
May 1987 UILU-ENG-8 7-2232 ACT-77

COORDINATED SCIENCE LABORATORY
College of Engineering

ON FINDING THE VERTEX CONNECTIVITY OF GRAPHS
Milind Girkar
Milind Sohoni

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
Security clasSifiCatiôn óf thiS page

REPORT DOCUMENTATION PAGE
ta. REPORT SECURITY CLASSIFICATION

Unclassified
1b. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

N/A________________________

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-87-2232 (ACT-77)
5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A_____________________________
6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If ipplicsble)

N/A

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research
6c ADDRESS (Gty, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING
o r g a n iz a t io n Joint Services

Electronics Program
8b. OFFICE SYMBOL

(If applicable)

N/A

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-84-C-0149
8c ADDRESS (City, State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

N/A N/A N/A N/A
11. TITLE (Include Security Classification)

On Finding the Vertex Connectivity of Graphs
12. PE^ONAL AUJHOWSJ Girkar, Milind and Sohoni, Milind
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Technical FROM TO May 1987 5
16. SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Vertex connectivity,'Graph algorithm, Network flows

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

An implementation of the fastest known algorithm to find the vertex connectivity of
graphs with reduced space requirement is presented.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
OUNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DT1C USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified ______
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

On finding the vertex connectivity of graphs1
Milind Girkar2
Milind Sohoni3

Abstract

An implementation of the fastest known algorithm to find the vertex connectivity of graphs

with reduced space requirement is presented.

1. Introduction

Let G{V,E) be a finite undirected graph with no self-loops and no parallel edges. A set of

vertices, S, is called an (a,6) vertex separator if {a ,6 }C V— S and every path connecting a and b

passes through at least one vertex of S. Clearly if a and b are connected by an edge, no (a,b)

vertex separator exists. We define N °{a,b) to be \V\-1 if (a,b)cE, else it is the least cardinality of

an (a,6) vertex separator. The vertex connectivity of G, kG is defined to be mina ieVNG(a,b).

When kg is small, there are well-known linear time algorithms to determine connectivity

(*<7>°)> biconnectivity (kG> l) (see e.g., [4]) and triconnectivity (jfec >2) [8,11]. There is an 0{\vf)

algorithm [9] to check four-connectivity (fcG>3); others [3,5,7] are of 0(\V\\E\j. For a fixed

there are some randomized algorithms [1,10] for testing k-connectivity.

In this paper we consider the question of determining kG, when kG is large. For this prob

lem, the only known deterministic methods to find it depend on solving maximum flow problems

in unit networks [5,7]. (A unit network has the property that the capacity of each edge is one

1 This work was supported in part by the Joint Services Electronics Program under Grant No. N00014-84-C-0149.

* Center for Supercomputing Research and Development, University o f Illinois at Urbana-Champaign, Urbana, H. 61801. The
work of this author was supported in part by the National Science Foundation under Grants No. NSF DCR84-10110 and NSF
DCR84-06918, the U.S. Department of Energy under Grant No. DOE DE-FG02-85ER25001 and the IBM Donation.

1 Department of Computer Science, University o f Illinois at Urbana-Champaign, Urbana, IL 61801.

- 1 -

and every vertex other than the source or sink has either only one edge emanating from it or one

edge entering it.) Of these, the most efficient one is Galil’s [7] with a running time of

with a space requirement of 0{{k2G+\V\)\E\). We improve upon this

result by presenting an algorithm that has the same running time as GaliPs but with a space

requirement of only 0(\V\\E\j.

2. Even’s Algorithm

In [3] Even solves the simpler problem (denoted by Pe k) o f finding whether for a

given G and k. Even’s algorithm is as follows:

Let V -{v v vv * ,vw} and let Lj—{vv v2J * • • Define G. to be the graph constructed in the

following way. Gi contains all the vertices and edges of (7; in addition it includes a new vertex *

connected by an edge to each vertex in L-.

(1) For every i and j such that 1 < »< /< * , check whether JV0(» , I f for some i and j this

test fails then halt; kG<k.

(2) For every j such that *+l</<|7|, form Gj and check whether NG\ t,Vj)>k. If for some j

this test fails then halt; ka<k.

(3) Halt; ka>k.

Whether N(a,b)>k can be found out by checking that the value of the maximum flow in the

corresponding network is at least k. This involves finding k flow augmenting paths (f.a.p.’s) in

the network using the Ford and Fulkerson [6] algorithm. A f.a.p. can be found in 0([E|) time

and since k f.a.p.’s need to be found in at most k2+\V\ flow problems, the complexity of Even’s

algorithm is 0{k3\El±k\V\\E\).

- 2 -

In [7] Galil observes that Even’s algorithm can be used to find kG by progressively solving

^ g,v ^ g,2> ’ * ' until PG k+l yields a negative answer; then kG=k. By using Dime’s algorithm [2] to

find augmenting paths and modifying Even’s algorithm, Galil shows that this can be done in

0(max(fcGr,|V’f)kG\V\ |E|) using D((^+|VD[E|) memory. Using an approach similar to Galil’s we

get a reduced space bound.

3. The Algorithm

First we simplify Even’s algorithm as follows:

In the first step instead of checking whether ^ (v ^ v ^ k , we do some additional work and

find N (v,,«ry) and then trivially check whether this is greater than or equal to k. It will turn out

that the extra work will not change the time complexity of the algorithm.

The outline of the algorithm is as follows.

(1) Initialize k to 1, MIN to |7|-l.

(2) For every » such that l<*<jfe-l, find NG(vnvk).

(3) Use the results of step 2 to update MIN to l<{^ ^ N 0(v{,vk),MIN)

(4) If MIN<k then halt; kG=MIN.

G .

(5) For every ; such that *+l<;<|V|, check whether N '(« ,»,)>*. If this test fails for any ; ,

then halt; kG=k—l.

(6) Increment k by one, go to step 2.

The correctness of the above algorithm follows from the results in Even [3]. We now

analyze the time and space requirement of the algorithm. We store the graphs Gj (2<;<|V|)

along with the current flow values in the corresponding networks. In each iteration the computa

tionally intensive steps are clearly 2 and 5. In the kih iteration, we solve k - 1 maximum flow

problems in step 2 and using the flow values computed in the k—lth iteration for the networks

corresponding to we check whether N *{s,v.)>k in step 5 by finding at most one f.a.p. in each

of the corresponding networks. Using Dime’s algorithm [2] step 2 can be done in 0{k\E\\v[/t) time

and step 5 in 0(|V||£̂ |) time since an f.a.p. can be found in linear time. Thus the running time of

the algorithm is 0(*J|E||vf+*<,|7|l£|) = 0((*G+|vf)*0 |E||vf) = 0(max(*<7JV'f‘)Jfe0 |E||vf) which

is the same as Galil’s algorithm. However, the space requirement is only 0(|V|j2?|) because the

flow values for at most |U| maximum flow problems have to be stored and each requires 0(|2?|)

space.

A cknow ledgm ent. The authors wish to thank V. Ramachandran for introducing us to the

problem in a course on graph algorithms and for her many helpful suggestions during the

preparation of this report.

REFERENCES

1. Becker, M. et. al. A probabilistic algorithm for vertex connnectivity of graphs.

In form . P roc. Lett. (1982) vol. 15, pp. 135-136.

2* Dinic, E. A. Algorithm for solution of a problem of maximum flow in a network with

power estimation. Soviet M ath. Dokl. (1970) vol. 11, pp. 1277-1280.

3. Even, S. An algorithm for determining whether the connectivity of a graph is at least k.

SIAM Journal o f C om puting (1975) vol. 4, pp. 393-396.

4* ------ • G raph Algorithm s. Computer Science Press, Rockville, MD, 1979.

5. Even, S. and R. E. Tarjan. Network flow and testing graph connectivity. SIAM Jour

nal o f C om puting (1975) vol. 4, pp. 507-518.

- 4 -

Ford, L. R. and D. R. Fulkerson. Flows in N etworks. Princeton Press, Princeton,

NJ, 1962.

Galil, Z. Finding the vertex connectivity of graphs. SIAM Journal o f C om puting

(February 1980) vol. 9, pp. 197-199.

Hopcroft, J. E. and R. E. Tarjan. Dividing a graph into triconnected components.

SIAM Journal o f C om puting (1973) pp. 135-158.

Kanevsky, A. and V. Ramachandran. "Improved algorithms for graph four-

connectivity , Working Paper 87—14, Coordinated Science Labaratory, University

of Illinois at Urbana-Champaign, Urbana, EL, 1987.

Linial, N., L. Lovasz and A. Wigderson. A physical interpretation of graph connec-

tivity, and its algorithmic applications. P roc. 26th I K E F A n n . Syrop. on

Foundations o f C om p. Sci. (1985) pp. 464-467.

Miller, G. L. and V. Ramachandran. A new graph triconnectivity algorithm and its

parallelization. P roc . o f the 19th A nnual A C M Sym posium on T heory o f

C om puting (May 1987).

- 5 -

