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A PROOF OF TUTTE'S REALIZABILITY CONDITION

Wataru Mayeda

Abstract

This paper gives a simple proof of the Tutte's realizability 

condition for a cut-set (circuit) matrix of a non-oriented graph [1,2], 

First, a minimum non-realizable matris is defined as a matrix Ln u ] which 

satisfies (1) Ln u] is not a cut-set (circuit) matrix, (2) [n u ] does not 

satisfy the conditions in the Tutte's theorem, and (3) deleting any column 

other than that belongs to a unit matrix or any row of any normal form of 

[n u], the resultant matrix is realizable as a cut-set (circuit) matrix.

A proof of the Tutte's theorem in this paper is accomplished by showing that

minimum non-realizable matrices do not exist.
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Introduction

The Tutte's realizability condition is stated as "a matrix F is 

a cut-set (circuit) matrix of a non-oriented graph if and only if it is 

regular and no normal form of F contains a circuit (cut-set) matrix of 

either of the two basic non-planar graphs of Kuratowski„" A theorem for a 

matrix to be regular is given as "a matrix F is regular if and only if no

normal form of F contains either No or N0
t.. where

1 1 1 0
N = 1 1 0 1 0o 1 0 1 1

The original proof for Tutte's condition is rather complicated. 

Here, we will use Whitney's geometric operations for 2-isomorphism and 

define a minimum non-realizable matrix to have a simple proof of the theorem.

Because Whitney's two geometric operations [.5,6] are essential 

tools for the proof in this paper, we will give names to distinguish these 

operations. A "2-isomorphic operation of Type 1" is an operation to split 

a cut-vertex into two so that the number of maximal connected subgraphs will 

be increased by one. The reverse of the above operation is also called a 

"2-isomorphic operation of Type 1" which is to connect two maximal connected 

subgraphs g and g by coinciding a vertex in g and a vertex in g . A 

"2-isomorphic operation of Type 2" is the other Whitney's geometric operation 

which is to turn around one of two subgraphs, which are connected by two 

vertices, at these vertices.
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Proof of Tutte's Theorem

It is obvious that a circuit (cut-set) matrix of either of basic 

non-planar graphs of Kuratowski cannot be a cut^-set (circuit) matrix. Also,

it is easily tested that neither matrix [n u ] nor matrix Ln fcu] can beo o ~
realized as a cut-set (circuit) matrix. Furthermore, if a matrix [N u ] 

contains a submatrix which is not a cut-set (circuit) matrix, matrix [n u] 

cannot be a cut-set (circuit) matrix [7]. Thus the necessity part of the 

Tutte's theorem is obvious.

We will prove the sufficient part by contradiction. Suppose there 

exists a matrix [n u ] which is not a cut-set (circuit) matrix and does not 

satisfy the conditions in the Tutte's theorem. If there exists a submatrix 

[N u ] which is not a cut-set (circuit) matrix, we can consider [n u ] as a 

given matrix for the proof. Hence, without the loss of generality, we can 

assume that matrix [n u], has the following four properties: :h

(1) No normal form of [n u ] and [Nt u] contains a circuit matrix 

of either of basic non-planar graphs of Kuratowski.

(2) No normal form of [n u] contains either [n u ] or [n tu] whereo o —

(3)

(4)

N =o
1 1 1 0  
1 1 0  1 
1 0  1 1

Neither Ln u ] nor Cn *" u ] is a cut-set matrix.

For any normal form [n û ] of [N.U],. if we delete a row p

from [N-U], the resultant matrix [N..U] is a cut-set matrix. 1 1 -P
Furtherform, if we delete a row q from [n ^ u ], the resultant 

matrix [N1tu] is a cut-set matrix, where U and U are unit
i  —  _ q  _

matrices.
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For convenience, a matrix satisfying the above properties is called 

a minimum non-realizable matrix. Notice that the matrix [n u] is a normal 

form' itself. However, there may be many other normal forms of the matrix.

First, we will investigate some properties of minimum non- 

realizable matrices under the assumption that such a matrix exists.

Theorem 1; Let [n u] be a matrix obtained from a minimum non--P
realizable matrix [n u ] by deleting a row p. Then [n u ] is a cut-set-P
matrix of a planar graph.

Proof: By Property (4) , [n u]_p is a cut-set matrix. Suppose

[N u]_p is a cut-set matrix of a non-planar graph, then a normal form of 

CNtu].p roust contain a circuit matrix of either of basic non-planar graphs 
of Kuratowski which violates Property (1).

Theorem 2: Let [n ^u] be a normal form of a minimum non-realizable

matrix. Also let N^(-q) be a matrix obtained from by deleting a column q. 

Then [N^(-q)u] is a cut-set matrix.

Proof: Consider [N fcu]. By Property (4) and Theorem 1, [n .tu]1 1 - -q
is a cut-set matrix of a planar graph. It is clear that if [f u] is a 

fundamental cut-set matrix of a planar graph, then [f ^ ]  is also a funda

mental cut-set matrix. Thus [N^(-q)u] is a fundamental cut-set matrix.

Theorem 3: Let [n u ] be a minimum non-realizable matrix. Then

any row and any column of N of any normal form Ln u] of [n u ] have either two 

non-zero entries or three non-zero entries.

A normal form of a matrix is of the form [r u] where U is a unit
matrix.
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Proof; Let N(-c) be a matrix obtained from N by deleting a column 

c and N(-r) be a matrix obtained from N by deleting a row r. By Theorem 2, 

[n (-c)u] is a cut-set matrix. Let G(-c) be a linear graph whose cut-set 

matrix is [n (-c)u ]. By Property (4), we can assume that G(-r) to be a linear 

graph whose cut-set matrix is [N(-r)u].

Consider a matrix [N(-c-r)u] which is obtained from [n u ] by 

deleting row r and column c. Let GQ(-c-r) be a linear graph whose cut-set 

matrix is [N(-c-r)u].

Let chord c be the edge corresponding to column c and branch r be 

the edge corresponding to the column in U which has 1 at row r. Then if we 

delete chord c in G(-r), we will have a linear graph G(-r-c) whose fundamental 

cut-set matrix is [N(-r-c)u]. Thus linear graphs G (-c-r) and G(-r-c) are 

2-isomorphic each other.

If we short branch r in G(-c) (i.e. coincide the endpoints of

branch r and delete branch r), we will have a linear graph G(-c-r) whose

fundamental cut-set matrix is again the same as that of G (-c-r). Thus 

G (-c-r) and G(-c-r) are 2-isomorphic. Hence G(-c-r) and G(-r-c) are 

2-isomorphic each other.

Let r^,r2,...,and r^ be the rows in [n u ] which have 1 at column c.

Also let branch r^ be the edge corresponding to column U which has 1 at row

r^ for p = l,2,...,k. In G(-r^) , branches r^r^,...,^ and chord c must 

form a circuit in order that [N(-r^)u] is a fundamental cut-set matrix of 

G(-r^) . Hence branches r^r^,..., and r^ form a path is G(-r^). On the 

other hand, branches r^,r2,r^,...,and r^ should not form a path, not only in 

G(-c) but also in all linear graphs obtained from G(-c) by 2-isomorphic
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operations. Because if these branches form a path in a linear graph G'(-c) 

which is obtained from G(-c) by 2-isomorphic operation, we can obtain a 

linear graph G* by inserting a chord c to G'(-c) so that chart c branches 

rl,r25 * * * Jan<̂  rk form a circuit in G* . Then a fundamental cut-set matrix of 

G! will be Cn u ] because a fundamental cut-set matrix of G'(-c) is [n (-c)u ] 

and chord c and branches r^,^,... ,and r^ in G' form a fundamental circuit. 

However [n u] is a minimum non-realizable matrix. Thus branches 

r 1 >r 2 s • ° »an<̂  do not form a path in any linear graph which is obtained from 

G(-c) by 2-isomorphic operations. However, branches r,,r_,...,and r in
1. ¿m K.

G(-c) must be located so that when we short branch r^ to obtain G(-c-r), 

the remaining branches r^jr^,...,and r^ will be a path in a linear graph 

obtained from G(-c-r) by 2-isomorphic operations. Instead of shorting r^, 

we can short r^ (l<p<k) to have the same result. Hence G(-c) must have 
the following properties:

(I) branches r^,!^,. .. ,r^ can neither be a path nor become a path 

by any 2-isomorphic operations, and

(II) when any one of r ^ , ^ , »••,and r^ is shorted, the remaining

branches will either be a path or become a path by 2-isomorphic 
operations.

Notice that branches r ^ , ^ , •.. ,and r^ are edges in a tree consisting of edges 

corresponding to columns of U of [n (-c)u ]. Also notice that for k < 2, any 

structure which satisfies Property I will satisfy Property II. Hence we will 

consider all possible structures of G(-c) with k > 3 which have the above 
properties.

There are five structures in which
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(I*) Branches r ^ , ^ ,... ,and r^ can neither be a path nor become 

a path by 2-isomorphic operations, and

(II1) By shorting branch r^, the remaining branches r ^ ,...,and r^ 

will either be a path or become a path by 2-isomorphic opera

tions. These are shown in Fig. 1. We will investigate 

these linear graphs one by one to see whether Properties I 

and II hold or not. . .

Consider linear graph G in Fig. 1(a). If p < 2, that is, all 

r2 sr 3 j • • • >an(i are in subgraph H^, Ga is the same structure as G^. So we 

assume that p > 2. Notice that when branch r^ is shorted, vertices v^ and v^ 

become one vertex. This new vertex and vertex v^ become a pair of vertices 

of a 2-isomorphic operation of Type 2 by which anc* rp anc* rp+l ’ * * * *an<̂  rk
become one path.

Instead of shorting r^, suppose we short r^. If a 2-isomorphic 

operation which becomes possible by shorting r^ is that of Type 1, the 

original graph G must be one shown in Fig. 2. Hence, it is clear that the
c l

remaining branches r^,r^s...,and r^ cannot be a path by 2-isomorphic operations,

If a 2-isomorphic operation which becomes possible by shorting r^ is

that of Type 2, then the use of this operation will not change the structure

of neither H0 nor the location of rn. Thus in order to make r.,r_,...,and r,2 1 1* 3 k
a path, some of branches r^,.o.,and r^ must be shifted to form a path between 

V£ and v^ which is impossible unless the path was there to begin with. Since 

the path cannot be there by Property I, we can conclude that G is not G(-c).cL
Consider G, inD Fig. 1(b). If p1 < 2, it became G so pn > 2. a 1 — If

P2 = Pi which means none of r^,r2,...,and r^ is in and r^,^, and r^ form
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a path, P2 must be larger than p^. Furthermore it is clear that k > p^ + l.

Suppose p^ > 2, then shorting r^, we have the resultant graph which is

identical to except that the number of series edges which form a path

between and v^ is reduced by 1. Thus r^,r^,...,and r^ cannot become a

path by 2-isomorphic operations. This means that p^ = 2.

With p^ = 2, suppose P2 > 3. Then, there exist at least two

branches r^ and r^ in for this case. Now shorting will give the same

results as for G so we can conclude that G, is not G(-c). This is also a b
true when k > P2 + 1. Thus only the case which is left to be considered is

when P2 = 3 and k = 4 which is given in Fig. 3. In order that this structure

is valid, there must be paths P^,P2 ,P2 j and P^ as shown in the figure. This

linear graph obviously has a subgraph which is homorphic to linear graph G^

in Fig. 4 [7,8]. Hence, there is a fundamental cut-set matrix Q. of G, whichf b
contains a fundamental cut-set matrix of G^ as its submatrix. Consider a 

fundamental cut-set matrix of G^ where

1 2 3 4 r ' r ' r' r,'1 2 3 k
1 1 1 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0

Sf = 1 1 0 0 1 0 0 1 0
0 0 1 1 1 0 0 0 1

If Gb is G(-c), then a normal form of [N u] must contain
following matrix Ln u];

c 1 2 3 4 ro r’ rî1 2 3 4
1 1 1 1 1 1 i 1 0 0 0

[n u] =
\

= 1
1

0
1

1
1

0
0

1
0 1 ° , 0

1
0

0
1

0
0 •

1 1 0 0 1 1 ! 0 0 0 1
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It is easily seen that [n u ] is not a cut-set matrix. Hence [n u] is not a 

minimum non-realizable matrix because of Property (4) unless [n u ] = [n u].

This means that G, must be G0.b 3
t„iConsider [n u'] where

[n V ]  =

1 1 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0
1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 0 0 0 1 0
1 1 0 1 1 0 0 0 1 1

It can easily show that this matrix is a cut-set matrix of one of two basic

non-planar graph of Kuratowski. Thus by Property 1, [n u] is not a minimum

non-realizable matrix. Hence G, is not G(-c).b
Consider G£ in Fig. 1(c). If p = 2 (i.e., no branches of ^»...»and

r^ are in H^) , Gc becomes G^. Hence we assume that p > 2. By shorting r^, we

can easily see that the remaining branches r^r^,...,^ cannot become a path

by 2-isomorphic operations. Hence Gc is not G(-c).

Consider G^ in Fig. 1(d). Instead of shorting r^, if we consider to

short rOJ the structure of G, will be either G or G . Thus G, is not G(-c).2 f d a c d
Consider Gg in Fig. 1(e). If by considering of shorting any

branches other than r,, the structure of G becomes one of the others, G will not1* e e
be G(-c). Thus in order that Gg is G(-c), k must be 3 and Gg must be one 

shown in Fig. 5. Thus we can conclude that k < 3. Notice that k is the number 

of non-zeros in column c of [n u]. Since this must be true for taking any 

column of any normal form of [n u], we can say that any column in N has either 

two, or three non-zeros where [_N u ] is any normal form of [n u]. Also by 

Property 4 of a minimum non-realizable matrix, any column in [^11*] has the
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same property. Thus Theorem 3 is true.

Theorem 4: There are no minimum non-realizable matrices.

Proof; In order that a matrix is not a cut-set matrix, there must 

be at least one column having at least three l's. Since by Theorem 3, any 

column has either two or three l's, we can assume that there is at least one 

column which has exactly three l's. Thus N of a minimum non-realizable 

matrix [N u] must have the following configuration,

1 a12 a13 a14
1 a22 a23 a24
1 a32 a33 a34o 

• a42 a43 a44
,

•
•

•

This is also true for Nfc 

becomes

Suppose we assume that a ^  = a^g = 1* Then [n u ]

[n u]

1 1 1 0 ... 0 1 1 0 0
1 a22 a23 a24 **•

1
1 0 1 0

1 a32 a33 a34 1
1 0 0 1

. . 
o a42 a43 a44

1
1
1

0 0 0

- • o 1i 0 0 0

(1)

If a^2 = a3 2 » th611 a22 = a32 =  ̂ma^es 1st column and the 2nd 
column of N identical because of at most three l's in every row of N. Thus 

[n u] is not a minimum non-realizable matrix. When = 0 > we have
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[n u ] =

1 1 t-H 0 ... 1' 2' 3

t—H 0 a23 a24 * * * 0 0 1 0

i—* 0 a33 a34 *•* 0 0 1

0 a42 a43 a44 0 0 0

0 0 0

By interchanging columns 1 and 1 , we have

1 1 1 0 ......... 0 J. 1 0 0

0 0 a23 a2 4 -----
1

1 1 0

0 0 a_ _ a . . . . . . 1 1 0 1 u
33 34 1 1

a42 a43 a4 4 '* * * 1 0 0 0 • #
•• •• • 1

l
•• •• '• 0 11

1 0 0 0

In order to make this a normal form, we must add (modular 2) the 1st row to 

the 2nd and to the 3rd row which gives

1* 2 3 4 1 2' 3
1 1 1 1 0 ... 0 I 1 0 0
2 1 1 1+a23

1
a24 * * * 1 0 1 0

3 1 1 1+a33 a34 * * * \ 0 0 1
0 a42 a43 a44 1 0 0 0 1

: : : o 
o o o

o .

i

By Theorem 3, column 2 must be identical to column l', thus [n u ] is not a 

minimum non-realizable matrix. Thus a^  Without the loss of

generality, let a^  = 1 an<̂  a^2 = 0 as
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[n u ] =

1 K-* 1 0 . . .  0 1 1 0 0
1 1 a23 a24 •** 0 1 0
1 0 a33 a34 1 0 0 1

o
 

• •

a42••
a43• a44

•
! °
1 •1 •

0
•

0

•• 
o

•

0

•

0

•

1 0
•
0

•

0

Similarly, a ^  4 a^. It is also true for [NtU*]• Hence a22 4 a ^  and

a32 ^ a33* Thus

1 2 3 4 1' CM 3
1 1 1 1 0 . . .  0 1 1 0 0
2 1 1 0 a24 0 1 0
3 1 0 1 a34 1 0 0 1
4 0 a42 a43 a44 0 0 0
f •

• ! • •
• i : • •

0 0 0

Suppose a^2 4 a W i t h o u t  the loss of generality, let a^2 = 1 and a^ = 0.

Then by interchanging columns 2 and 1* and make the resultant matrix a

normal form by adding row 1 to rows 2, 4, etc. we will produce at least four

l's in column 3. Thus by Theorem 3, [n u ] is not a minimum non-realizable

matrix. Thus a._ = a,_.42 43

If a42 a43 L, we have

1 1 1 0
1 1 0 a24

[n u] = 1 0 1 a14
0 1 1 a44
•
•

•
•

•
• .

0 0 0
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in which [No tu] is a submatrix. Thus [n u ] is not a minimum non-realizable
2matrix. Thus a ^  = a¿^ - 0, if any (r ) entry for r > 4 is 1, we can inter

change row r and row 4 then interchange columns belonging to U to make the

resultant matrix a normal form. Thus a,0 = a,0 = 0 means a n = a „ = 0 for42 43 r2 r3
r = 4,5,... . This is also true for a^  and a ^  by considering [NtU'].

Thus we have

1 1 1 0 . . . 0 I 1 0 0
1 1 0  0 . . . 0 | 0 1 0

[n u ] = 1 0 1 (
0 0 0
• • •• • •• • •
0 0 0

) ... 

tN

0 10 0 1 0
! o o o  1.* •
1 • • • • 
i : : : o 1 
, 0 0 0

In order that Ln u] is not a cut-set matrix, we can see that [n 'u ] cannot be 

a cut-set matrix. Thus Ln u ] is not a minimum non-realizable matrix.

We have assumed that a ^  = a-̂g = 1 for the above discussion. 

Suppose this is not the case. Without the loss of generality, let a ^  = 1 

and a ^  = 0. Then ÜN u ] becomes

1 1 0 0 ... 0 1

1 a22 a23 a24
1
1

[n u ] = 1 a32 a33 a34 1 U
I0

0

a22 = a32 cannot ma^e t-N u] a minimum non-realizable matrix. Thus we take

a22 1 and a^2 = 0, or
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[n u]

1
2

3
4

1 1 0  0 ... 0 1
1 1 a23

1
1

1 0 u
0
•

••••
1
11•

0
•• 1

1

If = 1, we have [n  u ] which is the same form as in Eq. (1) . If any entry

(2p) for p > 3 in N is 1, we can shift it to the (2,3) position. Thus

a23 = a24 = *** = ® in N. But this situation makes row 1 and row 2 identical. 
Thus [N u ] is not a minimum non-realizable matrix. Hence as long as a ^  = 1, 

we can change [n u ] to the form in Eq. (1) .

If there is an entry (lp) in N for p >2 which has 1, we can inter

change columns to make a ^  = 1. Thus in order that a ^  = 0, the 1st row of N 

must be [10 ... O]. This means that in [NtUl], there are two columns which

are [ 10 ... O]*". Thus Ln u ] is not a minimum non-realizable matrix. This

covers all possible cases of [n u]. Thus we can conclude that there are no 

minimum non-realizable matrix which proves Theorem 4.

By Theorem 4, any matrix which is regular and satisfies that no 

normal form contains a circuit(cut-set) matrix of either of basic non-planar 

graphs of Kuratowski is a cut-set (circuit) matrix. This proves the sufficient 

part of the Tutte’s theorem.
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