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On finding the vertex connectivity of graphs1
Milind Girkar2 
Milind Sohoni3

Abstract

An implementation of the fastest known algorithm to find the vertex connectivity of graphs 

with reduced space requirement is presented.

1. Introduction

Let G{V,E) be a finite undirected graph with no self-loops and no parallel edges. A set of 

vertices, S, is called an (a,6) vertex separator if {a ,6 }C V— S and every path connecting a and b 

passes through at least one vertex of S. Clearly if a and b are connected by an edge, no (a,b) 

vertex separator exists. We define N °{a,b) to be \V\-1 if (a,b)cE, else it is the least cardinality of 

an (a,6) vertex separator. The vertex connectivity of G, kG is defined to be mina ieVNG(a,b).

When kg is small, there are well-known linear time algorithms to determine connectivity 

(*<7>°)> biconnectivity (kG> l)  (see e.g., [4]) and triconnectivity (jfec >2) [8,11]. There is an 0{\vf) 

algorithm [9] to check four-connectivity (fcG>3); others [3,5,7] are of 0(\V\\E\j. For a fixed 

there are some randomized algorithms [1,10] for testing k-connectivity.

In this paper we consider the question of determining kG, when kG is large. For this prob

lem, the only known deterministic methods to find it depend on solving maximum flow problems 

in unit networks [5,7]. (A unit network has the property that the capacity of each edge is one
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and every vertex other than the source or sink has either only one edge emanating from it or one 

edge entering it.) Of these, the most efficient one is Galil’s [7] with a running time of

with a space requirement of 0{{k2G+\V\)\E\). We improve upon this 

result by presenting an algorithm that has the same running time as GaliPs but with a space 

requirement of only 0(\V\\E\j.

2. Even’s Algorithm

In [3] Even solves the simpler problem (denoted by Pe k) o f finding whether for a

given G and k. Even’s algorithm is as follows:

Let V -{v v vv  * ,vw} and let Lj—{vv v2J * • • Define G. to be the graph constructed in the

following way. Gi contains all the vertices and edges of (7; in addition it includes a new vertex * 

connected by an edge to each vertex in L-.

(1) For every i and j such that 1 < »< /< * , check whether JV0( » , I f  for some i and j  this 

test fails then halt; kG<k.

(2) For every j  such that *+l</<|7|, form Gj and check whether NG\ t,Vj)>k. If for some j  

this test fails then halt; ka<k.

(3) Halt; ka>k.

Whether N(a,b)>k can be found out by checking that the value of the maximum flow in the 

corresponding network is at least k. This involves finding k flow augmenting paths (f.a.p.’s) in 

the network using the Ford and Fulkerson [6] algorithm. A f.a.p. can be found in 0([E|) time 

and since k f.a.p.’s need to be found in at most k2+\V\ flow problems, the complexity of Even’s 

algorithm is 0{k3\El±k\V\\E\).
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In [7] Galil observes that Even’s algorithm can be used to find kG by progressively solving 

^ g,v ^ g,2> ’ * ' until PG k+l yields a negative answer; then kG=k. By using Dime’s algorithm [2] to 

find augmenting paths and modifying Even’s algorithm, Galil shows that this can be done in 

0(max(fcGr,|V’f )kG\V\ |E|) using D((^+|VD[E|) memory. Using an approach similar to Galil’s we 

get a reduced space bound.

3. The Algorithm

First we simplify Even’s algorithm as follows:

In the first step instead of checking whether ^ ( v ^ v ^ k ,  we do some additional work and 

find N (v,,«ry) and then trivially check whether this is greater than or equal to k. It will turn out 

that the extra work will not change the time complexity of the algorithm.

The outline of the algorithm is as follows.

(1) Initialize k to 1, MIN to |7|-l.

(2) For every » such that l<*<jfe-l, find NG(vnvk).

(3) Use the results of step 2 to update MIN to l<{^ ^ N 0(v{,vk),MIN)

(4) If MIN<k then halt; kG=MIN.

G .

(5) For every ;  such that *+l<;<|V|, check whether N  '(« ,»,)>*. If this test fails for any ; ,  

then halt; kG=k—l.

(6) Increment k by one, go to step 2.

The correctness of the above algorithm follows from the results in Even [3]. We now 

analyze the time and space requirement of the algorithm. We store the graphs Gj (2<;<|V|) 

along with the current flow values in the corresponding networks. In each iteration the computa

tionally intensive steps are clearly 2 and 5. In the kih iteration, we solve k - 1 maximum flow



problems in step 2 and using the flow values computed in the k—lth iteration for the networks

corresponding to we check whether N *{s,v.)>k in step 5 by finding at most one f.a.p. in each 

of the corresponding networks. Using Dime’s algorithm [2] step 2 can be done in 0{k\E\\v[/t) time 

and step 5 in 0(|V||£̂ |) time since an f.a.p. can be found in linear time. Thus the running time of 

the algorithm is 0(*J|E||vf+*<,|7|l£|) = 0((*G+|vf)*0 |E||vf) =  0(max(*<7JV'f‘ )Jfe0 |E||vf) which 

is the same as Galil’s algorithm. However, the space requirement is only 0(|V|j2?|) because the 

flow values for at most |U| maximum flow problems have to be stored and each requires 0(|2?|) 

space.

A cknow ledgm ent. The authors wish to thank V. Ramachandran for introducing us to the 

problem in a course on graph algorithms and for her many helpful suggestions during the 

preparation of this report.
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