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ABSTRACT

An analysis of fin-line is presented along with numerical and 

experimental results. Dispersion characteristics and field distri

butions are given for a number of single-mode and multi-mode 

configurations. Agreement between theory and experiment is shown to 

be quite good.
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I . INTRODUCTION

The need for electronic circuitry operating above 30 GHz 

has led to the development of a number of waveguide structures. 

Dielectric waveguide, strip-line, and slot-line have been developed 

in order to reduce cost, simplify manufacturing processes, reduce 

loss, and improve adaptability to circuit components. In recent 

years fin-line has emerged as a viable alternative to these wave

guide structures.

Fin-line is the shielded version of slot-line. It consists of 

a dielectric substrate metalized on one or both sides, a slot is 

etched in the metal parallel to the direction of propagation, and 

the structure is surrounded by a metal shield. If the dielectric 

constant of the substrate equals that of free space,fin-line reduces 

to ridge-loaded waveguide. If the width of the slot equals the 

width of the shield,the structure becomes slab-loaded waveguide. 

There are three types of fin-line: bilateral fin-line, which con

sists of two sets of metal fins one on each side of the substrate; 

unilateral fin-line, where the metal fins are on one side of the 

substrate, and antipodal fin-line, where the upper fin is on one 

side of the substrate and the lower fin is on the other side of the 

substrate. The analysis below is restricted to unilateral fin-line; 

a cross-section view is shown in figure 1.

The structure was first proposed by Meier. ̂  Since then several 

authors have investigated the dispersion characteristics of
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Figure 1. Unilateral Fin-line Geometry
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2-9
Recent theoretical approaches involve a spectral domain

6 7
technique. The propagation constant is found using a system of 

algebraic equations rather than the coupled integral equations used

in a space domain solution. The theoretical analysis given below 

is a spectral domain approach developed by Hayashi, Mittra and Farr.^

One of the advantages of fin-line is its adaptability to 

millimeter wave components. Several authors have reported using

1^ the fabrication of millimeter wave components including 

couplers, filters, tapers, detectors, switches, modulators, mixers 

and o s c i l l a t o r s . 13

In this paper the dispersion characteristics for a variety of 

configurations are calculated. For two single mode configurations 

the dispersion characteristics are compared with measured values 

and agreement is shown to be quite good. Propagation constants are 

measured for four multi-mode configurations, and field distributions
i

are given for a number of single-mode and multi—mode cases.

A variety of approaches has been used to determine fin-line 

dispersion characteristics, and agreement between theories is very 

good, yet experimental verification has only been reported in a few 

select cases.

Single—mode operation above 100 GHz becomes increasingly 

difficult due to the small shield sizes required. The use of fin- 

line at these frequencies need not be restricted if the effects of 

higher order modes are understood and can be incorporated into 

the design of fin-line and fin-line components. The results given
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below are an initial attempt at characterizing these higher order 

mode effects.

Field distributions are useful in the design of various 

fin-line components, yet little has been reported in the literature 

on field distributions. The results given below may be used in the 

design of components such as couplers or field displacement devices.
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II. THEORETICAL ANALYSIS

A. Derivation of the Determinantal Equation

The fin—line geometry used in the analysis below is shown in 

figure 1. To arrive at the determinantal equation the fields are 

given in the spectral domain as an expansion in an infinite set of 

orthonormal modes. The steady-state Maxwell vector field equations 

are transformed into modal transmission line equations. The trans

mission line equations are solved in the three regions (1) 0 < z < h, 

(2) "t < z < 0, and (3) -(t+b) z -t. Finally, the boundary 

conditions required at the various interfaces are applied resulting 

in the determinantal equation.

Assuming e^wt time dependence the field equations are:

V x t  = -ja)yQH V x H = jweE (1)

where:

£ e -t < z < 0o r  —  —

£ =

£ otherwiseo

Taking the vector and scalar products of the above equations 

with the unit vector in the z-direction, the z-components of the 

fields can be expressed in terms of the transverse components:

Ez
1

j(i>£ V -(Ht x z) Hz
1

jo)y0
V •(z x Et)

(2)
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where z is the unit vector in the z-direction, and Et> Ht are the 

components of the fields transverse to z. Since the fields are
M *1 ft V

proportional to e y , knowing the transverse fields over a plane 

y — constant allows calculation of all six field components anywhere. 

The transverse components of the fields are:

H
/2tT

OO 00 2
i  I

-oo m=0 ¿=1

V*m(6>z) ê*m(|3’x)
. e-JBye J y dg (3)

where , h are vector mode functions given by:

where:

'om 1 J * , 1
2T  ÎT 1'x Ym cos Ym (x + A) + yjBsiny (x + A ) > (4. A)

om 1 i* ^
2k T  ix cos Ym (x + A) - yy siny (x + A)f (4.B) 

m  ̂ J

h " *„ = z x e„
Zm £m

2 2 2 
Km - v + B m m

om

Z =

mir
Ym = 2A

m = 0 

m ^ 0

E Wave (Hz E 0) 

(Ez E 0)2 H Wave
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The functions e^m » (1) represent either E wave or H wave with

respect to the z-direction, (2) satisfy boundary conditions at 

x = ±A, (3) are orthonormal.

Substituting equation (3) into equation (2):

H

f 00 00

I
— m=0

e-J^]
JO)G

1
V 2m(6,z) Vt • [h (B.x) .“3f,y]

dB

(5)

Again taking the scalar and vector products of equation (1) with 

the unit vector in the z-direction, eliminating the z-components of 

the fields, and using the properties of the vector mode functions, 

the resulting expressions are:

l i  V 6 ’Z) ■ Z*m y » ' « ) (6 .A)

- -£t  I„ (B,z ) = jk Y V (6,z) 9 z m Zm £in

where:

(6.B)

« in
lm “ toe

toy

2m km

&m Z£m m
= Vk2 - K2

k = <

to y e e o o r

to y e •o o

-t < z < 0

otherwise
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Solving equation (6) in the three regions; (1) 0 _< z £  h, 

(2) -t _< z 0, and (3) -(t+b) _< z £  0, and applying the boundary 

conditions at z = h, z = -t, and z = -(t+b) give expressions for 

V^m and I in the three regions:

i) z > 0

sin k (z - h) v _____ a m _____ _
lm lm sin k h 

am
(7.A)

jme cos k (z - h)

lm U lm k sin k ham am
(7.B)

sin k (z - h) y _ _____ am_______
2m U2m sin k h am

(7.C)

ik cos k (z - h) J am _____ a m _____ _
2m 2m my sin k ho am

(7.D)

ii) -t < z < 0

V- = o- cos k, z ■ lm lm dm
lm tank, z + 1tan kj t dm dm

(7.E)

I, = u
Jajeoer

lm lm kdm

lm, _ - tank, ztan k. t dmdm
(7.F)

V_ = u 0 cos k, z 2m 2m dm
2m tank, z + 1tan k, t dm dm

(7.G)

jk
I„ = u

dm
2m 2m my

2m. . - tank, ztan k, t dmdm
(7.H)
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iii)

e ki r am .
1 ---Û---  tank t tank b*■ am am

lm
1  +

dm

£rkam tankamb 

kdm tankdmt

(7.1)

1  -
dm

V tank*„.b tank, t K--- am dm
F = 
*2m

am

1  +
k, tank b dm ____ am
k _ tank, t am dm

(7.J)

“ (t+b) < z < -t

V = „  Glm s ln  kam(z  +  b +  b>
lm lm sin k b cos k tam dm (7.K)

ja.co G cos k (z + b + t)

lm lm kam sin kamb cos ^ (7 .L)

G« sin k (z + b + t) 
V = u am '
2m 2m sin k b cos k t

am dm
(7.M)

j  . u j G2m cos kam(2 + b + O
2m 2m coy sin k b cos k, t 

° am dm
(7.N)

£  k  t a n  k  b  r am am
lm kdm tan + e-k—  ban k bdm r am am

(7.0)

t —  tan k b 
k amam

2m 1
k tan kaTT1b + 7~ tan k , t 
am am kdm dm

(7.P)
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10

where:

kdm = ^  ~ Km

dy1 • z x et(x',y') e ^ y (8)
* r-oo

e" is the unknown transverse component of the electric field at the 

slot surface.

Substituting equation (7) into equation (3) the transverse 

magnetic field at the slot surface (z = 0+ and z = 0 ) is:

am K
m

n = V (z = 0)

A

/2tT ■'-A
dx’

H,
= -1

z=0+ /2tt"

00 00

I
—00 m=0

irne cos k (z-h) /vo am . / a \u.  ---  — :— :--r-----h. (8,x)lm k sm  k h lmam am

ik cos k (z-h) Aam am x+ u0 ------ :— : r----- h ($,x)2m am sin k h 2mo am
e'jBy dB (9 .A)

H.
- , - j  1:=0 /2ir m=0

e k
1 ---f——  tank b tank, t

iu)£ £ k, am dm ^
J o r  _______dm___________________ £

U lm k, £ k lm
dm , _ , r am  ̂ .tank, t + — :---- tank bdm k, amdm

1 - -̂-- tank b tank, tik, k am dm „J dm _____ am_________________  ,
^2m my k, 2m

° tank, t + -— —  tank b dm k amam

e“^ y dg (9.B)

Substituting equation (8) into equation (9) and applying the boundary 

condition H,
z=0+  =  H t z=0
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l
m=0

e k 'I
1 -----L_1E tan k b tan k t

: e k k , am dmo , , r o dm
t~~~ cot k h +
am am k

tan k , t + 5 am tan k bdm k , amdm

him ($,x) b^m (3»xf) + -

dm

k

, 1 - --- tank b tank, tk, k am dm
am . , , , dm amcot k h +am k k,o ^ , dm . i t .tan k , t + ■:--- tan k bdm k amam

* h2 m ^ ,X  ̂ h2 m ^ ,X^
• M C x ^ y 1) e ^  ̂ d3 dx’dy* = 0 (10)

where M i x ^ y 1) = z x et(x,,yl) is the unknown current density on the 

slot surface.

Let 3q be the propagation constant of the wave and set:

-j3 y T
M(x',y’) = f(xf) e

= [x fx (x’) + y fy (x*)] e
-jf$ y ’

(ID

Substituting equation (11) into equation (10) and performing the 

integration over d3 and dy’, equation (10) can be rewritten:

00 W
1

m=0 - W
W » 0> £l*«o*x) i‘L (eo ’x ’) + P2m(6o) *2m(6o >x) h 2»(Bo*x,)

• 1(5') dx' = 0 (12)

where:

Pn (3) * i--- cot k h + .lmv k am kam

e k
1 ---r tan k b tan k t

e k kA am dmr o dm
e kdm , . , r am . , ,tan k , t + —j---- tan k bdm k , amdm

(13.A)
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, , 1 - tan k b tan k, t
k k k am dm

P2 (8) = ^ c o t k  h + ----- §2----- ---------------¿m k am k k
tan k t + tan k b dm k _ amam

(13.B)

Equation (12) is the determinantal equation.

B. Solution of the Determinantal Equation Using Galerkin's Method

The unknown magnetic current density, equation (11), is expanded

in terms of the basis functions f (x’) and f (xf):xn yn y

2Nx
£ (x') = y a , f ,(x')X  “  v n  ■ v n  '  J

n ’=l
(14.A)

2N
ny

f (x1) = y j a , f |(x1) y n»=1 yn' yn (14.B)

Substituting equation (14) into equation (12), taking the inner

product of the x-component with f (x), and the inner product of thexn

y-component with f (x), equation (12) can be rewritten:

i) x-component

2NxI a
n'=l xn' 1 — {s2 P, (B ) + Y2 V (B )]• f £ ,

m=l AK  ̂  ̂ ° ° m ° J xn xn
m

2N

+ f  a , 
n'-l yn f ,  ¿ 1  * 4 P2ra(6o> - Plra< V

'Xj Oi
f f , xn yn'

m

= 0 n = 1, ..., N (15.A)
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ii) y-comp orient

2NX
l a tf i xn’n - 1

2N

+ y

Î  3 Y |p 9 (6 ) - P, (6 )) f f ,
m=l AK ^ ° m l 2m o lm o ) yn xn

m

n ’=l
3L f yn1

00 T\ fr om
1 ----- 2 V
!=0 9AK V

2 2 ) 'v %
Y P, (0 ) + B P„ (3 ) V f f f 

m=0 2AK “  ̂m lm ° o 2m o J yn y n f 
m

=  0 n = 1, ..., N (15.B)

3q is a particular value of 3» and:

xn

W

- W

sin y (xf + A) f (xf) dx1 m xn (16. A)

yn

r W 

- W

cos y (x ’ + A) f (xf) dx’ m yn ' (16.B)

Equations (15.A) and (15.B) are the simultaneous equations for the 

unknowns a^n and ayn* in order for equations (15.A) and (15.B) to yield 

nontrivial solutions the determinant of the coefficients must be zero.

In choosing the basis functions fxn(x) and fyn(x) the following 

considerations must be taken into account; (1) the y-component of the 

slot field goes to zero, and the x-component becomes infinite at the 

edges of the slot, (2) integration of equation (16) is performed 

analytically, and (3) the solution should converge as the number of 

basis functions increases. Based upon these considerations, the basis 

functions are chosen as:
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f = U xn n
x

W ,v

' n - 1

rx'i
w

•yn
v Î - 1wv /

where:

T^Cz) = Chebyshev polynomial of the first kind

Un (z) = Chebyshev polynomial of the second kind,

Substituting equation (17) into equation (16)

xn

f W

-w
sin Y (x + A) U m n

r  \
x

A
dx

(-l)n/̂ ~^ —  cos(y A) J (y W) (n = even)Y m n m  m

n-1

(-1) 2 ^  sin(Y A) J (Y W) (n = odd)Y m n m  
m

yn

r W

- W

cos Y (x + A)
n-1

X

.w. dx
m Vi - r  ^

x

W

n-1
2(-1) Wtt c o s (y A) J t ( y W)  (n = odd)m n—± m

,n/2
(-1) Wtt sin(YmA) Jn-1(Ymw ) (n = even)

(17.A)

(17.B)

(18.A)

(18.B)
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Substituting equation (18) into equation (15), it is apparent 

there exist two sets of solutions, one where the odd m terms are 

nonzero (odd mode), and a second where the even m terms are nonzero 

(even mode). Rewriting equation (15):

N N
x —  .y
l F » «  a + f}“ ' a . = 0

*3 x3' y3
,(12)

(19.A)

(i = l,...,Nx)

N N

I F<f> a . + I' F<“ > a . = 0(22)

3=1 13 xj
3=1 13 y3 (19.B)

The matrix elements are:

i) even mode

(i = 1,•..,Ny)

=  ( - l ) 1 + j  
13 4ij Ê (K y  W)2 ÌB°Plm(6o) + YmP2m(3o) 

m=l v nr m ' '•

J2i(̂ mW) V YmW) (20. A)

Ff12) = (-l)i+j 2i 
1 3

8 y 
o ' m

m=l K (y W) 
m m

P2m(So> - Plm(6o>

J2 i < V °  J2j-2^mW > (20.B)
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where

ü )

F <21) = f U2)
ij ij (20.C)

™  '  W ) 1 *3 J o  ^
m

• J2i-2(YmW) J2j-2(YmW) (20.D)

_ hitt 
Ym A

odd mode

= (-l)1+J(2i-l)(2j-l)

m m

• J2i-l(̂ W) J2j- l ^ m W) (20.E)

- ( 12)
Fij

= (-l)1+j (21-1)
B yo'm

m=l K y W m'm
P2m(Bo> - Pl»«>0>}

* J21-1<^W > ( 2 0 , F)

F (21) = (12) 
ij ij (20.G)

f 2 2) =  ( - i ) i + J  \+ 302p2m(6
m

o5}

h i - l W  J2 j - l V (2 0 .H)
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where y = — ~̂ ~1^7T m 2A

q
A computer program has been written that finds the allowed 

values 8q by finding the values of 8 where the determinant of the 

coefficient matrix is zero.

C. The Field Expressions

Substituting equation (14) into equation (11), equation (11) 

into equation (8), equation (8) into equation (7), equation (7) into 

equation (3) and equation (5), and performing the integration over 

8 and y', the six field components are:

E =

m=0

+  Y m

E = lz L

» n • om 1
■ 2A =0

CM

2 u 2
T., + 8 T m lm

^om 1
2A

CM*
a

$/tV -

lm 2i

riom 1

N

u \ y
2mi  n k

Y m 6

y -v,
a f yn yn

(4. - <} î;v J n=l

r i  3y

8= 8 .

m

N

f

L2„U , 2_u 1

n* Tlm + TmT2m)

N

U

a f yn yn

mi0 2A jioe 'm lm

-j 8y

N

8= 8 .

%
8 l  a f i,1 xn xn n=l

'V
a f xn xn

(21.A)

a f xn xn

(21.B)

N
y 'Xy

” Yrr, l  *m n=l yn yn - e-j ey

8= 8 .

(21.C)
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00
v ^  om 1

2 Sin-Vm 

f

L
m=0

NX

2A K ‘m

'v
l a f

n=l xn xn Tm l

N *

f a
<\>
f e-j6y

n=l yn yn

lm m 2 m1}

lm ' 2 m

8=8,

H = l
y Lm=0

N

om 1 ( A\
2A T i  C0S V X + A)K

m

V i 2 m

■ y a f + -• xn xn n=l m lm +  6 ‘ 2 m

lm

N

• y a f 
n-1 yn yn

-j8y

8= 8 ,

00 nH _ £ om 1 ___ , iN mu, OA . cosy (x + A) T 
2 m£o 2A J“t*o m 2 m

Nx
y \ a f 

n=l

% 
fxn xn

N
V y  *+ 8 I a f

n t i  y n yn
■ e-jBy

8= 8 .
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(1) Even Mode Solutions

From equation (18) the basis functions for the even modes can 

be written:

(22.A) 

(22.B)

Substituting equation (22) into equation (16):

xn ^ U2n

f  \
X

vW,

2n-2
x

IW.
'‘'yn  irW

L -
r ■> X 2

1 f1 w

fxn

fyn

 ̂ ^ m + n - 1  

^^m-fn-l

J 9 (y  W) Wy 2n m 
' m

J2n-2(̂ mW)

(23.A)

(23.B)

Substitution of equation (23) into equation (21) gives the 

expression used to calculate the field distribution for even mode 

solutions.

(2) Odd Mode Solutions

From equation (18) the basis functions for the odd modes can 

be written:

fxn
—  u
irW 2n-l

r  \  
X

(24. A)
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fyn

Substituting equation (24) into equation (16)

xn “  ( - 1 ) m + n _ 1  ^  J2n-l(V >

yn J2n-1

(24.B)

(25. A)

(25.B)

Substitution of equation (25) into equation (21) gives the expression 

used to calculate the field distribution for odd mode solutions.
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H I .  EXPERIMENTAL RESULTS AND NUMERICAL RESULTS

A. Experiment Procedure

An experiment was performed to measure the propagation constant 

for various fin—line configurations. The purpose of these measure

ments was to compare measured and calculated dispersion characteristics 

for both single-moded and multi-moded cases.

A block diagram of the experiment is shown in figure 2.

Details of the sliding short assembly are shown in figure 3. The

fin-line is made from 1 oz. copper clad RT/Duroid 5880 with an e of
r

2.22, and a loss tangent of less than 0.01. The copper is photo- 

chemically etched off the duroid; the gap width 2W is kept uniform 

by using precision width tape. Both ends of the fin-line section 

are tapered to attain a degree of matching to the metal waveguide.

The short consists of a copper block that fills the upper half 

of the metal shield; any power transmitted through the lower half of 

the metal shield is absorbed to prevent multiple reflections. The 

XY recorder plots the standing wave pattern produced along the fin- 

line and translated to the detector. The distances between successive 

minima are measured, and averaged, giving the propagation constant 

for that plot. A number of plots are made in order to reduce 

random errors. The result is a value of the propagation constant 

for a given configuration, at a given frequency. A typical standing 

wave pattern is illustrated in figure 4.
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Figure 2. Block Diagram of Experimental Apparatus
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Figure 3. Details of the Sliding-Short Assembly



Figure 4. Typical Standing Wave Pattern
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B. Experimental Data and Numerical Data Single-Mode Case

Before comparing numerical and experimental data, the accuracy 

of the computer program was checked by comparing the present theory 

with previously published results.7 In figure 5 the normalized 

propagation constant squared for a typical fin-line configuration is 

plotted over the single-mode frequency range. There is approximately 

a two percent discrepancy between the two theories, possibly caused 

by using different basis functions. Knorr and Shayda use constant 

amplitudes rather than the Chebyshev polynomials given in equation 

(22). It is believed the present theory is more accurate because 

the basis functions more closely resemble the actual gap fields.

Figure 5 also compares dispersion characteristics of a typical 

fin—line configuration with the equivalent metal waveguide character

istics. The addition of the fin-line increases the single-mode 

frequency range by approximately ten percent.

Propagation constants were measured over the frequency range 

76 to 82 GHz for fin—line shielded in WR12 waveguide. In figure 6 

the normalized propagation constant squared is plotted as a function 

of frequency for two configurations. In figure 7 measured values 

of the normalized propagation constant squared are shown along with 

the theoretical curves. For the case 2W = 0.020" the experimental 

values are on an average six percent lower than the calculated 

values. For the case 2W = 0.050" the experimental values are on 

an average three percent lower than the calculated values.



Figure 5. Comparison of Fin-line Dispersion Characteristics with Another Theory and 
Metal Waveguide.



Figure 6. Dispersion Characteristics for Fin-line Shielded in WR12 Waveguide.

N>
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Figure 7. Comparison of Experimental and Theoretical Dispersion Characteristics.
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A number of factors may have contributed to the discrepancy 

between measured and calculated values. Various experimental errors 

may have been present including the inability to machine the metal 

shield to exacting tolerances, and misalignment between the waveguide 

housing, the fin-line insert, and the sliding short. In addition, 

the theory assumes that the metal fins are infinitely thin and the 

metal fins and shield are perfect conductors.

Recently, Beyer and Wolff^ have shown that the propagation 

constant is reduced when finite metallization of the fins is con

sidered. Using a similar configuration, they show that the normalized 

propagation constant squared is reduced by approximately four percent 

for the case 2W = 0.020", but less than one percent for the case 

2W = 0.050". The results shown in figure 7 are consistent with 

Beyer's and Wolff's results; however, it is impossible to conclude 

that the discrepancies are due entirely to finite metallization of 

the fins.

Figure 8 shows dispersion characteristics for two configurations 

of fin-line shielded in WR28 waveguide. An attempt was made to 

experimentally verify the curves shown, however,usable standing 

wave patterns were not obtained.

C. Experimental Data and Numerical Data, Multi-Mode Case

Propagation constants were measured for a number of multi- 

moded configurations in an effort to characterize the effects of
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Figure 8. Dispersion Characteristics for Fin-line Shielded in WR28 Waveguide.
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the higher order modes. The dispersion characteristics of the dominant 

and higher order modes are illustrated in figure 9 for WR28 shield

and 2W = 0.020", in figure 11 for WR28 shield and 2W = 0.050", in

figure 13 for WR90 shield and 2W = 0.020", and in figure 15 for 

WR90 shield and 2W = 0.050". For each case above experimental 

values along with theoretical curves are given in figures 10, 12,

14, and 16, respectively. In each case only the first few higher

order modes are plotted; many other higher order modes occur below

the first few but are not shown.

A smooth transition between the WR12 feed waveguide and the 

fin-line section was only available for the WR90 shield. The fin- 

line section using a WR28 shield was illuminated by an open ended 

section of WR12 waveguide.

As illustrated in figures 10 and 12, for WR28 shield the 

measured values fall within a few percent of the dominant mode.

This is consistent with the standing wave patterns that showed no 

observable beat pattern that would occur if power were being coupled 

into the higher order modes. Whether or not higher order modes 

contribute to the standing wave pattern will depend on the way the 

fin-line is illuminated, the type of sliding short used, and any 

experimental errors that attenuate or amplify the higher order mode 

contributions. Assuming that the sliding short reflects any 

higher order modes, negligible power is coupled into the higher order 

modes for the two configurations shown in figures 9 through 12.



Figure 9. Dispersion Characteristics of Dominant and Higher Order Modes WR28 Shield 
2W = 0.020".

u>N>



Figure 10. Experimental Values and Theoretical Curves WR28 Shield 2W = 0.020".



Figure 11. Dispersion Characteristics of Dominant and Higher Order Modes WR28 Shield 
2W = 0.050".
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Figure 12. Experimental Values and Theoretical Curves WR28 Shield 2W = 0.050".



Figure 13. Dispersion Characteristics of Dominant and Higher Order Modes WR90 Shield 
2W = 0.020".
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Figure 15. Dispersion Characteristics of Dominant and Higher Order Modes WR90 Shield 
2W - 0.050".
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As illustrated in figures 14 and 16, for WR90 shield the 

measured values fall within a few percent of the first higher order 

mode. Because of random variations associated with the standing 

wave pattern, it was difficult to discern any beat pattern. The 

beat pattern is further complicated since a number of higher order 

modes are present. In most of the standing wave patterns for the 

WR90 shield configurations, a small amplitude beat pattern occurred.

The results suggest that single mode operation may be extended 

beyond the cutoff frequency of the first higher order mode. This 

behavior may depend on the method of excitation, and may not hold 

for fin-line excited by something other than the TEq ^ mode of metal 

waveguide.

D. Calculation of Field Distributions

A computer program was written that calculates the six field 

components in the x = 0 plane. As discussed in Chapter Two, the 

dispersion characteristics for a given fin-line configuration con

tain even and odd modes. For even modes, which include the dominant

mode, E , H and H are even functions of x, and H , E , and E are x y z x y z

odd functions of x. For odd modes H , E , and E are even functionsx* y z

of x, and Ex , and Hz are odd functions of x. The expressions for 

the fields, equation (21) of Chapter 2, converge rapidly for all 

values of z except around z = 0. In this region the calculated 

field strengths oscillate either side of the actual value as the
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number of terms is increased. The field strengths were estimated by 

extrapolating from the values outside this region; this is shown in 

the figures below by a dashed line. The field strength plots do not 

show absolute differences as a parameter is varied, rather they 

serve to illustrate the differences in the shape of the field 

profiles.

The effect of varying the dielectric constant of the substrate 

is illustrated in figure 17. As the dielectric constant increases 

the fields are concentrated more in the substrate. Since H and H
y z

are out of phase by one quarter of a cycle, a region of circular 

polarization exists where and Hz are approximately equal. As 

illustrated in figure 17, as the dielectric constant of the sub

strate increases, this region of circular polarization becomes 

broader. This information is useful in the design of ferrite devices 

since a broad or a sharp region of circular polarization may be 

required.

The effect of decreasing the gap width is shown in figure 18.

The fields are more concentrated in the substrate for smaller gap 

widths.

Figures 19 and 20 illustrate the effect of increasing frequency, 

and include the field distribution of the third higher order mode.

The third higher order mode is the first even higher order mode, 

and therefore the first higher order mode with nonzero E^, H^, and 

Hz in the x = 0 plane.
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Figure 17. Field Distributions for Three Values of the 
Substrate Dielectric Constant.
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. Field Distributions for Three Values of the 
Gap Width 2W.

Figure 18
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IV. CONCLUSIONS

The dispersion characteristics of a number of fin-line con

figurations have been given and an experiment was performed to 

experimentally verify the dispersion characteristics of these 

configurations. The results suggest that single-mode operation may 

extend beyond the cutoff frequency of the first higher order mode.

If this is true, single-mode devices such as filters and couplers 

would be less restricted by small shield sizes at higher frequencies. 

Further experiments need to be performed before conclusions can be 

drawn since the results may be a function of the experiment itself.

Field distributions have been given for a number of fin-line 

configurations. These results may be used in the design of fin-line 

components such as couplers and ferrite devices.
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