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ABSTRACT

This paper develops the segment method for the problem of control 

with uncertainty. It is shown that due to disturbances a segment of values 

of the performance functional is associated with each admissible control. It 

is proposed that the optimal control for the problem with uncertainty be 

defined on the basis of an ordering of associated segments. The ordering 

is achieved by introducing a segment index. Two particular segments, the 

pessimistic and the optimistic segment, are shown to be important in the 

analysis of the problem while minimization of the introduced segment index 

is the basic synthesis problem. The approach is applied to a linear control 

problem where uncertainty is caused by external disturbances and specific 

results are presented. They show the optimal control to retain the advantages 

of the usual, minimax type designs and ensure better system performance for 

disturbances other than the worst.

INTRODUCTION

The control problem with uncertainty is commonly treated by stochastic 

methods where a distribution function is associated to the set of possible 

variations of plant parameters or initial conditions and where the optimal,, 

control is that which minimizes the expected value of the selected perform- 

tThis work was supported in part by the Joint Services Electronics 
Program under Contract DAAB-07-67-C-O199, by the Air Force Office of Scientific 
Research under Grant AFOSR 931-67 and Grant AFOSR 68-1579 and by the National 
Science Foundation Grant NSF GK-3898. 

ttOn leave from Mihailo Pupin Institute, Belgrade, Yugoslavia.
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ance functional [l]. Unfortunately, it is difficult to find solutions in 

all but the simplest problems. Another commonly employed approach is based 

on the sensitivity of the system outputs and the performance functional to 

parameter variations where usually a correction 6u to the nominal optimal 

control u° is sought. For a discussion of such methods and some recent
i

results see Perkins et al [2] and Kokotivic et al [3]. In many problems 

with uncertianty neither of these two approaches can be fully justified.

It is possible that a distribution function does not even exist, but more 

commonly that it is unknown, while methods based on first order sensitivities 

are valid only for small parameter variation.

The problem with large parameter variations has not received as much 

attention. The only approach employed in practice in the minimax, or 

worst case design. Recently performance sensitivity-based approaches which 

consist in finding the minimax solution of a selected performance sensitivity 

index [4,5] have been proposed. In order to approach the problem where 

uncertainties due to large parameter variations or external disturbances 

are present, this paper introduces the notion of performance segments and 

develops the segment method for the design of controls for uncertain 

systems. It is shown that a segment of a real line (instead of a point as 

in the problem without uncertainty) is associated with each control. The 

optimal control for the problem with uncertainty is obtained by ordering 

the set of segments by employing a selected segment index.

In this paper the basic features of the segment approach are presented. 

Specifically, the set of segments is defined, the particular significance 

of the pessimistic and the optimistic segment in characterizing the nature
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of the problem with uncertainty is stressed and the segment index is intro­

duced« The approach is then applied to a linear control problem with ex­

ternal disturbance inputs and results are presented.

SEGMENTS AND THE SEGMENT INDEX

Consider the system

x = f(x,u,v), x(tQ) = x q ( v ) ,  u€U, v£V, (1)

and an associated functional
T

J(u,v) = $ L(x,u,v)dt + g[x(T)] (2)
to

where x = [x^(t),...,x (t)] is the state and u = [u^(t),...,um (t)] is the 

control. The perturbation vector v = [v^,...,vrJ may be a parameter varia­

tion, or a variation in the initial conditions; it may also be an external 

disturbance input v = [v^(t),...,v^(t)]. The only specification on the 

perturbation v is that it belongs to a given compact set V. It is assumed 

that f(x,u,v), L(x,u,v) and g(x) are sufficiently smooth in all variables 

and that J(u,v) is continuous on the compact sets U and V.

The problem of control under uncertainty is to design a system which 

will perform "satisfactorily" with respect to the functional (2) in the 

presence of any v€V. The more specific problem is to define the best, in 

this paper also called the optimal control. To achieve this aim some 

preliminary concepts concerning the structure of the set {J(u,v)|u€U,v€v} 

of all attainable values of the associated functional, are introduced.
/ v  _Notice that for each given control u and for all perturbations vcV
/Vequation (2) defines a set, denoted by E(u), of attainable values of the



performance functional:
4.

E(u) = [j(u,v)|v€v}. (3)
/•w

Because of continuity of J, the set E(u) is a segment determined by its 

upper and lower bounds:*

Jh (u) = max J(u,v) (4)
v€V

j .G) = min J(u,v). (5)
1 v€V

Hence, the set {j(u,v)|u€U,v€v] may be considered to be composed of segments 

E(u) corresponding to all controls u£U. In this way, the set of controls 

U is mapped into a set of segments I(U),

I(U) = {E(u)|u€U}. (6)

The ordering of segments leads to an optimal segment and it is proposed 

that as optimal be selected the control corresponding to the optimal seg­

ment .

The optimal segment is dependent on the appropriate meaning of optimality 

when considering the set of associated segments. The nature of the problem 

with uncertainty and the role of the associated functional, (2), suggests 

that a reasonable way to define optimality is by associating the index

S(u) = + J*(u) (7)

to the segment E(u); optimal is the segment minimizing this index. Intuition 

suggests that if an entire segment of values characterizes the performance 

of the system for a selected control u, the feature desired of the optimal

•k
Only bounds, inf and sup, in the general case exist, but here, it is assumed 
that all extremas are attained. Most important is that the assumption is 
satisfied in many problems of-interest. , ,, .. . -
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control is to displace and "squeeze" the associated segment of values down­

ward» This is also the motivation behind minimax type designs; in such 

designs, however, what is achieved by selecting the control associated 

with the minimal upper bound is to squeeze down only the upper bound of the 

segment» In the segment method, on the other hand, the intention is to 

displace the complete segment of values downward and this is accomplished 

by selecting the control which minimizes the sum of squares of both bounds 

of the associated segment. The values of the two bounds of a segment are 

mutually dependent and this minimization must be joint.

To justify the segment approach and the employment of the introduced 

segment index, two particularly important segments, the pessimistic and the 

optimistic segment, are introduced in the following section and their 

influence on the solution of the problem of control with uncertainty is 

examined» The approach is then illustrated on a specific linear control 

problem where uncertainty is due to the presence of external disturbances. 

Some computer results are presented and compared with those attainable by 

other methods. Computation of the control that minimizes S(u) is the basic 

synthesis problem in the segment approach. A gradient procedure is utilized 

in this paper to solve the linear control problem but it cannot be considered 

generalo

THE PESSIMISTIC AND THE OPTIMISTIC SEGMENT

Recall that a segment E(u) is associated with a specific control u, and 

is defined by its upper and lower bounds (4) and (5). To define the pessi-
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s smistic segment consider u and v satisfying

s sJ(u ,v ) = min max J(u,v). (8)
u€U v€V

S SThe segment associated with u is called the pessimistic segment, E(u )
/ v  g

By (4) and (5), with u = u , its upper and lower bounds are

s sP, = J, (u ) = max J(u ,v) = min max J(u,v),
v€v u€u v€v

s sP.. = J-(u ) = min J(u ,v). 
v€V

(9)

(10)

b bAnalogously, to define the optimistic segment consider u and v satisfying

J(u^,v^) = min min J(u,v) 
u€U v€V

( 11)

b bThe segment associated with u is called the optimistic segment, E(u ),

and from (4) and (5), with u = u , has bounds

b b0, = J, (u ) = max J(u ,v),
v€V

0 = J (u^) = min J(u^,v) = min min J(u,v)
1 v€V u€U v€V

( 12)

(13)

A relationship between the two segments is given by

Theorem 1: The pessimistic segment is contained in the optimistic

segment,

E(uS) C E ( u b). (147
1_

Proof: By definition J(u ,v ) = 0^ < P^s
s s bMoreover, P^ = J(u ,v ) < J^(u) for all u€U and therefore for u = u «h

Hence, P, < J (ub) = 0, h — h v
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The pessimistic segment and the optimistic segment are characteristics of

the system, independent of the particular segment index used and out of

influence of design. They characterize the nature of the problem of control

with uncertainty. To further reveal their role consider, in view of the

theorem, the three representative situations depicted in Fig. la, where:

(I) dl« d h , Oh-01» P h-Ph ; (II) dj»̂,0h-0l» P h-Pi; (III) d ^ . O n - O ^ - P j j ,

with d-=P -CL and d. =0. -P. .I l l  h h h



8.

s bIn (I) the position of E(u ) in E(u ) shows the pessimistic segment
g

to be satisfactory: u achieves the minimal value of the upper bound of

the associated segment while a comparatively low value of P^, as compared

to 0^, indicates satisfactory system performance for all v€V. In (II)
s bthe position of E(u ) in E(u ) shows the optimistic segment to be satis-

factory: u secures the minimal value of the lower bound of the associated

segment while a comparatively low value of 0^, as compared to P , indicates

satisfactory system performance even for worst perturbations in V. 
s bWhile E(u ) in (I) or E(u ) in (II) are not the segments that strictly 

minimize (7) in the given situations, there is negligible gain in system 

performance to be expected by further sophistication of design. Design 

can, therefore, be terminated by selecting the pessimistic design in (I) 

and the optimistic design in (II).

It is because of the general situation in (III) that there is need of

more sophisticated design. The pessimistic design displays a short-coiiiing

in the high value of P^ while the optimistic design displays a short-coming
s bin the high value of 0^. While now the position of E(u ) within E(u ) 

does not indicate the optimal mode of system control. It is stressed, 

however, that even in this general case the pessimistic and the optimistic 

segment retain their significance due to the following result stated as a 

corollary to the above theorem:

Corollary: The segment E(u*) associated to the optimal control u*

minimizing S(u) must satisfy the condition

E(uS) C  E (u*) C  E(ub). (15)
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Or, in expanded form,

0X < J^u*) < Px < Ph < J (u*) < 0h . (16)

Proof is trivial: Suppose a control u violates (16). This is possible in

one of the following ways: (i) let Jh (u) > 0^, j (u) < P ^  Necessarily

J^(u) > 0^ and therefore S(u)> S(u ) and u cannot be optimal; (ii)

Jh (u) < 0h , J^(u) > P^. Necessarily J^(u) ^  and therefore S(u) > S(uS) 

and again u cannot be optimal; (iii) the case J^(u) > 0^, J^(u) > P^ is 

evident from the first two.

Moreover, in view of theorem I, there are only four basically distinct

positions a segment E(u) corresponding to a utU can
s bhave with respect to the position of E(u ) and E(u ). The first is given

in the statement of the corollary, the other three in its proof. When

the four positions are displayed graphically, Fig. lb, intuitive feeling

agrees with the selection of a control satisfying (16).
s bIn conclusion, the segments E(u ) and E(u ) characterize the nature 

of the problem with uncertainty and moreover confine a range of possible 

improvements in system design by confining the range within which the

optimal segment must be located. In certain cases the pessimistic and 

optimistic segment directly furnish the solution making further design

unnecessary.
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APPLICATION TO THE DESIGN OF LINEAR CONTROL SYSTEMS

Consider now the application of the segment approach to the problem 

of designing controls for a linear control system in which uncertainty

exists and is caused by external disturbance inputs. The associated 

functional is assumed to be quadratic in the state and control variables.
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Hence, (1) and (2) take the form

x = AQ(t)x + B(t)u + v, x(tQ) = XG (17)
T

J(u,v) = (x*Qx + u*Ru)dt + %x(T)*Fx(T). (18)
o

The corresponding problem without uncertainty (v = 0) is the linear regu­

lator problem whose solution is well known and the details are therefore 

omitted [7,8], with the remark that the relevant conditions are imposed

on A (t), B(t), Q , R, and F. The optimal control is o
u° = -R"1B*K x (19)o

where the optimal gain matrix, KQ(t), is the solution of the Riccati 

equation

K + A*K + K A - K S K + Q = 0, K (T) = F, (20)o o o  o o  o o o  o

S = BR~1B*, (21)o
and the minimal value of the performance index is

J(u°) = %x*K (t )x . (22)o o o o
When disturbances from a specified set V act on the system it may be 

necessary to modify the optimal control. The first step is to analyze the 

problem by obtaining the pessimistic and the optimistic segment as well as 

to obtain the position of the segment E(u°) corresponding to the optimal 

control u°, (19). If necessary, the optimal control for the problem with 

uncertainty is then modified and obtained by minimizing (7).

The nature of the problem with uncertainty depends on the set of dis­

turbances considered as admissible. Here and in the following section
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admissible disturbances are implicitly defined as those satisfying

T T
J v*vdt < Y J x*xdt, (23)
t to o

where y is a specified constant. Such a characterization of the set V 

indicates a relative dependence of disturbances on the system trajectory.

Consider now the problem of finding the bounds of the pessimistic 

segment. the minimax of J(u,v) is simply found since it is at the same

time a saddle point [9,10]. In view of (23) the Hamiltonian for the 

saddle point problem becomes

H = %[x*(Q + ym^I)x + u*Ru - m^v^v] + p*(AQX + Bu + v). (24)

From the necessary conditions for a saddle point, the minimizing control 

and the maximizing disturbance may be written in the forrn̂

su -R_1B*K x, vS s

where K (t)s is the solution of the Riccati equation

K + A*K + K A s o s  s o - K S K  + Q + ym I = 0, K (T) = FS S S 1 s

with

Ss BR

(25)

(26)

(27)

J-
It is not implied by (25) that the disturbances appear in the system 

in some feedback realization but that the worst disturbance v(t), given us 
is expressible in this way.
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The multiplier > 0 is such that equality in (23) is satisfied. The

value of the upper bound of the pessimistic segment is

P, = %x*K (t )x . h o s' o o
The lower bound P^ is obtained by closing the loop with the feedback

g

control u and finding the most favorable disturbance in the resulting 

system. The system equation becomes

(28)

with

x = (A -S K )x + v, x(t ) = x .o o s o o

J(uS,v) = % Jt x*(Q + Kss0Ks)xdt + % x(T)*Fx(T).

The most favorable, minimizing, disturbance is

'rV 1 = - i -  NnK, 
m2

(29)

(30)

(31)

where N^(t) is the solution of the Riccati equation

N. + (A -S K )*N + N (A -S K ) - —  N . + Q  + K S K  - Ym0I = 0,N„ (T) = F,1 o o s' 1 1N o o s' n ^ l  s o s  2 * lv ' L >

(32)

where m^ is a positive multiplier such that equality in (23) is satisfied. 

The value of the lower bound of the pessimistic segment is

(33)

A similar set of equations can be shown to define the bounds of the 

optimistic segment:

(34)

(35)

pi = % »sw*»

u = -R B*K,X, b
vb = —  K,x,

m3 b
0 = % x*K (t )x1 o bv o (

h 1 vrV = - —  N x, m. n 4

(36)

(37)
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0 = % x*N. (t )x . (38)h o h v o o v /

K^(t) and N^(t) are solutions of (26) and (32) respectively, where ,

m^ are now, respectively, negative multipliers. The values of the milti-

pliers m^, m^, m^, and are initially unknown and are found by the

iterative solution of the corresponding Riccati equation together with the

system equation and the constraint condition (23) until equality in (23),

in each case, becomes satisfied.

Two examples are presented for a discussion of the results. Both 

examples are of second order with the same associated functional character­

ized by

with T = ». in the first example, denoted by S, the system is character­

ized by

In the second example, denoted by C, the system is characterized by

The results were obtained on a digital computer and have been plotted 

in function of the parameter y. Hence, they represent an analysis of 

a family of problems and show how the systems react under increasing level 

of external disturbances. As y 0, both the pessimistic and the optimistic

segment degenerate to the point J(u°) while the controls uS, u^ converge 

to the optimal control u°. Both examples, Fig. 2, show the typical position
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s bof E(u ) in E(u ) characteristic to this problem« The supremacy of the 

pessimistic over the optimistic segment, particularly for greater values 

of Y, is evident» As expected, 0^ decreases with the increase of y indi­

cating the presence of disturbances not adverse to system performance»

On the other side, 0, -> « as y -* Y . . where y ...is smaller for less ’ h c n t  'cnt
stable plants. Concerning the pessimistic segment, it is noted that

although the sufficiency condition for the existence of a saddle point

(positive semi-definiteness of Sg) is violated even for arbitrary small

m^, a saddle point with a finite value of P^ exists in some systems for

relatively large y. In other examples, particularly those where the

plant is less susceptible to control action, P^ tends to infinity as

y Ymax”̂ (e.g., in system C but with B = | | 0 11 | *, P^ -> 00 at about

y » 1). The dependence of P^ on y is also characteristic. As expected,

its value decreases as y increases but only until a minimal value of P^

is reached for some y . Increasing Y further causes an increase inmin
the value of P^. This manifests the necessity of employing a rigid control 

to give the system relatively good performance characteristics even for 

worst disturbances.

SYNTHESIS OF THE OPTIMAL CONTROL

The examples demonstrate that the pessimistic design might be a 

satisfactory choice in this problem, particularly for large y. For smaller 

y the supremacy of the pessimistic over the optimistic design is not as

iThe limiting values y . and y depend on the system, were obtained 
experimentally and have notCEeen investigated at the present time.



16

pronounced and it is meaningful to undertake further design.

Consider therefore the synthesis problem of finding the linear feed­

back control that minimizes S(u). The gradient technique developed below 

restricts further discussion to time-invariant linear systems and an in­

finite integration interval, as in the examples. The synthesis problem 

reduces to finding the optimal feedback control u* characterized by the 

optimal gain matrix K*. The procedure consisted in the following. Let 

the feedback control

u = -R"1B*Kx ' (39)

be implemented where K is an initial guess for K*. Elements of K are 

adjusted in accordance with the usual algorithm,

6k. . = - - (40)lj p dk.. v 'ij

where
1 dji= — [ j  ——  j  — L_

3k.. S L h 3k, . J1 dk, .
dS ]

ij ij

Implementation of the algorithm demands that for
dJh (u) dJ1(u)

each u, the values of J^(u), J^(u), S(u), ^ ---- - be computed.
ij ij

Bounds, J^(u), J (S), of the segment associated with u are found by solving 

the Riccati equation (32) (to find the steady state solution); the lower 

bounds with a negative multiplier m^, the upper bound with a positive 

multiplier m^. S(2r) is then found from (7). The gradients are found from

dJ. h
dk. . 

ij

dN
= %x* r-r—  x , o dk.. o 

ij
(42)
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ÔJ.
ôk. . 

ij
= %x*

aNje
ôk. . 

ij
x OO

ÔN ÔN
where the sensitivity coefficients — — , — —  are the (steady state)

ij ij
solutions of the sensitivity equation of the Ricatti equation (32)°

ÔN
r ~  + (A -S K-r- ok.. . o o mij £

* ÔN ÔN -
N )n (A -S K-- N )s ôk àk o o mg s'

ij

(43)

+ dK
cik. . ij

S (K-N )o s + (K - N )s TIT­S' oak. = 0,

ÔN
(T) = 0 , s =  l,h. (44)

ij

The pairs (N^,m^), (N^,m^) are known and have been obtained as solutions

of (32) in the course of determining J^(u), J^(u). The gradient procedure

is easily implemented on a digital computer and has been employed to

determine the optimal control gains for the examples considered earlier.

The results illustrate the type of results expected and obtained

from the segment approach. They have again been plotted for the whole

family of problems when y is allowed to lie in the range 0 < y < 1. For

example, in system C, for Y = .9 the optimal control gain matrix K ,o
for the problem without disturbances, and the pessimistic gain matrix K ,s

• *serving as the initial guess for K were found in the analysis to be

.813 .174
'1

.174 1Î157 K = Ks
1.109
.274

.274

.561
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After the iterative procedure was judged to have approached the minimum 

within prescribed bounds, the result was

K*
1.108 
.237

.237

.508

It is most appropriate to compare these results with corresponding 

results in minimax (wrost case) designs. Such designs minimize the upper 

bound of segments, correspond, therefore, to the pessimistic design and 

result in the selection of the pessimistic control. The optimal control 

from the segment approach as demonstrated, Fig. 3, 4, retains the advantages 

of the worst case designs while improving the system performance for 

perturbations other than the worst. With the optimal control from the 

segment approach the upper bound of the associated segment remains virtually 

unchanged (an increase of .8% from P ) while the lower found undergoes a 

substantial decrease (about 10% decrease from the value of P^ or about 

a 20% decrease of the range d^ = P^-O^). The implementation of the optimal 

control must be made at the risk of greater expenditure of control energy .

It should, however, be noted that with minimax type designs generally even 

more energy expenditure must be allowed.

The problem with uncertainty considered above is of course specific, 

its nature depending on the set V of admissible disturbances as defined by 

(23). It is, however, emphasized that this study does characterize the 

reaction of linear system to increasing level of external disturbances. 

Moreover, with simple modifications it is possible to consider the following
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frequently appearing problems with uncertainty: (i) a more general

statement of the above problem is obtained if in (17) the term Cv is put in 

place of v. Moreover, the approach is not restricted to problems with 

complete state feedback; (ii) energy constrained external disturbances 

may be considered by assuming V is given by

With slight modifications in the computational algorithm it is possible to 

apply the gradient procedure to obtain the optimal feedback control. The 

authors have considered such problems for time invariant systems and in­

finite integration interval and have obtained results corresponding to 

those presented here for the constraint set (23); (iii) a frequently 

discussed problem with uncertainty occurs when amplitude bounded external 

disturbances act on the system. The set V is then assumed to consist of 

piecewise continuous time functions such that for all t€[0,T] | | < 1,

i = l,o..,r and the computational requirements become more complex. The 

authors do not have sufficient experience with such problems at the present 

time; (iv) Another common problem with uncertainty occurs in linear 

systems when some plant parameters are known and the set V consists of a 

closed and bounded domain in the plant parameter space. For any v€V 

there exists an optimal linear feedback controller and it is again advan­

tageous to look for the optimal linear feedback control when applying the 

segment approach; (v) Finally, one of the most common problems, due to 

variations in the initial conditions is solved trivially since the optimal

T
(45)

o
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control (19) is independent of the initial conditions and modifications 

of the optimal control is unnecessary.

CONCLUSIONS

In conclusion, it is hoped that the results presented in this paper 

will contribute to better understanding of control problems in the presence 

of uncertainty. The intention of this paper was to introduce the basic 

notions and justify the approach by presenting specific results for a 

particular problem. Hence, a large portion of the paper was devoted to 

a specific linear control problem although the method can, with slight 

modifications, be used to solve other commonly discussed problems with 

uncertainty in linear control systems with a quadratic associated functional. 

If the obtained results are representative of the general situation and 

acceptable from the design point of view the basic problem is the synthesis 

problem consisting in the determination of the optimal control u* which 

minimizes S(u). Methods used to minimize S(u) depend on the problem, in 

particular on the nature of the sets U and V. Gradient and other local 

procedures may be used when the solution is local [5], It is however, 

possible that the solution is not local in which case global algorithms 

such as presently being developed for the minimax problem must be employed 

[5,13,14]. A complete discussion of all computational aspects even for 

this type of problems is out of the scope of this paper.
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Fig. 2. The dependence of bounds O p  P p  and 0h on the amount of external
disturbances, i.e. on the parameter y. Full lines belong to system 
C, dotted lines to system S.
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Fig. 3. Dotted lines indicate the location of the optimal segment, 
corresponding to the optimal control u*, for system C.
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Fig* 4. Dotted lines indicate the location of the optimal segment for 
system S. The upper bound virtually coincides with P, .
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