reliable empirical data 

can be established from these measurements and used as design guidelines for microstrip

couplers.
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w
MAGNETIC WALL

\
JL1  i C f L ¡x C fi

cT cpT  T j [
'Z z z ïz z ^ z z Æ z z iz z ^ z z z :

(a) EVEN MODE

JHlC

W À - - ,
I I iH f/ I

r  i -  - L f
Lf T T l P

ELECTRIC WALL

ga
7ZZZ.i— V ”

Cg<j_L J_

Tcp Tc f
/ / / / / ' / / /  ' / / / / / / ' / / s .

(b) ODD MODE

Figure 2.4 . Decomposition of the capacitances into odd and even mode components. C 
represents the capacitance associated with the TEM propagation mode ; C ; is the 
fringing capacitance. Cga and Csd are the mutual capacitances in air and in the 
dielectric, respectively. The normalized charge distribution associated with each 
mode is shown on the right with c 0 being the charge at the center of each strip.
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CHAPTER 3

TRANSIENTS IN COUPLED MICROSTRIP LINES

In the preceding chapter, the response of coupled lines was analyzed for harmonic (single 

frequency) excitation. W e now wish to extend the analysis to account for the transients 

involved in the case of an arbitrary excitation. This is particularly important for digital 

applications where the signal applied to microstrip lines is a pulse or an impulse. Since the 

rise and fall times of these excitations are becoming shorter, the coupling between adjacent 

lines becomes more significant and has more serious effects. This is the so-called "crosstalk" 

noise. Various authors have attempted to describe this coupling phenomenon and relate it to 

the mutual parameters of the pair. Cotte [26] developed a first theory on the propagation of 

pulses in a coupled pair of conductors. Catt [27] analyzed the same effects for various 

transmission line configurations. Jarvis [28] studied the waveform distortion caused by this 

coupling as w ell as the effects of the terminations. Several numerical techniques have also 

been applied for simulation of these coupling effects. In general, the cross-coupling between 

two lines is a function of the terminations which make up the boundary conditions for the 

general solution previously derived. This chapter w ill examine the solution to this problem 

in the time domain.

3.1 Passive Terminations

Many practical situations in digital applications involve pairs of microstrip lines for 

which the the behavior of the terminations does not vary with the magnitude of the sig

nals. In this case a real linear impedance can be used to model the terminations at the source 

and at the load. Figure 3.1 shows a microstrip pair having resistances Zsl and Zs2 at the 

sending end and ! and ZL 2 at the far end. The voltage sources have magnitudes V s j and 

V s2r The time harmonic solution for the voltages and currents was found to be
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Figure 3.1 : (a) Representation of a microstrip pair loaded with passive terminations. The 
lines are assumed to be identical. V s , and V i 2 are arbitrary voltage sources, 
(b) Representation of a source waveform in the case of pulse excitation.
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j  J ~ ~  _ . UJ i

v j(x) =  a c e Ve +  Be e Ve +  Ad e x’d +  Bd e vd

ilix) = ̂ -e  ' v' - Z - e  '•+■£*-e i-e "d
¿•*0

+ ^ L e
Z ' Zd Zd

j u x  j ^ .taar _ .<itx ^  .(ox

v lx) = a c e v* + Be e v‘ -  Ad e x'd - Bd e Jv<1

_ ¡ u x  , UJ: _ .a>.v tax

i j x ) - £ - e ~  ’•- & - e  ** - ^ - e ~ '" d + % -e +^
z ,- z ,  Z ,  Z l(

If we apply the boundary conditions at x  = 0  and at x =1 , namely

V,| = Vjftfl + Z,,/,«))

Vl2 = V/0) + Zt2//0)

0 = v tU ) - z Lli,«)

0 = Vil)-ZLJil)

and by setting

(3.1a)

(3.1b)

(3.2a)

(3.2b)

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.4a)

(3.4b)

(3.4c)
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"s| i? 
•*->1

II<35

bid

Ccdm e

we arrive at

(3.4d)

( l + m )  (1  — m )  ( l + i )  ( l — i ) A , v sl

( l + v )  ( l — v )  —( l + y )  (y — 1 ) Be V s2
Qe(\ — q )  « , . ( 1 + ^ )  0^ ( 1 — z )  otd(\ +  z ) A d — 0

^ ( 1  ~~ d )  a c( l  +  d  ) 9d (p  — l )  —0 ^ (1  +  p )
. Bd 0

(3.5)

which is the generalized matrix equation for the coefficients A e ,B e , A d, and Bd .

In many practical cases, the terminations on both lines are identical, or Z s ,= Z 5 2= Z S and 

Zl i~ZL 2= Z l • This reduces Equation (3.5) to a much simpler form. Then Cramer’s Deter

minant Rule can be applied to give

A a = ( y s i +  V s2yze i

2 ( Z . + Z , )  1 - L r , , 9,! (3.6a)

2 (z ,+ z ,)  i  - r „ r Z te /

A ,  =
( V , , - V s2)Z,

A

2(z,+zs) i - r „ r  

_  - ( v s, - v , 2)z rf8j r u  i
Z,y +  Z c Si/ 1

(3.6b)

(3.7a)

(3.7b)

where

=
2 ,  — Ze

Fie =
z ,  —  z„

z s + z ( Z z + Z , (3.8a)
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_  Z s -  Z„
zs + zd

_  A  - Z d 
ZL +  zd (3.8b)

(3.8c)

(3.8d)

Equations (3.6) and (3.7) give the coefficients for the time harmonic periodic excitation 

where V s { and V s2 are assumed to have the same frequency. From these equations it is seen 

that even or odd mode can be matched. Particularly, when Zs=Z e and ZL = Zd% w e have

A , (Vs i +  V ,2) 
4 (3.9a)

- < V si +  V ,2 » ? T L
4 (3.9b)

A _  ( V s i - V s J Z *
d 2(Zd + Z e ) (3.9c)

D d ~ K) (3.9d)

In the case where the excitation is not periodic, contributions from all frequencies must be 

included in the general solution. The coefficients , thus become continuous functions of fre

quency. In the time domain, solutions for the voltages and currents are obtained bv 

integrating over all frequencies. W e therefore have

V j(f ,x ) =  f  Ae((o) e
+ y o j l r ------- » I» + jo/r + —)

d(o + J Be(ù)) € d(o .. (3.10a)
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-  +you(r-------- )

+  j A d (o ))e  Vd
/. + jw ir  +  — )

d u  +  J Bd(to) C Vd d(D

+oo * v +oo
1 /• +y'wlr------ ) -  +yWr + — )

/ i ( f , x )  = - “ -J A ,(o > )e  V‘ d (0 - B e( i o) e  Ve doi (3.10b)

1 r  +yw(r — _) 1 r
+  A rf(a>)e Vd do) — —— J ¿¡¿(o>)e

+yoi r  +  — )
vd £? a>

+00 v +00
+yWt -  — )I* . , -  +;<if + — >

v£tjc) = J Ae(oj)e v* do) + J Be(co)e v* d(o (3.11a)

+o° +CO y
-  +  J u l t ---------) * +/u)(r +  )

- J Ad(o))e Vd do) - J BdM e  l'd d(o

1 f  +ywlr-----' 1 riixyx) — -j-J Ae(<o)e Ve doj - - ± - J  BcM e
+oo

+ jo i t  + --- )
d 0) (3.11b)

1 r +,/<Jlr — i r
-  —  J Ad((o)e Vd da + J Bd(a>)e

+j(Jt + — t
d 0)

This can be rewritten in a simpler form as

S i  +  S  2 +  S' 1 +  S' 2 (3.12a)

S  1 S  2 S' 1 S' 2
Ze Z„ Zy Zd (3.12b)

S i  +  S 2 - S ' i - S '  2 (3.13a)

S i  S 2 S' 1 S, 2 
Ze Ze Zd z d

- -

(3.13b)
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where S  lf S % S' lf and S' 2 are the forward and reflected voltage waves for the even and odd 

modes.

+oo

S ,  =  /  A r (a>)
+JoAt

e
—oo

(3.14)

+oo

S 2 =  f
+yutr + — )

e Vf dü) (3.15)

-  + j u i t  —)
S,l = j A d((o)e Vd d0i

+oo -
« +/'w<r + —)

S' 2 =  j  Bd (w) €? d d  b)

(3.16)

(3.17)

It is easy to recognize that the coefficients A e(a>), £,(o>), A rf(a>), and 2?rf(co) are the Fourier 

transforms of S  lt S 2, S' i and S' 2 respectively. By applying the same boundary conditions as 

for the time harmonic case and keeping the assumption, Zs {-Z s 2=Z S and ZL X=Z L 2=Z L, we 

can solve for these coefficients in the frequency domain

A e((o) =
[Ws l(ù>) +  W s£üj)]Ze 

2 (Z e + Z S)
1

1 -  TseTLeee2 (3.18a)

Be( a>) =
-\W si{i») +  W s£o>)]Z'TLe9 2 

2(Ze + Z S)
1

i -  r ser Le9f (3.18b)

A d((o)
[Ws ¿di) — Ws ^Q))]Ze i

2(ze + Z j)  i - r sdr Lded2 (3.19a)
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B dM  =
- t w ,  ,(<■>) -  Ws l u M t  Tu  9 }  

2(Z„  + Z S)
1

i - r s„ r irfe i (3.19b)

where W sl(<u) and /<u) are the Fourier transforms of V s , ( t ) and V s X t), respectively.

W , ,(«■>)

+oo

(3.20)

+oo

W,/a,)= vs/t )e
—oo

(3.21)

Since for passive terminations we always have

ir ser ie 0e2K i (3.22)

and

(3.23)

Equations (3.18) and (3.19) can be written in the form of infinite geometric series of the 

reflection coefficients.

A e(o))
(W sl +  Ws2)Ze 

2 (Ze + Z S) E  n r L  e ~ 2' v<

Be( oj) =
(W sl +  Ws2)Ze 

2(Ze + Z S) E r/erfe+1 e
- 2 j .cjU + 1)/

k =0

(3.24a)

(3.24b)
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Ad(o>) =
2(2 ,, +  Z s ) E

¿-=0
(3.25a)

•B/w ) =
2(Zrf + Z S)

E r^ rf/1 e
- 2 /

,<JA + 11/

* =0
(3.25b)

Using Equations (3.14) through (3.17) and making use of the time delay theorem for Fourier 

transforms, we can then invert for the associated modal voltage waves in the time domain.

s i t * )  = , E[v,,(t -  + v,it -  ^2M )]rs*rfe
2(ZC +Z r )  ̂;rQ (3.26)

S / » .* )  = , r?  . E t v , ,(t +  +  v i2(l +  J _ . 2( * + 1 X )] r * (3 2 7 )
2(Ze +ZS)  ̂=o

S', ( » .* )  =  ,  £ [ V S,(t -  i ± 2 W '  ”  '■ 1 + 2 W
2(Zrf + Z j) A =q

) -  v si t  -  i ^ i ) ]  r * , r £ , (3.28)

s i t * ) -  g[vs ,(, + _ Vj2(t + 2(*+l)Z
2(Zrf +ZS)  ̂=o )3 r ^ r f / 1 (3.29)

and using relations (3.12) and (3.13), the voltages and currents on both lines can be obtained.

These equations show that the resulting signals on the lines can be expressed as an 

infinite sum of delayed and attenuated replicas of the the original applied voltages. They 

apply for arbitrary waveforms and allow to determine the voltage and current magnitudes 

at any time and any position along the lines. Convergence of the series depends on the 

reflection coefficient at the source and receiving ends. These relations also indicate that the 

difference in modal velocities of propagation can lead to abrupt changes in the signal 

waveforms. This is best illustrated in Fig. 3.2 where only line 1 is excited. For a reading at 

x = 0  on line 2 , the reflected even and odd mode signal (S 2 and 5" 2) arrive at slightly
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different times and since their contributions are of opposite signs, (cf. Eq.(3.13a)), they pro

duce an impulse in the waveform of line 2. Such a disturbance, however, does not occur in 

line 1 since S  2 and S' 2 are added according to (3 .1 2 a).

Experimental readings were performed using a PG502 Tektronix pulse generator and a 

microstrip pair (Figs. 3.2 and 3.3). The readings were found to verify the theory which can 

also be extended to describe complex terminations.

3.2 Capacitive Terminations

Most digital applications for transmission lines include devices such as diodes, transistors, 

and logic gates. Ideally the input impedance of such devices is very high and the input 

capacitance is minimized to insure small switching delays. In practice as rise and fall times 

become shorter, any small capacitance must be taken into consideration, this is more impor

tant when several identical devices are connected to the far end of a single microstrip line. 

Capacitance is related to the carriers in the devices ; for instance, in the case of a bipolar 

transistor, a diffusion capacitance associated with the charge store in the base and a transi

tion capacitance related to the base-emitter space charge layer make up the total input capa

citance. This suggests that the impedance seen is strongly nonlinear; however, an average 

capacitance can always be defined and used to implement a good linear model.

In the case where the load impedance consists of a resistor R , in parallel with a capacitor 

C , (Fig. 3.4a), the reflection coefficients TLe and TLd for the even and odd modes in the fre

quency domain become functions of frequency.

•p “ Pe +  jU Te
(3.30)
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Figure 3.2 : Cross-coupling for passive terminations with far end opened. Theoretical (plots) 
and actual (photographs) waveforms for a long (left) and short (right) pair of 
coupled microstrip lines. Photographs : top waveforms are V  J(0 ) (driving 
line) with vertical : 2 V /d iv , bottom waveforms are V  2(0) (idle line) with 
vertical : 0.5 V /d iv . Each horizontal division is 5 n s . The spikes on the 
waveforms of V / 0 ) are due to the delay differences between odd and even 
mode reflections. For a short pair of lines, these spikes can no longer be 
detected by the scope because of their short duration.
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Applied pulse: 

f = 2 n s

Figure 3.3 : Cross-coupling for passive terminations with far end shorted. Theoretical (plot) 
and actual (photograph) waveforms. Photographs : top waveform is V  ,(0 ) 

riving line) with vertical ; 1 V /d iv , bottom waveform is V 2(0) (idle or 
sense line) with vertical: 0.5 V /div . Each horizontal division is 5 n s.
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T u  =
~Pd + jQ>Tc 

1 +  j W d (3 .31)

where we have defined

Pe =
R ~ Z C 
R +Z,

T „  =
RZeC 

R + Z e (3.32)

Pd =
*  -  2 ,

Tv = (3.33)*  +  Z«, u i? +  Z ,

Since r Ze and TLd are functions of frequency, the time domain solutions for the modal 

voltages are convolutions of the delayed source voltages and the inverse transforms of 

r ie (<i>) or r Zrf(o>).

S j(i ,x) =
2(Ze + Zj) k =0E  [v,!(i - x +  2*Z ) + vs2(i -  2kl )]r**

■ F 'W » ] (3.34a)

= - 1(7Z; 7 , E[vsl(t + !  ~ 2(k+1)l) + v,/t + — ~ 2(̂ +1); )]r4 *
2v2 e +  Z j /   ̂—g ve

- l
F  [rf.+1(o))] (3.34b)

~  2kl) -  vi2a -  - -+ 2kl )]r£*

(3.35a)

S l t j )  =  - — Zd S [ v s ,(t +  +  X - a c t + n t jr ^ *
2CZrf + ZJ k=Q vd

- l
F  [rf/‘(a.)] (3.35b)

«1»
where denotes a convolution. Let us consider
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r  a  -P. + i<»r
1 + j(j)T

The associated inverse Fourier transform is

(3.36)

F  W >)] =

where u ( t )  is the unit step function and 8( t ) is the unit impulse function. Finding the 

inverse transform of r*(w ) implies applying the convolution theorem k times ; it can be 

shown that

0(0 - 1 +  P u(t  ) (3.37)

, - i
r*(co) - F  1 —p + ; cur

k

1 + j  (i)T +  t J
J = 0

1 + P
y+i

r e T (3.38)

where DJJc are constant coefficients satisfying the recursion relation

Ocu « J K - l ) * - 1 j =  o (3.39a)

r> -  n 1 ^y.* - i  + j >  o (3.39b)

so that Equations (3 .3 4 X 3 .3 5 ) become

s i t *) -  *7 h  7 \ -(i -  x + v , i t -  a - * *2lZ e +  Z ; ) ksQ ve ve

8( i )  +  ( - l ) *  t i 1 + Pe y+1

y=o ^e
e  ' (3.40a)

s / t j c )  =  +  - — 2 < k + ^ e ) +  V j2(t +  - — 2t e + 1 ) ; )]r 4 *
V, V,
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k —1
e c o  +  c - i y ^ E ^ + i ^

j - 0

1 +  P e
J + 1

T e
e  e (3.40b)

S f t * )  = T f r 2* S [ v , , ( t  -  i ± M ) - V j t  -
¿ '¿ d  "T ¿ s '  k=0 vd vd

8( i )  +  ( - l ) A s W  t J
1 +  P<*

J + 1

j=o Td

—r 
Td

(3.41a)

g j h j e ) - - v - Z" '  S[V,,(t + * ~ 2a+l)/)-V ,/ r  + *  -2 ( *+ 0 * ]r/*
2(Zrf +  Zs ) k=0 vd vd

k - 1
S(f ) +  (—1 )* +1 S -^ y ^ + l  t J 

j = 0

1 + P* j +1

Td
e  (3.41b)

In the case where the applied excitation is a pulse (cf. Fig. 3.4b), V s J t ) and V s J t ) have the 

form

o ; i < 0
1 

1Csl

t 2
>II/'"Nn
>

v  (i . i 3^ i  4

0 ; r ^ f 4

Moreover, the convolution integral

(3.42)

(r —r |)

I = f
0

(t — £ |—X)
V ,  e

X.
r (3.43)

can be solved by using the j Th order derivative Theorem for Laplace transforms.
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• r —r j)
f  \ i e - skd\ =
o

-  i ml
s m+l (t - t vy - m

—s it  —t «)

Therefore, if  we define

(3.44)

C  = v,W f
k- 1 1 +  p y'+i

8(r) +  ( - l ) *  'E D j j  t j
y=o 7

we have

(3.45)

1 + p
y+i

j - o
(3.46)

- l
i ± p

u  - t  j) 

y+i

j\ r y+1 — ¿ r n ! r m+1 £

l t —r ,)

m  =0

y=o

(i 2“ i i)
(j +i>. 7 '+2 -  £ m! rm +1 (r -r jV~m+1 e

it —t ,)

m =0

for t < i 2

C  =  V s(r)  +  ( - l ^ “ 1 r '
y'= o

for 3

C =  V y(r) +  t j

1 +p y+i
v, jirj+i- ¿ mir^+i (t-t2)j-me 7

m =07

1+p y'+l
X

j-o
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V

J -  o

(t —t 3)

w + i
i ± £

j !  r -/+1 — ¿ / n ! T m+1 £  r
m =0

X

_ _ Z t
( » 3 - 0

( j  +  1 } .T ^ 2 -  ¿ m ! r ' ” +l ( f —f 3)-»—™+ ‘

(t—T•»)

m =0

for f

where we have made use of

/  (t ) * S (t) e ~ ar =  /  ( f ) (3 .4 7 )

Using these relations in (3.40) and (3.41), we can obtain the expressions for the modal 

voltages. These equations can be easily implemented on a computer program to simulate the 

waveforms produced by a pulse. Such example is shown in Figs. 3.5 and 3.6. As expected the 

pulse width, the length of the lines, and the RC time constant are the most important 

parameters that determine the shape of the waveforms. As for the case of passive loads, fast 

pulses can result at the sending end of a quiet line, (waveshape of V  2(0) ). These fluctua

tions cannot be observed accurately using presently available scopes since their duration is 

much shorter than the response of these instrument^.
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Figure 3.5 : Cross-coupling for capacitive loading. Theoretical (plot) and actual (photograph) 
waveforms of V t(0 ) (driving line). Photograph : voltage reading is 
attenuated by 10 . R is infinite (open).
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l i o

0.88

0.66

0.44

0.22

- 0.22

-0.44

- 0.66

- 0.88

- 0 . 1 0

2 ? =89 Q ve =0A54m / ns

2 ^ = 6 1 0  Vj=0.19lm/ns 

W =  15 mils n =  14 mils

s =  10 mils 2  =50 Q 

l =0.35m C =50 pF

Figure 3.6 : Cross-coupling for capacitive loading. Theoretical (plot) and actual (photograph) 
waveform of V /O )  (idle line). Photograph : voltage reading is divided by 10 . 
R is infinite (open).
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CHAPTER 4

ANALYSIS OF MULTIPLE LINE STRUCTURES

The previous chapters dealt with with two microstrip line structures for which methods 

of measurements and time domain behavior were investigated. Structures consisting of 

more than two microstrip lines are, however, of greater occurrence in practical situations. In 

particular, the behavior of three-line systems in the frequency domain has been explored by 

several authors. Collier and El Deeb [29] have determined the scattering parameters for a 

six-port refectometer; Tripathi [30] derived expressions for the immitance parameters of 

symmetrical three-line microstrip circuits. Pavlidis and Hartnagel [31] derived the funda

mental modes of propagations for these structures. Paul [32] constructed the matrix chain 

parameters for multiconductor transmission lines in the frequency domain. Pulse propaga

tion however, requires a different and more complex analysis in the time domain. For

tunately, by using the insight gained in solving the two-line problems, expressions for mul

tiple line structures in the time domain can be written by inspection provided that the 

different modes of propagation are identified. The goal of this chapter is to illustrate such an 

approach and generalize the techniques for n-line systems.

4.1 Three-Line Structures and Modes of Propagation

We first assume that the three microstrip lines shown in Fig. 4.1 are identical and that 

the two edge spacings are equivalent ; then the differential equations relating line voltages 

and currents can be written directly.

BVi

d x
^  11 T -k 12------

»  &
+ L 13 § L ±

&
(4.1a)
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l ---------------------------H

©

Figure 4.1 : Three-line coupler.
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a v j . - L  d I ‘ ^  12 +  L ttS h .Bx Bt Bt

BV3 r ^7 i r Bt 2' =  ¿ 1 3 ------- +  l 12—Bx Bt Bt

a /a  

: &

V j ,

&

(4.1b)

(4.1c)

and

a /_  2 L L  -  r  i l l - L r  ° v 2 x  ^  ° y 3“ »-'ll T ^  12-------- +  C I3------
QX Qt Qt Qt

dV a v

i i l - r  < E ± + r  d V * + r  ^v 3— O 12 + ^ l l --------  +  C 12---------
a *  a* a* &

_  a£2 _ r  a v ,  a v 2 a v 3

BX Qt Qt Qt

where the Ljj and the C ,j are related to the physical parameters bv 

L n  — L s

L 12 ~  L m

L i 3 ~ L n

and

(4.2a)

(4.2b)

(4.2c)

(4.3)

(4.4)

(4.5)

C n = cs + cm + cn

C 12 =  -Cm 

C 13 =  Cn

(4.6)

(4.7)

(4.8)

The subscript m denotes mutual parameters between adjacent lines and the subscript n ,  

mutual parameters between non adjacent lines. If we define
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v Q. = v r v. (4.9a)

J  a 1 1 1 3 (4.9b)

we can determine a first mode of the system by subtracting (4.1c) from (4.1a) and (4.2c) 

from (4.2a). This yields

d V a

d x
=  ( ¿ 1 1 (4.10a)

d l  o,

QX
=  (C n

The velocity of propagation associated with this mode is

(4.10b)

■'/(¿Ti L  13XC n ~ C  13) - J (L S —L„ XCS + C m + 2 Cn ) 

Its characteristic impedance is

(4.11)

v - .
U  ~  L r

C K +  Cm +  2 C„

A second mode can be obtained by defining

(4.12)

v £ =  V ,  + Ç V 2 +  V 3 (4.13a)

I £ - I i + t I 2 +  f  3 (4.13b)

where £ is a constant to be determined. When this linear combination is made using (4.1) 

and (4.2), we get
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=  a „  +  ( L l2 +  L ^ ^ - i -  
st

(4.14a)

+  ( -=7i + L 11 + £ ü )| J £ í .
» ôi

+ (¿13 + SL  ,2 + n i -
ôf

and

. § L l  - ( r  1
¡P  “  ( C il +  sC  12 +  C 13) - ^ -  (4.14b)

+ ( ^ c „ 4 ï -
« s &

+ (Cu + fC12 + C,,)—
Si

W e then introduce the approximations

^  11 +  £ £  12 +  ^  13 25 L  11 +  £ £  12 (4.15)

C ii +  i C u  +  C u S s C n  +  f C « (4.16)

which reduce Equation (4.^4) to

^  =  O , , ,  +  ( L l2)̂H- +  (1 „  +  U l2) V ±  
0X Qt 5 0T y

Ä  -  (C„ .  ( C , Æ  * (C„ .  . te„ ♦ {C ,,)» ^
O* O* S ç)f

(4.17a)

(4.17b)

If we choose £ = + > /2 , we then have
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- ^ •  =  a 11 +  7 2 i l 2 ) i £ i .
d x  Qt

-  =  ( C „  +  - l i e  , 2) - ^ -
dx 0 t

This pair of equations defines a second mode with propagation velocity

V;  =
V U „  +  V 2Z ,12X C h  +  -J2 C n ) - J ( L ,  +  'f2 L m XCj +  C„ +  ( l -V 2 )C „  

and an associated wave impedance

Z £ =
/ ( L n +  - J l L l2) _  /

V ( C „  +  V 2C 12) V ( (L , +  v/2 Lm)

(Cs + C „  + ( 1 - V ,2 )C „ )  

Finally, a third mode is obtained in a similar manner by defining

v , a  V ,  +  t)V 2 +  V 3

/ T, =  ^ i  +  7 } /2 +  ^3

Making the same approximations as per Equations (4.15) and (4.16) and setting 77=  

get

»

e v j,
ax

=  a u - ^

d£r,

ax
=  ( C l l - ^ ) ^ L  

&

(4.18)

(4.19)

' (4.20)

(4.21)

(4.22a)

(4.22b) 

•n/ 2 , we

(4.23a)

(4.23b)

The propagation velocity is
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Vt) =  * =  1

"x/"' a  — ~̂ 2L  12XC11 — \ / 2 C 12) "\/( ~L — 'f2L rn XC. +  Cm +  ( l  +  V2jC„,)

and the characteristic impedance is

~  J2L„
+  C„ +  ( l+ > /2 )C „

(4.25)

The line variables can then be expressed in terms of the three modal variables as

V ‘ = f
v „  + I i± I * (4.26)

(4.27)

- V ~  +
V f +  V.

and

/* = f / / V  +
I f +  I

/ , =
2 V2

(4.28)

(4.29)

(4.30)

1 3 2 “ I  a  + I  n ^ t) 
2 (4.31)

It must be emphasized that these results apply if Equations (4.15) and (4.16) are valid. In 

general, such approximations are very w ell justified since in most cases 

Cn < < C s + ( l ± ' J 2 ) C m and L n < < L S ± \ f2 L m. Figure 4.2 shows the different excitations 

associated with the three modes of the system in the case wrhere the mutual coupling
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L n -  J 2 . L 
C ||- -v/2C

12

12
+ +

+

+

a . m o d e

Figure 4.2 : Excitation of the three fundamental modes of a three-line coupler. It is assumed 
that the coupling between non adjacent lines is negligible.
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between nonadjacent lines is negligible. W ith the relations, derived, the general solution 

for the voltages and currents in the frequency domain can be established particularly for 

time harmonic excitation. By examining the two-line solutions, we can anticipate the gen

eral form for the three-line solutions, provided that the same assumptions regarding the ter

minations hold ; namely, Z s i~ Z s 2—Zs3= Z s , and ZL i—Z L2—ZL y=ZL . W ith this, we can 

write the modal voltages by inspection

V f  „  = A .  Etv,,(f -  -x-± 2kl ) -  v,3(i -  r/„ri„
k=0 Va

vba = + B a E[vsl(t + - — 2(k +l)l -  vjt + - — 2ii±ll)]
k =0 \

v n  =  A l  - x +  2 kl

k =0

+  V 2 V r2(f -  ----- 2kl ) +  V s3(t 
v i

x  +  2 kl
)] T & I t+1

V H  =  B t E[v5l(t +
k =0

+  >/2V s2(i +   ------— - 1)Z) +  V s3(t +  - ------- + l ) * )] T i t T l i '
V ;  V i  S 5

(4.32a)

(4.32b)

(4.33a)

(4.33b)

/  T) = a 7) E [y sl(i -
k =0

-  s /2 V ,l t  -  x ± 2 U ) +  V £ .  ±  )] r  4 r  Ik
V* ¿T) (4.34a)

E[v„(t + *
* =0 VT)

-  J 2 V , l t  +  — - 2 a + 1 ) * ) +  vs/ i  +  J ~ y + 1 ) / )] r s% r f * ‘ (4.34b)

where
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r 5û =

r ^  =

Z„-Z,

z a +  zs Fia —z a — zL
Za + ZL

Z i  — Zs r zg-zL
zi +  Zs z i +  ZL

Z„-Zs r  — Zj) — zL
z^ +  z, 1 Li> ~ z v +  zL

(4.35)

(4.36)

(4.37)

The modal voltages are as defined by Equations (4.9), (4.13), and (4.22) where the subscript 

/  denotes a forward moving wave and b , a backward moving wave. Using (4 .26)-(4 .3l),

the line variables can be obtained. If we apply the boundary conditions at x  —0  and at x —l , 

we get

=  -  B a Za
z„ + zs

A i =  = Zg + Zs

B T) z, + zs

(4.38)

(4.39)

(4.40)

4.2 N-Line Structures and Generalization

From the analysis performed, we can anticipate that n -line systems have solutions 

analogous to three-line structures. More precisely, if the terminations are identical, an 

expression can be written for the n-line structure from the modal characteristics. Since a 

matrix representation is more convenient, the problem involves the determination of the 

eigenvalues and eigenvectors which can be obtained using some approximations. The Tele

graph Equations then become
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-  =  L C ^ -
a *  a?

(4.41)

where JL and C  are n x n  matrices and V  a n x l  matrix for the line voltages. If the n 

modes of the system can be found, we can define an eigenvector matrix E  such that

V .  =  E  V  (4.42)

V m is the column matrix for the n modal voltages. The solution in terms of E  and the 

matrix associated w ith the voltage sources at x = 0 , V  s, is

V  fm = Am YjE  rsmrLm V  s{ufm)
k =0

(4.43a)

V * „  « - A .  E E  r : X : l V bM
k =0

(4.43b)

where V  fm and V  bm are the modal voltage matrices for the forward and backward waves, 

respectively. A  m, , and Y Lm are diagonal n Xn matrices associated with the source and

load impedances and the corresponding mode ; u fm and ubm are the arguments associated 

w ith the mode m for forward and backward variables, respectively

7™ =  t x +  2 kl
“ hm = t  +

X - 2 U + 1 )/
(4.44)

where vm is the propagation velocity for mode m . From these relations, the line voltages 

can be found by applying

V (4.45)

W e then observe that the problem of finding the signal magnitudes at any time or any 

position of an n -line structure becomes that of finding the eigenvalues and the eigenvector
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associated with the system. For a large number of lines, this problem becomes nontrivial 

however, by using computer routines or by setting some approximations such as those in 

Equations (4.15)-(4.16), one can arrive at satisfactory results. For instance, it can be 

assumed that mutual parameters associated with any two nonadjacent lines are negligible.

This generates L  and C  matrices with only principal and secondary diagonal elements and 

facilitates the analytical or computer task.

The solution to n -line pulse driven structures applies to many digital network problems. 

When n logic gates are switching n other gates via transmission lines, noise and reflections 

induced on a quiet line can be determined at any point. This would provide margins for the 

applied signals (magnitude, pulse width, rise and fall times), and the microstrip line 

geometries (spacing, width, and dielectric constant).
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CHAPTER 5 

CONCLUSION

This study explored some of the problems associated with two-line structures and 

attempted a generalization to multiple line systems. These analyses represent the first steps 

for the investigation of more complex situations involving nonlinearities, capacitive termi

nations, and discontinuities along the lines. N-line systems with arbitrary terminations can 

therefore be treated using a numerical approach to provide reliable design guidelines for 

digital networks.
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