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CHAPTER 1

INTRODUCTION

1.1 A Brief History of the Finite Difference Method

Finite difference techniques have been of interest to mathematicians and 
physicists as far back as 1910 [1]. Two of the more essential aspects of finite 
differencing schemes, namely convergence and stability, were considered as far back as 
1928 in the landmark paper by Courant, Friedrichs and Lewy [2]. Despite the 
tremendous generality and simplicity of the finite difference approach in solving general 
ordinary and partial differential equations, the approach was rarely used since the 
computer did not exist at that time. Consequently, much of the work on the finite 
difference technique prior to the 1960s tended to be analytical rather than application 
oriented in nature. Examples of the mathematical nature of the research are given in the 
innumerable references contained in [3] and [4].

In the early 1960s with the gradual proliferation of automatic computing came a 
revitalized interest in the finite difference technique. No longer the exclusive property of 
mathematicians, the physicists and engineers of the 1960s began to concentrate more and 
more on the application of the finite difference method in hopes of numerically solving 
problems previously too intractable. Perhaps no group began investigating the finite 
difference method more than those researchers with an urgent need to solve physical 
problems involving shock and turbulence: phenomena which had always traditionally 
been too complicated to solve using standard analytical techniques. Consequently, the 
researchers in fluid dynamics, geoscience, acoustics and atmospheric science had little 
choice but to consider numerical techniques such as the finite difference method even 
before the existence of the computer.

The growing popularity of the finite difference technique within the engineering 
and physics community in the 1960s rekindled interest within the mathematics 
community. With the utility of the approach being vindicated by the invention of the 
computer, more and more funding became available for its study allowing 
mathematicians to analyze the method in greater detail than before. This culminated in a 
number of publications on various aspects of the finite difference technique in the late 
1960s through the mid-1970s such as absorbing boundary conditions [5], grid anisotropy



[6], errors introduced by inhomogeneities [7], the application of higher-order schemes [8] 
and subgridding [9]. The interest in finite difference techniques by the mathematics 
community only lasted until the mid-1980s when attention was gradually shifted to the 
finite element method.

1.2 The Finite Difference Method and the Electromagnetics Community

During its years of popularity in the mathematics community, the finite difference 
method also became of some interest to the electrical engineering electromagnetics 
community. However, prior to the 1980’s, interest in the finite difference method was 
restricted almost exclusively to the frequency domain rather than time domain. Examples 
of this interest are given in a number of papers published in the IEEE Transactions on 
Microwave Theory and Technique special issue on computer-oriented microwave 
practices published in August 1969. Though a great deal of mathematical theory had 
been developed for the finite difference approach in the time domain, the computer 
resources were so limited that only the frequency domain problem using the scalar-wave 
equation could be solved. According to [10], for example, it was predicted that a finite- 
difference time-domain solution of a two-dimensional 100x100 uniform mesh could 
require anywhere from 3-4 days of computer time just to obtain modest accuracy. 
Moreover, there was a belief, perhaps somewhat exaggerated, that the time domain 
solution of three-dimensional problems could take hundreds to thousands of years! 
Regardless of whether these estimates are indeed correct, it can be stated that the 
limitations on the computer technology prevented the finite difference method in the time 
domain from being a practical tool in electromagnetics prior to the mid-1980s There 
were, however, two papers published in 1966 which went against the conventional 
wisdom and investigated in some detail the use of the finite difference in the time domain 
in solving Maxwell's equations in the time domain.

The first paper was published by Roberts and Weiss in 1966 [11]. In particular, 
they discussed how explicit finite difference schemes could be used to solve Maxwell’s 
equations in the time domain for magnetohydrodynamic problems. What distinguishes 
this paper from other works is the number of topics presented that were later to be the 
subject of study in both the mathematics and the engineering communities many years 
later. Some of these topics include 1) the implementation of 2-2 and 2-4 differencing 
schemes of Maxwell’s equations (using leap-frog and angled differencing), 2) the 
mathematical equivalence between contour integrations and finite differencing, 3) the



topology of the finite difference mesh, i.e., the Yee lattice, 4) analysis of higher-order 
differencing schemes.

Later that same year, a paper by Yee introduced an explicit form of the finite 
difference method in the time domain to the electrical engineering electromagnetics 
community [12]. Unlike the paper by Roberts and Weiss, Yee’s paper considered the 
finite-difference solution of Maxwell’s equations without the convective derivative of the 
magnetic field. This resulted in a simplification of the partial differential equation and a 
more compact finite difference scheme than that proposed by Roberts and Weiss. The 
sole focus of the Yee paper was on the practical application of an explicit 2-2 (second- 
order accurate differencing of the space and time derivatives) leap-frogging scheme in 
determining the scattered fields from a perfect electrically conducting cylinder. Though 
there was very little in the way of mathematical analysis, Yee's paper was the first to 
introduce the pertinent difference equations as well as the self-consistent topology for the 
discretization of the electromagnetic fields commonly referred to within the electrical 
engineering electromagnetics community as the Yee lattice. Yee’s work was 
reintroduced into the community in 1972 by Taflove [13] where it was named the "finite 
difference time domain' or "FDTD" method: the name most commonly associated with it 
in the electrical engineering electromagnetics community today.

It was not, however, until the proliferation of the supercomputer in the 1980s with 
its tremendous memory capacity of several million words and computation speed of 
several million floating-point operations per second that researchers in the electrical 
engineering electromagnetics community at large began to take notice of the FDTD 
method. With the increase in memory and speed, more and more practical 
electromagnetics problems ranging from radar cross-section problems to microwave 
circuits could be routinely solved with enough efficiency to rival and even surpass 
existing numerical methods of the day, i.e., method of moments (MoM). Moreover, the 
vector nature of the FDTD method allowed one to model nonseparable geometries and 
boundaries giving it a distinct advantage over the frequency-domain finite-difference 
approach using the scalar Helmholtz equation. (We note, parenthetically, that the finite- 
difference frequency-domain solution of the scalar Helmholtz equation was obsolete 
within the electromagnetics community shortly after its introduction in 1967) It was at 
this time that researchers also began to recognize the advantages that partial differential 
equation solvers, such as the FDTD and the finite element method, had over many of the 
integral equation techniques.



Eventually, with the ever-increasing improvements in the performance of the 
supercomputer as well as the advent of the work station and parallel computing, the 
FDTD method has grown to rival and in some cases surpass many of the integral equation 
techniques as well as analytical techniques in the solution of many electromagnetics 
problems. With the focus of the community turning towards the characterization of 
increasingly more complicated geometries in a radar cross section and, particularly, in 
high speed digital circuits, integral equation techniques have become more cumbersome 
if not impossible to use. In contrast, the simplicity and generality of the FDTD method 
have made the solution of even the most complicated electromagnetics problems fairly 
routine. A single computer program, for example, can handle virtually every conceivable 
isotropic geometry, whereas many MoM codes must be customized into solving a 
specific class of problems. The time-domain nature of the FDTD method also allows one 
to compute the broadband frequency response of a system with a single simulation as 
opposed to running a frequency-domain simulation many times. These advantages 
coupled with the remarkable simplicity of the method have resulted in a meteoric rise in 
popularity of the FDTD method over the past several years. In the joint 1986 URSI/IEEE 
Antennas and Propagation Symposium, for example, the total number of papers presented 
on the FDTD method was only four. Six years later in 1992, the number increased to 
over sixty. The growing applications of the FDTD along with the ever-increasing 
improvements in computer technology have even led some researchers to predict that the 
FDTD method may gradually displace many of the other commonly used numerical 
techniques in electromagnetics.

1.3 Purpose of This Thesis

Though there has been a great deal of published research generated within the 
electrical engineering electromagnetics community regarding the FDTD community as of 
late, most of the work can be classified as an application of the FDTD method rather than 
as a study of the method itself. With the possible exceptions of brief mathematical 
overviews presented in [11],[14], [15], there is very little in the electrical engineering 
literature on the mathematical aspects of the FDTD method. Moreover, an examination 
of the references in many published works as well as the state of some of the research 
being done, shows that, with the exception of the work on absorbing boundary 
conditions, much of the finite difference research done in the mathematics community 
some 20 years ago on difference methods is still relatively unknown in the 
electromagnetics community. One of the objectives of this work is to provide a bridge



between some of the work done in the mathematics community and the electrical 
engineering electromagnetics community in the hopes of 1) preventing unnecessary 
duplication of work, 2) providing quantitative insight into how the FDTD method works, 
i.e., its limitations and how to improve i t . Many of the ideas of this work are extensions 
of the research done by the mathematics community in the mid 1970s. Much of the 
analytical work, in Chapters 4, 5, in particular, can be traced to the works of von 
Neumann [16], Vichnevetsky [17], Trefethen [18], Roberts and Weiss [11]. The 
presentation in this thesis assumes that the reader is knowledgeable with the numerical 
implementation of the FDTD algorithm, the use of absorbing boundary conditions and the 
concept of stability.

1.4 Note about the Terminology

Though the algorithm introduced by Yee is most commonly referred to in the 
electrical engineering electromagnetics community as the "FDTD method," we will 
generally avoid using this term throughout the rest of this thesis. This is due to the fact 
that it is possible to have many finite difference schemes in the time domain that are 
different than that proposed by Yee. In Chapter 5, for example, we will be considering a 
higher-order differencing scheme that is markedly different than the algorithm introduced 
by Yee. To avoid ambiguities, we will refer to the explicit leap-frog finite-differencing 
scheme commonly referred to as the "FDTD method" as the "Yee algorithm" or, as it is 
referred to by mathematicians, a "2-2 scheme." We will reserve the term "FDTD" to 
describe the general class of explicit differencing schemes in the time domain.

1.5 Outline of the Thesis

In the past several years, the symmetric condensed node transmission line matrix 
(TLM) method has also been gaining popularity in the engineering community as an 
alternative to the Yee algorithm. The TLM method is also a time-domain solver based on 
the discretization of a system in space and time; however, unlike the Yee algorithm, space 
is discretized into a network of transmission lines. Voltages, rather than field values, are 
monitored on the transmission line and the electromagnetic fields are computed using a 
simple field/voltage relationship. Though the utility of the methods has been 
demonstrated in a number of different publications, Chapter 2 shows that the symmetric 
condensed node TLM simulation is susceptible to anomalous high-frequency oscillation 
m the simulation of the transient electromagnetic fields near the source. The cause of this



phenomenon is believed to be related to the fact that the original fleld/voltage relationship 
was derived qualitatively without insuring the mathematical equivalence between the 
symmetric condensed node TLM algorithm and Maxwell’s curl equation. Chapter 2 
presents a new field/voltage relationship which is found to eliminate the spurious 
oscillations generated by the original field/voltage relationship.

It has been known for some time that the Yee algorithm can generate a non­
physical dc offset in the transient response of the electromagnetic fields. Chapter 3 
investigates the mathematical reason for this phenomenon. It is found that Maxwell’s 
curl equations can represent a complete time-domain description of the fields if and only 
if the divergence relations are known to be constant for all time. If the divergence 
relations are time varying, i.e., time-varying charges, the Yee algorithm will artificially 
maintain and superimpose static charges in the system. The result is the presence of dc 
modes inside closed cavities and the presence of fictitious dc fields even after sources 
have been turned off.

Chapter 4 mathematically determines the optimum time step with which to run the 
Yee algorithm. In the past there has been empirical evidence which showed that the Yee 
algorithm is most accurate when run at the largest time step. This is a somewhat 
counterintuitive result, particularly, when considering that finite difference 
approximations generally tend to become better as the discretization is made smaller. 
However, by determining the eigenfunctions of the finite difference solution, one can 
show mathematically that the truncation and the discretization error must necessarily be 
reduced if the time step is chosen near the stability limit. In particular, it is found that the 
errors introduced by the space and time discretizations will cancel each other as the time 
step is made larger resulting in a smaller overall error. Fourier analysis is also found to 
provide unique insight into the accuracy of the Yee algorithm by providing quantitative 
details regarding the spectral bandwidth of the finite difference solutions and its 
relationship with the continuous solution. Simple numerical simulations are run to verify 
the analysis.

Presently, the Yee algorithm is the standard form of FDTD used by engineers in 
the electromagnetics community. In mathematics, the Yee algorithm would be classified 
as a 2-2 scheme (second-order accurate space and time difference). An alternate 
differencing which has been looked at extensively by mathematicians in the past in regard 
to differencing schemes of hyperbolic partial differential equations is a 2-4 scheme. It is



a higher-order scheme which has been considered by some researchers to be the optimum 
differencing scheme for use in approximating the wave equation. In Chapter 5, a Fourier 
analysis is performed to determine the eigenfunctions of a 2-4 differencing scheme of 
Maxwell's equations. A comparison with the standard Yee algorithm is then made and 
the relative advantages of each discussed in detail. It is found that the 2-4 scheme suffers 
less from grid anisotropy than the 2-2 scheme and that the accuracy of the method can be 
increased from second order to fourth order by using smaller time steps or an effective 
dielectric constant concept.

Chapter 6 introduces a new and efficient formulation of the Yee algorithm. In 
particular, the Yee algorithm is combined with the finite-difference scalar-wave equation 
to reduce the number of computations and computer memory needed per iteration. 
Mathematical conditions for the application of this algorithm are presented. It is found 
that this hybrid approach is optimal for planar structures and geometries resulting in more 
than twice the speed of the standard Yee algorithm while using one-third less memory. 
Moreover, the numerical results can be shown (both mathematically and numerically) to 
be identical to the Yee algorithm. A discussion on how to modify the Engquist-Majda 
absorbing boundary conditions (ABC) for use in the hybrid algorithm is presented along 
with simple numerical examples.

Chapter 7 applies the hybrid Yee/scalar wave algorithm in solving the E-plane 
radiation patterns of the Vivaldi and the linear tapered slot antennas. The far-field 
patterns were computed using the recently introduced far-field time-domain 
transformations. The results are compared with the published measured data to verify the 
accuracy of the FDTD approach. In general, the agreement was found to be good.

Finally, Chapter 8 summarizes some of the important results of this work and 
suggests topics for future study.
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CHAPTER 2

AN IMPROVED FIELD/VOLTAGE RELATION FOR USE IN THE 
SYMMETRIC CONDENSED NODE TLM METHOD

2 .1  Introduction

Recently, the symmetric condensed node transmission line matrix (TLM) method 
has been receiving some attention as a method for solving electromagnetic scattering 
problems in the time domain. Though sharing many of the same advantages as the Yee 
algorithm, the symmetric condensed node TLM method requires at least three times the 
memory and twice the computation for what appears to be the same order of accuracy. In 
addition, unlike the Yee algorithm, there is no mathematical analysis which shows that the 
voltage pulse propagation in the symmetric condensed node TLM network will converge to 
a solution to Maxwell's equation as the discretization is made smaller. If one could 
mathematically establish such a convergence for the TLM method it may be possible to 1) 
determine the order of accuracy, 2) determine whether it is possible to increase the 
accuracy, and 3) rewrite the algorithm to reduce the memory and computation time. These 
are important issues since they will to a large extent determine if the TLM method is better 
or worse than other competing time domain techniques, most notably, the Yee algorithm, 
for a given application. A potentially important clue in determining the mathematical 
relation between the condensed node TLM algorithm and Maxwell's equations is in the 
relationship between the voltage pulses in the TLM method and the electric and magnetic 
fields they are trying to model. Hence, it is with this purpose that we investigate any 
potential errors in this field/voltage relationship.

The goals of this chapter are to show that the field/voltage relation given in [1] can 
generate spurious oscillations in the time domain and propose new field/voltage relations 
based heuristically on the Yee algorithm that eliminate the spurious oscillations and 
potentially provide a more accurate relationship between the voltages and the fields.

2 .2  Description of the Symmetric Condensed Node TLM Method

The TLM method is based on modeling transient electromagnetic wave propagation 
using a network of transmission lines which was introduced by Johns [1]. Though there 
are other time domain techniques that exist based on a transmission line analogy such as the



Bergeron and Spatial Network Method (SNM) and several different versions of the TLM 
method that exist, the symmetric condensed node TLM method appears to be the most 
commonly used of these transmission line based techniques. Briefly, the symmetric node 
TLM method is based on discretizing space into a network of cells that have 12 input and 
output ports represented by transmission lines. A typical cell is shown in Fig. 2.1. The 
pulses entering a cell through a transmission line arm are assumed to be uncoupled as they 
travel to the center of the cell but are then coupled to other lines through what is known as a 
scattering matrix. To illustrate, the scattering matrix for the homogeneous free space is

~0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 -1
0 0 1 0
1 0 0 0
0 -7 0 0

-7 0 0 1
0 1 -7 0

where
V¡¿ = incident voltage pulse

K +1

0 0 0 0 1 0
0 1 0 0 0 -7
0 0 0 1 0 0
1 0 -7 0 0 0
0 1 0 -1 0 1
1 0 1 0 -1 0
0 1 0 1 0 1

-1 0 1 0 0 0
0 -1 0 0 0 1
1 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0

-7 O' ¡V ñ V iT r
0 1 Vil- V t 1
0 -1 Vil- V3nr+1
1 0 vil- v ? ;1
0 0 vil- v ? ;1
0 0 V il- v ü y
0 0 Vil- y ? ;1
1 0 v il V§r+¡
0 1 Vil-

T/rt+7
V9r

0 0 Vfoi
T/fl+7
V10r

0 1 VUi
y«+7
vl l r

1 0
Jyh. T/rt+7 

y  12r J
(2.1)

at node k at time n 

= reflected voltage pulse at node k at time (n +1).

The simulation is initiated by releasing a voltage pulse in the network and updating 
the voltages at each cell using the scattering matrix at each iteration. A field/voltage 
relationship is then used to relate the voltages to the fields. A salient yet important 
characteristic of the TLM method is that the speed of the electromagnetic wave is one-half 
the speed of the voltage pulses in the transmission line network. This means that two 
iterations of the algorithm are required to advance one time step, At, where

where Al = cell length, c = speed of light.
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Fig. 2.1 The symmetric condensed node TLM cell.



2 .3  The Presence of Spurious Time-Domain Oscillations

An interesting characteristic of the symmetric condensed node TLM method is the 
presence of spurious oscillations in the time domain. To illustrate, we consider the impulse 
response of a point electric field source inside a 3x4x6 pec cavity. It is found that the 
impulse response has spurious oscillations near the source region (Fig. 2.2). Only two 
cells away from the source region, however, these oscillations are found to disappear 
abruptly (Fig. 2.3). Because these results are not consistent with our physical intuition nor 
with results obtained using the Yee algorithm (Fig. 2.4), we conclude that the symmetric 
condensed node TLM cannot be entirely correct.

2 .4  Possible Causes of Spurious Oscillations

It is believed that there are two probable explanations for the spurious oscillations 
exhibited in Fig. 2.2. The first is that there is an error or deficiency in the formulation of 

. the symmetric condensed node TLM algorithm itself. That is, because there is no 
mathematical proof which demonstrates a consistency between the TLM approach and 
Maxwell’s equations, the symmetric condensed node TLM as given in [1] may not be a true 
solver of Maxwell’s equation. A second explanation would be to assume that the basic 
formulation is correct but that the mathematical translation of the voltage information in the 
TLM network into the electromagnetic fields is in error. In this work we will investigate 
the second possibility and leave the investigation of the first to a later work.

2 .5  The Field/Voltage Relation

The field/voltage relation given in [1] is constructed using a static analysis. Each 
transmission line arm in Fig. 2.1 is approximated as a lumped capacitance and the 
capacitances for the same polarization added. The total electric field in the cell for a given 
polarization is then assumed to be proportional to the total voltage induced on this lumped 
capacitance. (A parallel assumption is made to relate the total magnetic field with the total 
current entering the cell for a given magnetic polarization.) An example of the field/voltage . 
relation is given for the x component of the electric field, i.e.,

Ex = ^(V fi + V% + V$ + vp2i) (2.2)

where i denotes incident voltages.
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Fig. 2.2 Symmeinc condense! node TLM impulse response of the x-directed electric 
field for a 3x4x6 cell pec cavity using the voltage field relation given in m . 
The source was a single cell x-directed electric field located at (2 3 4) Thè 
observation point was also located at (2,3,4). * ’ '
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Fig. 2.3 Symmetric condensed node TLM impulse response of the x-directed electric 
tieid for a 3x4x6 cell pec cavity using the voltage field relation given in HI. 
ihe  source was a single cell x-directed electric field located at (2 3 4) The
observation point was located at (3,2,2). v ’ * h
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Fig. 2.4 Yee algorithm impulse response of the x-directed electric field for a 3x4x6 cell
5™ %  Ti e soui ce was a single cell x-directed electric field located at 

x ne observation point was also located at (2,3,4).



2 .6  On an Improved Field/Voltage Relation

We note that though it seems intuitively reasonable for the analysis and (2.2) to be 
correct, i.e., that the electric field would be proportional to the sum of voltages, there is no 
rigorous mathematical basis for this to be necessarily true. In particular, there is no 
mathematical analysis which shows that the derivation and its resultant field/voltage relation 
will insure that the symmetric condensed node TLM method will be a rigorous transmission 
line analogy of Maxwell's equations. In light of this deficiency, we consider constructing 
several new field/voltage relation that are potentially more accurate and perhaps just as 
valid.

Our construction of a new field/voltage relation begins by first noting that the TLM 
algorithm is very similar in form and concept to the Yee algorithm, i.e., both are explicit 
time domain schemes designed to solve Maxwell’s equations by discretizing space and 
time. In addition, it has been empirically found that both algorithms have approximately 
the same accuracy. A significant difference between the two, however, is that the Yee 
algorithm can be proven mathematically to be consistent with Maxwell's equations, 
whereas the symmetric condensed node TLM method presently cannot. If we assume that 
the TLM method is also consistent with Maxwell's equations, then it must also be 
equivalent in some sense to the Yee algorithm. (Such an equivalence has been 
demonstrated between the expanded node TLM algorithm and the Yee algorithm [2].) 
Consequently, we will use the Yee algorithm to determine a field/voltage relationship. We 
first note that the fields at any given time, t, using the Yee algorithm can be generated using 
field information from t-At and t-2At. In addition, we note that the fields are based strictly 
on the nearest neighbor information. In the same manner, one can make the fields 
computed using the TLM algorithm have a similar dependence. Taking into account 
Equation (2.1) and assuming that nearest neighbor information will be conveyed by the 
nearest voltage pulses, we assume the field/voltage relation to take the general form of

E" = cc,Enx- ’ + a 2Enx 2 +
k=l k=l

+ Ï X k i V f 1 + £ XkrVST1 + £  7hV&~2 + £  n rv£r2
k~1 k~1 k=l Jc=l (2.3)

where cq, Pki» Pkr » X\â > 2Tkr» 7ki> 7kr = real constants.



Having determined roughly what information may be needed to establish an 
equivalence between the Yee algorithm and the TLM method, we have to determine more 
precisely how to combine this information. From the published literature it been has 
demonstrated that the field/voltage Equation (2.2) appears to yield results that are 
comparable to those of the Yee algorithm. Therefore, we can assume that the form of the 
field/voltage expressions given in [1] is at least partially correct and subsequently simplify 
(2.3), i.e.,

Ex -  f i x  + cc2Ex + 0C3 X VS + a 4 X  v& 1 + a 5 X  v&~2 (2.4)
k k k

where k = 1, 2, 9, 12, and ap = real constant for p =1, 2, 3, 4, 5.

2 .7  Discussion and Results

Through trial and error it was determined through computer simulation that the 
following relations will eliminate spurious oscillations near the source region of a 3x4x6 
pec cavity:

1 V & -Z V & -2
. k k

E" = -
2 ex +

k k
- 2

£ "  = — 
* 2 k

Enx = E"~! + -  
2 ~et + y . v&

k

(2.5)

(2.6)

(2.7)

(2 .8)

(2.9)

where k 1, 2, 9, 12, and the coefficients of each formula were chosen to produce the 
same value for the electric field for the same initial incident voltages.

Though all four expressions were found to reduce the spurious oscillations to one 
degree or another, Equations (2.5) and (2.6) were found to be most like the Yee algorithm



results of Fig. 2.3. The results for (2.5) and (2.6) are shown in Fig. 2.5. It can be seen 
that both (2.5) and (2.6) eliminate most if not all of the spurious oscillations observed 
earlier. Though both results are similar, one finds that the time domain response of (2.5) 
appears to be most like the Yee algorithm (Fig. 2.4) due primarily to the presence of a dc 
offset. In Fig. 2.6 we compare the results obtained using (2.5) with those obtained using 
the field/voltage relationship given in [1]. It can be seen that despite the spurious 
oscillations, the two results are quite similar and, in particular, one notes that the time 
domain response of (2.5) appears to outline the oscillatory response computed using [1]. 
Mathematically, it appears that we can approximate their relationship as

' f [ l ] M  = fl.5 [n] + K cos cooscn (2.10)

where j [n]  = time domain response using [1],

f2.5ln] = time domain response using Eq. (2.5), 
cOosc = frequency of the spurious oscillation,
K  = magnitude of the spurious oscillation 
n = iteration.

A similar relation can also be used to relate (2.6) with (2.2). Therefore, it is apparent that 
the frequency domain response computed using (2.5) and (2.2) win be very nearly identical 
except near the frequency of the spurious oscillation. Figure 2.7 compares the time domain 
response of (2.5) versus (2.2) for regions away from the source region. It can be seen that 
their time domain responses are virtually identical and, consequently, one would expect 
their frequency responses also to be similar. Thus, we conclude that using (2.5) will 
improve the time domain response near the source region, but will not change the 
frequency domain response of the system compared to (2.2). Due to the similarity with 
(2.5), a similar conclusion can be extended to the field/voltage relationship of (2.6).

2 .8  Conclusions

It has been shown that using the standard field/voltage relation given in [1] causes 
the symmetric condensed node TLM algorithm to have nonphysical spurious oscillations 
near the source region and that these results are not consistent with those obtained using the 
Yee algorithm. It is believed that a possible cause for this problem is an error in the 
field/voltage relation which resulted from ignoring mathematical conditions necessary to



Eq. 2.6 
Eq. 2.5

Fig. 2.5 Symmetric condensed node TLM impulse response of the x-directed electric 
held for a 3x4x6 cell pec cavity using the voltage field relation given in 
Equations (2.5) and (2.6). The source was a single cell x-directed electric field 
located at (2,3,4). The observation point was also located at (2,3,4).



21

a- Cl]
■O—  Eq. 2.5

Fig. 2.6 Symmetric condensed node TLM impulse response of the x-directed electric
Fnnlfnn %3̂ Xt Cl 11 Pf  cavity usi.nV he voltage field relation given in Equation (2.5) and the relation given in [1]. The source was a single cell x-
a T c I CCtnC fie d 0Cated at 2̂’3»4)* observation point was also located
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■e- [i] 
■0— -Eq. 2.5

Fig. 2.7 Symmetric condensed node TLM impulse response of the x-directed electric
field for a 3x4x6 cell pec cavity using the voltage field relation given in
Equation (2.5) and the relation given in [1], The source was a single cell x-
f f r r  1t o \ ectnc fieId located at (2,3,4). The observation point was also located ac p ,z ,z ;.



make the TLM algorithm a mathematically rigorous analogy of Maxwell’s equations. To 
correct for possible errors in the original field/voltage relation, several new field/voltage 
relations, based qualitatively on the Yee algorithm, were proposed. Two new relations 
were presented which eliminated the spurious oscillations in the time domain near the 
source region while retaining the reported frequency domain accuracy of the field/voltage 
relationship in [1],
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CHAPTER 3

ON THE APPLICABILITY OF MODELING THE ZERO FREQUENCY 
COMPONENT USING THE YEE ALGORITHM

3.1 Introduction

The possibility of a dc error in the finite difference solution of Maxwell’s 
equations on a staggered grid was mentioned as early as 1966 [1]. Since then its 
existence appears to have been known empirically for sometime in the electromagnetics 
community; however, it was not until recently that the presence of residual dc fields was 
reported to be generated by the Yee algorithm [2]. In particular, it was found that the Yee 
algorithm simulations of a transient source can generate electric and/or magnetic fields 
that converge to nonzero dc values even as time goes to infinity. Interestingly, a similar 
phenomenon can also be observed in the symmetric condensed node transmission line 
matrix method. At present there appears to be some debate in the electrical engineering 
electromagnetics community on what the actual cause of this dc offset is or if such an 
offset is the result of actual physics.

The purpose of this section is to mathematically determine whether the Yee 
algorithm is capable of modeling dc fields of a time-dependent source and to explain the 
dc offset which is present in the transient fields. In particular, we discuss the physical 
meaning of using arbitrary field distributions as sources to generate the transient 
response. In addition, we also investigate how the initial conditions affect the modeling 
of the dc fields. It is found that using fields as sources is physically equivalent to creating 
point charge pairs. It is demonstrated that the Yee algorithm will correctly model the dc
fields generated by these point charges. Numerical experiments are used to validate the 
analysis.

3.2 The Applicability of Modeling the Direct Current Component

3.2.1 Enforcing the divergence relations in the frequency domain

To determine whether the Yee algorithm is capable of modeling the dc term or 
not, we first consider the conditions under which Maxwell’s curl equations can be used.



To correctly model the electromagnetic fields in a sourceless homogeneous medium, 
Maxwell's curl equations and the divergence relations must be enforced, i.e.,
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(3.2)

(3.1)

V -E  = 0 
V -H  = 0

(3.3)
(3.4)

where e, ¡1  = constant electric permittivity and magnetic permeability of the media. By 
taking the divergence of (3.1) and (3.2), it can be seen that the curl equations given by 
(3.1) and (3.2) will have the divergence relation built in provided the time derivatives are 
nonzero. In such cases, only the curl equations have to be solved to obtain the 
electromagnetic field distribution. In contrast, when the time derivatives are zero the curl 
equations reduce to the following form

Clearly, Equations (3.5) and (3.6) do not have the proper divergence relations included in 
them; consequently, it appears that the divergence relations given by (3.3) and (3.4) must 
be enforced in addition to the curl equations. Mathematically, we can view this as 
specifying the gauge of Equations (3.6) and (3.7), which, in turn, makes the fields unique.

3.2.2 Enforcing the divergence relations in the time domain

Because the Yee algorithm is based on the curl equations, one might expect 
difficulty in modeling the dc fields due to problems associated with the divergence 
relation. The conclusions of the previous analysis, however, are not entirely applicable to 
the time domain since the evolution of the divergence relation with respect to time was 
not considered. To see if the divergence relations at dc are being handled properly, we 
can rewrite the curl equations by taking their divergence, i.e.,

VxE  = 0 
VxH=0.

(3.5)
(3.6)

0 (3.7)



(3.8)
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If Equations (3.7) and (3.8) are considered in the context of an initial value 
problem (IVP), it is clear that at if V • H =pm and V • E = pe at t =tQ, where pm, pe are 
constants, then V- / /  = Pm and V • E = Pe for all t >t0. Hence, a constant divergence 
relation can be implicitly enforced for all t >to by specifying the divergence at t=to.

3.3 Numerical Validation

A simple check of the above analysis is to see if the divergence relation at t = to is 
being kept constant by the Yee algorithm for t >to. This was verified by computing the 
transient response of an electric field point source, i.e.,

Exs(n) =
n

n> l j (3.9)

where n — iteration number, t — nAt, At—time step, and computing the divergence of the 
electric field just above and below the source (see Fig. 3.1). It was found that the 
divergence remained equal to one even after the source had been turned off. Physically 
speaking, this constant divergence implies that there are static charges in the system 
which give rise to residual dc fields (Fig. 3.2).

Now we consider changing the time dependence of the previous source to a half 
sinusoid, i.e.,

Exs(n) =
(n -1)

N
0

K l < n < N  + I 

elsewhere
(3.10)

where N = integer > 0. According to the previous analysis, every time a new charge is 
introduced by the source it will be preserved for all of time. The result will be a 
superposition of all the charges introduced over time. From Fig. 3.1, it can be seen that 
the charge introduced by a field source will be given by

Pabove [  n1 = Exsf n1 (3.1 1)
n

Pbelow[nl = '¿iJExs[n ]
n

(3.12)
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where the subscripts “above” and “below” refer to the location of the charge relative to 
the source. In Figure 3.3, the predicted divergence relation given by (3.11) and (3.12) is 
compared with the electric field divergence generated by the Yee algorithm as a function 
of time. It can be seen that the two results are virtually identical.

3.4 Eliminating Difficulties with the Direct Current Component

Even though we have shown that the Yee algorithm will correctly model the dc 
fields produced by constant charges, there are occasions in which modeling the dc term 
can have a detrimental effect on the low frequency response of the system. In particular, 
if a large dc term exists, its effect on the neighboring frequencies can be substantial and 
many iterations may be required to obtain convergence. In addition, the presence of 
constant charges add a nonphysical dc offset to the numerical results. Consequently, we 
will look at ways to alleviate the problems associated with the dc term.

The most obvious and effective way of removing the effect of the dc term is to 
use a source with no dc term [3]. Physically, such a source would introduce constant 
charges into the system which would eventually cancel each other. It is important to note 
that, strictly speaking, this approach is applicable if and only if the system is linear. 
Because the Yee algorithm is a nonlinear system which couples high frequency 
components into low frequency components (see Chapter 4 and [1]), we stipulate that a 
zero dc source will-be effective if and only if the high frequency components of the finite 
difference solution do not contaminate the low frequency components. This means that 
the discretization of the system must be fine enough to accurately describe the most 
significant high frequency components. To illustrate its effectiveness of removing the dc 
component, we compare the mode spectrum of a rectangular 3x4x6 pec cavity generated 
by using a zero dc source with that generated by an impulse source, i.e., nonzero dc 
component. From Fig. 3.4, it can be seen that the dc mode generated by an impulse 
source is contaminating the neighboring frequency response whereas the zero dc source 
appears to have eliminated the dc effect (Fig. 3.5).

Another way to remove dc source contributions is to use a divergence-free initial field 
distribution. Physically speaking, this will prevent charges from appearing in the source 
even if the source has a nonzero dc component. An example of such a source is a line 
source connecting two pec plates. Figure 3.6 demonstrates the effectiveness of this 
approach for the pec cavity problem. In contrast to the previous approach, it provides



Fig. 3.3 Comparison between the predicted charge accumulation and the numerical 
charge accumulation generated by the Yee algorithm simulation for a transient 

point source radiating in free space. The excitation was a half sinusoid 
with a period of 20 iterations.
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Fig. 3.5 The mode spectrum of a 3x4x6 cavity generated by the Yee algorithm using 
an Ex point source. The source was a half-cosine with a period of 20 iterations 
and no zero dc component (500 iterations).
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freedom in choosing the time dependence of the source but restricts the spatial 
distribution.

Other ways of removing the dc component are filtering techniques. Essentially, 
one post processes the time data in order to remove the effects of the dc term. Two of 
these methods include removing the dc average from the time data and using the time 
derivative to obtain the frequency response. Although these filtering techniques allow a 
great deal of freedom in choosing both the time and spatial dependencies of the initial 
sources, these techniques .are not effective unless a sufficient number of iterations are 
taken. In contrast, the effectiveness of the nonfiltering techniques will be relatively 
insensitive to the number of iterations. Moreover, post processing requires additional 
computations whereas the previous methods of dealing with the dc terms require no 
additional overhead.

3.5 Conclusions

The validity of using the Yee algorithm to model a dc electromagnetic field is 
discussed. It is shown mathematically that the divergence relations at dc are enforced by 
the initial conditions. It is found that the charges that are introduced into the system 
during a time domain simulation do not disappear when time goes to infinity. 
Consequently, the divergence relation at any given point in space and time is governed by
the superposition of the previous charges. Numerical simulations were presented to 
verify the analysis.

Ways to remove the constant charges generated by an arbitrary field source were 
given. The recommended way to remove the effect of the charge is to use a source with 
zero dc. It is believed that this will allow the user the most flexibility in choosing the 
source distribution and time dependence while still effectively eliminating the effects of 
the dc charges. Another way to remove the constant charge terms that was discussed was 
to use a divergence-free source. Though quite effective, it is not always possible to find a 
divergence-free source for some problems. Moreover, divergence-free sources will not 
take care of the dc charges that may build up in objects other than the source, i.e., pec
edges. Numerical results were given which demonstrated the applicability of both 
methods.



32

3.6 References

[1] K.V. Roberts and N.O. Weiss, "Convective difference schemes," Math Coma
vol. 20, pp. 272-299,1966. *

[2] C.M. Furse, S.P. Mathur, and O.P. Gandhi, “Improvements to the finite-difference 
time domain method for the radar cross section of a perfectly conducting target ” 
IEEE Trans. Microwave Theory Tech., vol. MTT-38, no. 7, pp. 919-927 J u ly

[3] W.C. Chew, private communication.



CHAPTER 4

ON IMPROVING THE ACCURACY OF THE YEE ALGORITHM 
USING LARGER TIME STEPS

4.1 Introduction

The Yee algorithm (more commonly referred to as the finite difference time 
domain (FDTD)) is a central difference approximation in time and space of Maxwell's 
curl equations written in explicit form. One advantage of the Yee algorithm over the 
symmetric condensed node TLM method is that it can be shown mathematically to be 
consistent with Maxwell's equations. In particular, the Lax equivalence theorem insures 
that a finite difference solution to Maxwell’s equation will always converge to the 
continuous solution as the space and time increments approach zero provided the system 
is stable [1]. We note that there is no analogous theorem regarding the symmetric 
condensed node TLM solution.

Though, more accurate finite difference solutions will be generated by using 
smaller space and time discretizations, in practice, one can ill afford to make the 
discretizations too small due to limitations on computer time and memory. For 
efficiency, one would ideally like to use the largest discretization possible to obtain 
satisfactory results. It is therefore of practical as well as academic interest that we 
examine the effect that finite discretization (in time and space) has on the accuracy of 
finite difference schemes such as the Yee algorithm.

In the past, there has been work which considered the existence of time steps for 
explicit finite difference solutions of general partial differential equations which result in 
an optimal balance between accuracy and computations [2]. Regarding the Yee 
algorithm specifically, there has been empirical evidence which suggests paradoxically 
that the optimal time step may correspond to the largest time step allowed under the 
stability criterion rather than the smallest time step [3], [4]. The purpose of this work is 
to provide mathematical evidence to substantiate this phenomenon. To do this, we will 
follow the methodology given in [5]-[7]. In particular, Fourier transform representations 
of the continuous and finite difference solutions will be used to derive expressions for the 
truncation and discretization errors. The mathematical conditions which minimize these 
errors are then determined. It is found that, provided the differencing scheme is stable
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and the spatial discretization fine enough, the truncation and discretization errors of the 
Yee algorithm will be reduced whenever the time step corresponds to the largest time step 
allowed by the stability limit. Numerical simulations of a resonant cavity are used to 
verify various aspects of the analysis.

4.2 Decomposition of the Continuous Solution of Maxwell’s Equations into 
Spectral Components

We begin by assuming that our problem is a properly posed initial value problem 
in an infinite, homogeneous, isotropic space. In addition, we will be excluding the effect 
of the source and the presence of absorbing boundary conditions. Maxwell's equation can 
then be rewritten as six independent scalar wave equations of the following form

1 d2
V2U (x,y ,z,t)— j - r jU (x ,y ,z , t )  = 0  (4.1)

c dt '

where U(x,y,z,t) e  electric and magnetic fields, 
c = speed of light in free space.

We next assume that any solution to (4.1) is expressible in terms of the Fourier transform, 
i.e.,

oo oo oo oo

U(x,y,z,t) = J  /  f  ¡U(k,co)e-ikre^dkxdkydk2dco . . . .
—oo —OO —OO —CO ' *

where
k  = kxx  + kyy + kzz

This expression can be simplified by noting that only those spectral components that 
satisfy (4.1) are needed to construct a general solution to (4.1). These are the so-called 
eigenfunctions of the system [8], Substituting (4.2) into (4.1) shows that these 
components must satisfy the dispersion relation, i.e.,

co(k) = c^Jk2 + k2 + k2 (4.3)



Therefore, we can conclude that only three of the four variables of integration are truly 
independent. This implies that Equation (4.2) can be reduced to a triple integral, i.e.,

oo oo oo
U(x,y,z,t) =  /  /  fO ’(k)e-Jkrej°><k>‘dkx<ikydkz

— CO — CO —oo (4.4)

or in discretized form 

U (mAx, nAy, pAz, lAt)
oo oo oo

= J  J  ¡U'(k)e~jkr^ eJa<k>lA,dkxdkydkz (4 5 )
—00—00—00

where rmnp — mAxx + nAyy + pAzz, As=Ax=Ay=Az= space discretization, At = time 

discretization, and m,n,p,l are integers.

At this point, one might be tempted to simplify (4.5) even further by noting that 
the discretization of any complex exponential will result in periodicity of the spectrum. 
This periodicity implies that the infinite spectrum of eJk*mAx, for example, can be 
entirely represented by a finite spectrum, - n  < kxAx < tc. However, to use this property 
to simplify (4.5), each spectral component given by

e - j k r mnpe jO )(k ) lA t  (4 .6 )

must be periodic with respect to kxAx, kyAy, kzAz. Specifically, this would require that 

p ll2-\(N jit + kxAs)2 +(N2K + kyAs)2 +(N3n  + kzAs)2 = coAt + (4.7)

where Nj, N2, N3, N4 are integers for all kxAx,kyAy,kzAz,a>At e  [ -n .it] . Clearly (4.7)

will not be satisfied leading to the conclusion that the limits of integration in (4.5) cannot 
be reduced to triple integral form. This implies that the exact solution to the wave
equation, even in discretized form, can only be represented using an infinite spectrum of 
plane waves.



4.3 Decomposition of the Finite Difference Solution to Maxwell’s Equations into 
Spectral Components

Analogous to the spectral representation of the continuous solution to the scalar 
wave equation, we now wish to represent the solution to its central difference 
approximation using a similar superposition of spectral components. Xo do this, we must 
determine the eigenfunctions of the difference equation given by

um,n,p,l = 2 u m,n,p,l ~ um,n,p,l-l + P {um+l,n,p,l + u m-l,n,p,l +

where = u(mAx,nAy,pAz,lAt), p  = (cAt/As)2 . If we assume that a Fourier
transform representation of u(x,y,z,t) exists, we can begin by writing

u( mAx, nAy, pAz, lAt)

Analogous to what was done previously, we note that (4.9) can be simplified by noting 
that only those spectral components which satisfy (4.8) are needed to represent any
general solution to (4.8). By substituting (4.9) into (4.8) one can derive the dispersion 
relation [7], [9],[10]

In order to find an explicit expression for Q, one can use the analysis outlined in [10]. In
particular, one can use the series expansion of the sine terms in conjunction with the 
following representation for the inverse sine

= J  J  J  ju(k,Q )ejniA!e jk'rmvdkxdkydkzdQ (4.9)
—00 —00 —00 —00

(4.10)

sin 19 = 9 + -1— 03 + ~ 3 ■
2-2-4-5 (4.11)

to derive the following expression



where

&(k) = co(k) + ep(k,As,p) (4.12)

1 5
}(k,As,p) = ~ — —^2 ((cos4a + cos4P + cos4 y ) —p)(As)2 + 0 ( (A s f  )

cosa  = c^x
CQ(k)'

COSp =
cky

k y
cosy  = ckz

co(k)

(4.13)

(4.14)

It is important to note that-Equation (4.12) is valid if and only if (4.11) is valid, i.e., 02 < 
1. From (4.10), we can conclude that this will require that the finite difference equation 
must be stable, i.e., p  < 1/3. In all subsequent analysis, we will assume stability unless 
otherwise stated. Parenthetically, we point out that (4.13) can also be derived by using a 
simple adaptation of the overstability analysis [11].

Equation (4.10) shows that only three of the four variables of integration in (4.9) 
are truly independent. Hence, we can rewrite (4.9) as a triple integral, i.e.,

u( mAx, nAy, pAz, lAt )

= /  J  ]ù '(k)eJ£p<k,As'p m ejù)<k>l&te
—OO—00—00 (4.15)

Simplifying further, we note that each spectral component given by

ejep(k,As.p)lAtejQ)(k)iAie-jkrmiv

is periodic with respect to kx, ky, kz, i.e.,

(4.16)

sin QAt + 2N4K = p(sin2 kI As + W 1K_ + kyAs + 2N2tc ,  kzAs + 2N3K \l/2

u (4-17)
where N j, N2, N3, N4 are integers and kxAx,kyAy,kzAi,Q At e  Unlike the

analogous transform expression of the previous case, this periodicity can be exploited to 
reduce the limits of integration, i.e.,



(4.18)

u(m&x, n&y, pAz, lAt)

= J J ]ü''(k)ej£' <kM'p m e M k>lAte -jk'r̂ d k xdkydk2
- a - a - a

where a-2n!As. An engineering way to interpret the representation of (4.18) is that the 
finite difference solution is a low-pass filtered version of the continuous solution given by 
(4.5) [12]. We note, however, that though the spectral components of the finite difference 
solution are nonattenuating (indicating that the scheme is nondissipative) the presence of 
an additional phase term, ep, will affect the fidelity of this low-pass filter. In particular, 
the finite difference solution will introduce a phase error into the exact solution which 
will depend not only on the discretization of time, space but on the direction of 
propagation.

4.4 Increasing the Accuracy of the Finite Difference Solution by Using the Time
Step

There are two different ways commonly used to quantify the accuracy of a finite 
difference solution 1) the discretization error and 2) the truncation error. Though there 
are several definitions for discretization and truncation errors which are used [12], for the 
purposes of this work, we will define the discretization error to be the difference between 
the continuous solution and the finite difference solution and the truncation error to be the 
error between the partial differential equation and the finite difference equation. Though 
the truncation error is commonly used in the electromagnetics community as a means of 
comparing the relative accuracy of a finite difference approximation, the discretization 
error is actually a much more significant quantity. This discretization error, for example, 
aside from being a more direct measure of how close the approximate solution is to the 
exact solution, takes into account the stability of the finite difference solution whereas the 
truncation error does not. In this section, we will examine the effect of the time step on 
both types of error.

4.5 The Effect of the Time Step on Truncation Error

The simplest way to determine the effect of the time step on accuracy is to 
consider the truncation error. It can be easily shown using the Taylor series expansion 
that the truncation error for (4.8) is of second order, i.e.,



(As) P d‘etruno (r, As.p)----—  [(^ 4 +^ 4 +^ ~  ̂ 4 ^ 4 ] U < *  t-O + O« As)4)

Substituting (4.5) into (4.19) we obtain
(4.19)

. . (Ay)
€trunc(r>^s>P) ~ ~

2 oo oo oo
/  J  ¡Ü '(k)ej0>(k>lejk'r

—oo—oo—c
✓ ^ )  \4 r / 4 An A Ax (------ ) [(cos a  + cos*¡3 + cos4 y )-p ] d k xdkydk2.+0((&s/ )  (4.20)

Because the time error and the space error terms are of opposite sign, it is possible to 
cancel Etrunc to some extent. In particular, if

[(cos4 a  + cos4 p-h cos4 y ) - p ]  =0 (4.21)

etrunc will become fourth order. Unfortunately, it is clear that for a fixed p, Equation 
(4.21) can only hold for certain angles of incidence. However, by choosing a p  which is 
in the range of values of the direction cosines, i.e.,

(cos4 a  + cos4 p  + cos4 7) <1 (4.22)

etrunc can be reduced. If we recall that p  must also be constrained by the stability 
criterion, i.e., p  < 1/3, we can conclude that the truncation error will be minimized when 
the time step is chosen closest to the stability limit.

4.6 The Effect of the Time Step on the Discretization Error

Though computing the truncation error is a very expedient way of evaluating the 
error of a finite difference scheme, it does not tell us specifically how error will manifest 
itself in the actual solution to the difference equation. To do this, we now consider the 
discretization error, Edisc• The discretization error is typically defined to be the difference 
between the continuous solution and the finite difference solution. Using the transform 
expressions derived earlier, we can write

edisc(rmnp-lA‘-As,p) = ea(rmnp,lAt,As,p) + e„(rmnp,lAt,As) + e_„(rmnp,!At, As)

(4.23)



where

Sa(rmnp-lAt’&S’P)

= J f  ] (U '(k ) -u " (k )e i£’ (k^ ),M) e M kW e- ikr^
- a - a - a

oooooo

Soo(rmnp,lA t,A s)=  J J¡U'(k)ei<0(k>lAte~jk'r'mvdkxdkydkz 
a a a

£ -~ (rmnpM t,A s )  =  J  J  jU '( k ) e iC0(k)lA,e~jk 'r'^ d k xdkydkz
—oo —oo —oo

From Equations (4.24)-(4.26) it can be seen that the discretization error is made 
up of essentially two different types of error. The first type, given by (4.25), is the error 
associated with the inaccuracies of modeling k-space components within the finite 
spectrum of the finite difference solution given by (4.21). The second type, given by 
(4.25) and (4.26), is the error associated with the presence of large k-space components in 
the continuous solution which He outside this finite spectrum. Consequently, a necessary 
condition for the finite difference solution to be an accurate approximation to the 
continuous solution is that the spectral content of the continuous solution be 
approximately band limited to within [-a,a]. Practically speaking, this translates into 
making sure that the discretization is made fine enough to accurately model the most 
significant high frequency components [6]. If the discretization is not made fine enough 
aliasing between the large k-space components and the small k-space components will 
cause u" to differ from U \ This means that the discretization error will not decrease 
even if there is no phase error, i.e., ep = 0. Under these circumstances, it is possible to 
have a coarser mesh result in finite difference solutions which paradoxically satisfy the 
continuous wave equation to a higher degree of accuracy than a finer mesh but are 
solutions to a problem different than what was originally intended.

If we assume that the discretization is made fine enough, however, we can make 
the following approximations

7  /  f ( U ( k ) (4.27)
-a -a -a

£-oo(rmnp>lAt,As),£00(rmnp,lA t,As) =  0

(4.24)

(4.25)

(4.26)

(4.28)



ep(k,As,p) -> 0 => ü"-> Ü ' (4.29)

This implies that a necessary and sufficient condition for reducing the discretization error 
is to reduce the phase error, £p(k,As,p). By comparing £p(k,As,p) with the expression for
the truncation error (4.20) it can be seen that the discretization error will also be 
minimized when p corresponds to the stability limit given by p=l/3.

4.7 Numerical Verification of the Analysis

As a partial verification of the analysis, the resonant frequencies of a pec 
rectangular waveguide were computed using the Yee algorithm to compute the impulse 
response. The simulations were run using seven different time steps while keeping the 
total time of simulation fixed. The frequency response was then computed using a 
discrete time Fourier transform (DTFT). Results for four TE modes, i.e., (0,1,1), (0,2,2), 
(0,2,1), (0,1,2), of the cavity were then compared with analytic solutions. To magnify the 
effects of the time step on the accuracy of the finite difference algorithm, a coarse grid 
was chosen to model the cavity. The results are shown in Fig. 4.1 and Fig. 4.2. 
Increasing the time step does indeed increase the accuracy. Furthermore, we note that the 
gains obtained by increasing the time step are significantly reduced as the space 
discretization, Ay, becomes smaller compared to the wavelength. This corresponds to the 
reduction of the error given in (4.12). In addition, we note another trend which appears to 
verify the previous analysis. To understand the nature of this verification, we begin by 
noting that the truncation error and the phase error given by (4.20) and (4 27) 
respectively, will converge to a constant maximum value as At approaches zero. This 
simple observation implies that the finite difference solution will also converge to a 
solution possessing the largest possible error. Moreover, it can be deduced from the sign 
of the phase error given in Equation (4.13) that this should result in computed resonant 
frequencies which are slightly lower than the exact solution. These are trends clearly 
exhibited by both Figs. 4.1 and 4.2.

4.8 Conclusions

This work has provided heuristic evidence based on Fourier decomposition of the 
finite difference solution to the wave equation that the solution to the Yee algorithm can
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be improved by increasing the time step rather than decreasing it. In particular, it is 
found that a larger time step can reduce both the truncation and discretization errors of 
the finite difference approximation provided the discretization of space and time is fine 
enough to insure that the spectral content of the continuous solution lies primarily within 
the finite spectrum of the finite difference solution. The mathematical reason for this 
paradoxical result is found to be caused by an error cancellation that occurs between the 
leading (second-) order error terms associated with the central differencing approximation 
of the time and space derivatives. As the time step is made larger, the cancellation can be 
shown to increase thereby reducing the overall error. Complete cancellation in 2-D and 
3-D is not possible due to the dependence and independence of the spatial and time 
differencing errors, respectively, on the direction of propagation. Various aspects of the 
mathematical analysis were then verified by using the Yee algorithm to compute the 
resonant frequencies of a rectangular cavity.
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CHAPTER 5

COMPARISON OF 2-2 SCHEMES VS. 2-4 SCHEMES IN THE FINITE 
DIFFERENCE TIME DOMAIN SOLUTIONS OF MAXWELL'S

EQUATIONS

5.1 Introduction

Presently, the Yee algorithm is the most commonly used form of the finite 
difference tíme domain (FDTD) scheme being used to solve Maxwell's equations. The 
Yee algorithm is what mathematicians call a 2-2 differencing scheme, i.e., second-order 
accurate finite differencing of the time and space derivatives, respectively. Despite its 
proven utility in the solution of transient electromagnetic problems, the Yee algorithm 
may not be the most efficient form of FDTD available. There have been studies which 
purport that 2-4 differencing schemes (second-order accurate differencing of the time 
derivative, fourth-order accurate differencing of the space derivative) possess the optimal 
balance between accuracy and computation [l]-[4]. Yet despite the presence of such 
literature there has been, aside from a brief abstract [5], very little published 
mathematical or numerical work within the electromagnetics community on the 
application of 2-4 schemes in the solution of Maxwell's equation.

The purpose of this work is to discuss the possible mathematical advantages and 
disadvantages of using a 2-4 differencing scheme rather than the standard Yee algorithm 
to solve Maxwell’s equations. To do this we will determine the 3-D and 2-D stability 
conditions for a 2-4 scheme of the Maxwell's equation and derive expressions for the 
truncation and discretization error using Fourier analysis. Various ways to decrease the 
truncation and discretization errors are then considered. It is found that the 2-4 scheme 
has a stability criterion that is slightly stricter than that of a 2-2 scheme but that a 2-4 
scheme will suffer from less grid anisotropy than a 2-2 scheme. It is also found that the 
truncation error of a 2-4 scheme can be made fourth-order accurate by successively 
decreasing the time step or, in the some cases, by using an effective dielectric concept. 
On the downside, the 2-4 scheme is found to require twice as much computation as the 
Yee algorithm. Moreover, the 2-4 scheme is found to have less spatial resolution than the 
Yee algorithm and, consequently, may be more susceptible to errors caused by aliasing
between spectral components. Numerical simulations of a small cavity resonator are used 
to verify various aspects of the analysis.



5.2 Derivation of the 2-4 Stability Condition of the Scalar-Wave Equation

Though the stability criterion for a 2-2 differencing scheme of the scalar-wave 
equation is well-known, i.e., [6], there is very little if anything in the published literature 
regarding the stability of a 2-4 differencing scheme of Maxwell's equations. In this 
section we will use the von Neumann stability analysis [7] to derive the 2-4 stability 
condition. For brevity, we will assume the variable conventions of the previous chapter 
without explicitly stating them. We begin by assuming wave propagation in unbounded, 
homogeneous, isotropic free space excluding the sources. Thus, we can simplify 
Maxwell's equations to six scalar-wave equations. By using the Taylor series expansion 
to approximate the derivatives, one obtains the following 2-4 difference scheme, i.e.,

CAt <2 r 1um,n,p,l+l um,n.pJ + um,n,p,l-l ( ~ )  + +

4
+um-2,n,p,l + Um,n-2,p,l + “m,n,p-2.l) + ~z(^m+l,n,p,l + “m,n+l,p,l + “m,n,p+l,l

+u■m-l,n,p,l + um,n-l,p,l + um,n,p-l,l) —  um,n,p,lJ
15

We now assume that any solution to the finite difference equation can be represented 
using an infinite superposition of spectral components of the following form

%l(k,As,p)ejkrmv

where £ is called the amplification factor. Substituting (5.2) 
trigonometric identities, we can obtain the following equation,

Z2 - B % + I = 0
where

(5.2)

into (5.1) and using

(5.3)

B = -(2+  p [ - —(cos 2kxAx + cos2kyAy + cos2kzAz) 

+ - ( cos kxAx + coskyAy + coskzAz) - — ])
(5.4)

Consequently,
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« »
- S  + Vs 2 - 4

Using the identity

cos29 = -1+2cos^ 9

(5.4) can be rewritten as

(5.5)

(5.6)

B = -(2 -^{(co s  kxAx -  7 )(cos kxAx -1 )

+(coskyAy -  7)(cosky Ay -1 )  + (coskzAz -  7)(coskzAz -1 )}  (

It can be seen that the largest value of B will occur when all cosine terms are equal to 
zero. This implies that

lBlmax = |2 -1 6 p | (5.8)

For stability, must be less than or equal to 1 or, equivalently, from (5.5) |5| < 2
Consequently, the stability condition becomes

p = A 2 < L
As 4 (for 3-D)

Similarly, the 2-D stability criterion is

As 8 (for 2 -D)

(5.9)

(5.10)

5.3 Spectral Decomposition of the Finite Difference Solution

We begin by assuming that any solution to (5.1) can be represented as a Fourier 
transform, i.e.,
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u( mAx, nAy, pAz, lAt )

oo oo oo oo
= J J J \ü(k,C l)eiC m e~jk'r"^dkxdkydkzdSi

-».-oo-«,-«, (5.1i)

By substituting (5.11) into (5.1), we can derive the following dispersion relation 

Ç1A t 1
s m (-y - )  = (p[— (cos2kxAx + cos 2 ky Ay + cos2kzAz )

2
~ (  cos kxAx + coskyAy + coskzAi ) + )112

J ' 8 (5.12)

If we assume stability, the binomial expansion in conjunction with the series expansions 
of sine and inverse sine can be used to derive an explicit expression for Q. , i.e.,

Q(k) = co(k) + ep(k,As,p)

where

Sp (k,As,p) = (As)2

1 C0(k)5 1 x X o
~ 2 0 ~ S ~  9 C0S a  + cos P  + cos° r ) - — p 2](As)4 + 0((As)6 )

J . . . (5.14)
and co(k) and the direction cosines are defined in the previous chapter.

Equation (5.12) shows that only three of the four components of integration in
(5.11) are truly independent. Consequently, (5.11) can be reduced to a triple integral. 
Moreover, because the dispersion relation is periodic with respect to kx, ky, kz , i.e.,

. .QAt + N]7C. sin(---------- i— )
2

~ (P t-^(cos2(kxàx + N2k) + cos2(kyAy + N3n) + cos2(kzAz + N4tc))

2
- —(cos(kxAx +N2n) + cos(kyAy + + + + —  ]),/2

8
(5.15)



where Nj, N2, N3JV4 are integers and kxAx,kyAy,kzAz e  [~n,n],Q At e  [ - 2n,2n]t 

we may also reduce the limits of integration, i.e.,

u( mAx, nAy, pAz, lAt )

= J  /  } * '(  k)eiS' (kM 'p m eW
- a - a - a (5.16)

where a=n/As.

5.4 The Relationship Between Higher-Order Schemes and Bandwidth

By examining the bandwidth of the spatial domain and comparing it with the 
bandwidth of the time domain, we can substantiate a rule of thumb used by finite 
difference practitioners. Specifically, it has been stated that higher-order differencing 
schemes are generally not recommended due to the possibility of spurious solutions [8]. 
Equation (5.15) demonstrates that the 2-4 differencing scheme has resulted in a decrease 
in the plane wave spectrum compared to that of the 2-2 differencing scheme (see Chapter 
4). In particular, we note that even though their frequency bandwidths are equivalent 
their k-space bandwidths are not. Consequently, a 2-4 scheme will possess the same time 
resolution as the 2-2 scheme but less spatial resolution. This, in turn, implies that the 2-4 
scheme will be more susceptible to errors due to aliasing than a lower order 2-2 scheme 
for identical time and space discretizations. This suggests, in general, that higher-order 
differencing approximations of either the space or time derivatives will result in a drastic 
decrease in its spectral bandwidth, i.e, those plane waves which can be modeled uniquely. 
We conclude that a disadvantage of using higher order schemes, in general, is that finer 
discretization may be required to the suppress spurious solutions caused by aliasing. 
Further work needs to be done on determining, in practice, how detrimental the reduction 
m bandwidth will affect a 2-4 differencing scheme of Maxwell’s equations.

5.5 Reduction of the Truncation Error

error, £trunc> isFrom the Taylor series expansion of (5.1) the truncation



£trunc(r ’As’P> 

p(As)2 
12c4 dt4

. / 30
+ (As)4( - — ( - ^  + 

90 dx6

^ 6
—r)]U(x,y,z,t) + 0((As)6) dt

(5.17)
Substituting the spectral representation of the continuous solution given in the previous 
chapter, we find that

e trunc(r >&s >P) -  (As) Ctime2 (r,p) + (As)4[-Cspace4(r,p) + Ctime4(r,p)J + 0 ((A s)6 )

(5.18)
where

00 00 00

Camel = ~  J i  \ u ’(k)ej0>(k)‘e ^ r( ^ f p d k xdkydkz
—OO—OO—OO 

00 00 00

Came4 = -~-0 j  J J u U ) e j 0 <k,,eJk r (̂

(5.19)

(5.20)
—00 —00 —00

Cspace4 -  q q  J J ju '(k )e ji0 f̂ĉ e jfcr(—— (cos6 a  + cos6 ¡3 + cos^ y)dkxdkydk.
00 00 00

y ^ z—00 —00 —00
(5.21)

where U'(k) is the transform of the continuous solution, Ctime2, Ctime4, are the second- 
and fourth-order error contributions due to the time differencing and Cspace4 is the fourth- 
order error contributions due to the space differencing. Unlike the 2-2 scheme analyzed 
in the previous chapter, it can be seen that decreasing rather than increasing the time step 
will reduce the truncation error, because the spatial differencing and the time differencing 
are of different orders of accuracy. As the time step is made smaller, however, the 
second-order error can be made to vanish leaving only the fourth-order spatial error. 
Unfortunately, in practice, one can ill afford to make the time step too small due to the 
associated increase in computation time. Consequently, it is useful to know the largest 
time step that can be used to produce a fourth-order truncation error. To determine this 
time step, we simply equate the largest value of the fourth-order space error with the 
second-order time error and solve for the time step, i.e., p. One finds that

where X = 2n
ky

P1,2Z2.3(j -) (5.22)



Equation (5.21) shows that the condition for fourth-order accuracy is actually 
dependent on the frequency of the spectral component. That is, any frequency, û**),

greater than that specified by (5.21) will result in fourth-order truncation error whereas 
any frequency less than that will result in second-order truncation error. It is, however, 
possible to make the finite difference equation appear to be completely fourth-order 
accurate at lower frequencies provided the time step is made small enough, i.e., AslX <
1/20, because, in practice, the observable difference between a second- and a fourth-order 
error will become increasingly less noticeable [1].

5.6 Reduction of the Discretization Error

Using (5.14) and the results from the previous chapter, the discretization error of 
the 2-4 scheme can be written as

edisc(rm npM t,As,p)  -  ^a(rmnpMt>As,p) +  ee0(rmnp,lA t,A s)+ e _ 00(rmnp,lA tiAs)

where
(5.23)

( rmnp » Ŝ> P)

= J J J(&(k)  -  ü '•(k)eJ£p(kM'p)lU)eM k m e-ikrm̂ dk^dk^
- a - a - a

00 09 00

s~(rmnpMt,As) =  J J f & (k)ej(a(k),Ate~]k dkxdkydkz
a a a

£-~(rmnp,lAt,As) = J  J

If we assume that the discretization is fine enough so that the spectral content of the 
continuous solution lies within [-a,a], the discretization error can be decreased by 
reducing the phase error, ep. By comparing (5.14) and (5.18), it can be seen that the same
condition that minimizes the truncation error, i.e., (5.21), will also minimize the 
discretization error.

So far we have only considered ways to reduce the truncation and discretization 
errors of the transient finite difference solution. Often, however, one is interested in the

(5.24)

(5.25)

(5.26)



frequency response rather than the actual transient response of a system. Consequently, it 
is important to also consider ways to reduce the truncation and discretization errors at 
individual frequencies. One way to do this is to use an effective dielectric concept. To 
elaborate further, we note that the leading order term of Ep , unlike that of the 2-2 

schemes, is independent of direction. If we assume a homogeneous, isotropic 
environment, the effect of this error will be to add extra phase to each spectral component 
at every time step. This additional phase, however, is identical to the presence of a 
dielectric constant, Eef f , not specified in the original problem. Therefore, most of the 
phase error can in fact be removed simply by changing our perception of the system we 
are solving. In order to use this information to improve the accuracy of the finite 
difference solution to the original problem, i.e., without eeff, one simply scales the 
frequency response accordingly.

To compute the effective dielectric constant, £eff* we begin by redefining co(k), 
he.,

co( k) = T̂ ( kX + k y + k l )

Substituting (5.26) into (5.15) and (5.17) one obtains

(5.27)

For the phase error (5.17) to be of fourth-order, C2=co. This implies that

(5.28)

( ^ y
24

(coAty
24

(coAty
=  0

(5.29)

Equation (5.28) is a standard cubic equation with respect to . It can be shown that

it will always have two complex roots and one real root. Assuming propagation in a 
lossless media we consider only the real solution. This is given analytically by

^  = ( \  + K)2'2 -  ( ~  + K)3'2

where
(5.30)



24b = 24
2 ( 4 - r 2(coAtf ( As

(5.31)

(5.32)

Having determined the effective dielectric constant, it is important to determine 
how much improvement in accuracy can be achieved. By lumping the effect of the 
second-order phase error into an effective dielectric constant, clearly the phase error 
given by (5.14) will be of fourth-order. This, in turn, implies that the discretization error 
at each frequency will inevitably decrease. To determine what the resulting improvement 
in the truncation error is we note, from previous analyses of the 2-2 and 2-4 schemes, that 
in every case the order of the phase error has been equal to the order of the truncation 
error. On the basis of this qualitative observation, it is believed that the effective
dielectric constant approach will make both the phase error and truncation error fourth- 
order.

5.7 The 2-4 vs. 2-2 Differencing Schemes of the Wave Equation

By comparing the stability criterion for the 2-4 scheme, i.e., (5.9), with that of the 
2-2 scheme it is clear that the latter is a more stable scheme. Therefore, one can deduce 
that the 2-2 scheme can be run at a larger time step thereby reducing the number of 
computations required to reach a steady state. This result accentuates the relative 
computational efficiency of the 2-2 scheme especially since a 2-2 scheme already 
requires half the computation of a 2-4 scheme per iteration regardless of the time step.

Perhaps, the most important difference between the 2-2 and 2-4 schemes is in 
accuracy. Though mathematically, both schemes are of second-order truncation error, the 
accuracy of both schemes may be improved beyond this through proper choice of the 
time step. In particular, the truncation error of a 2-4 scheme can be made fourth-order 
provided the time step is decreased to zero, whereas the truncation error of the 2-2 
scheme can also be reduced but to a lesser degree by choosing the largest time step 
a owed by stability. In general, we conclude that the 2-4 scheme is more accurate under 
the condition that a sufficiently small time step is chosen. If the time step is not chosen 
small enough, it is possible for the 2-2 scheme to actually be more accurate than the 2-4 
scheme; consequently, the choice of time step is essential in justifying the use of the more



computationally intensive 2-4 scheme over the less intensive 2-2 scheme. An important 
exception to this statement is found when the frequency response of a homogeneous, 
isotropic system is being computed. As outlined earlier, in such cases the effective 
dielectric constant concept can be used to increase the accuracy of the 2-4 scheme, i.e. 
fourth-order truncation error, regardless of the time step.

A subtle difference between the 2-2 and the 2-4 schemes which may have an 
important effect on the relative accuracies of each method, involves the domain of their 
bandwidths. Though both schemes have periodic dispersion relations in k-space, the 
spectrum of the 2-2 scheme is twice as broad as that of the 2-4 scheme in the spatial 
domain. This implies that the 2-2 scheme will be less sensitive to aliasing errors than the 
2-4 scheme for the same space discretization. Therefore, a 2-4 scheme may require a 
finer space discretization than a 2-2 scheme as well as a smaller time step to achieve 
better accuracy. Another way to reduce the inaccuracies due to aliasing, which we 
mention only briefly, is to introduce a diffusion term in the 2-4 scheme which will 
attenuate the large k-space components of the continuous solution [3], [9]. This 
approach, however, has the drawback of increasing the number of computations.

Another important difference between the 2-2 scheme and the 2-4 scheme is in 
their grid anisotropy. In the context of the analysis given in this work, grid anisotropy is 
caused by the spatial dependence of the phase error introduced into each spectral 
component by the finite differencing of time and space. The effect is to advance or retard 
the phase or wave fronts of an electromagnetic field depending on the direction of 
propagation, which, in tum, causes an artificial distortion of the field. Though the phase 
error of both the 2-4 and 2-2 schemes are mathematically of second-order, the phase error 
of the 2-2 scheme turns out to be more dependent on direction due to the presence of 
second-order spatial differencing than the phase eiTor of the 2-4 scheme. Consequently, 
a 2-4 scheme will suffer from much less grid anisotropy than a 2-2 scheme. It is 
important to note, however, that less grid anisotropy does not necessarily imply that the 
2-4 scheme will be more accurate relative to the exact solution than the 2-2 scheme; it 
means that a 2-4 scheme will tend to preserve the physical shape of the fields better.

5.8 Numerical Verification of the Analysis

To verify the analysis presented previously, the impulse response of a perfect 
electrical conductor (pec) rectangular cavity was computed using a 2-4 differencing



scheme of Maxwell's equations and compared with that for the exact solution. An 
example of a 2-4 difference scheme consistent with the Yee mesh is given by

Elx 1 (m + 112,n,p)  =  Elx 1(m + l /2,n,p)  + ̂ r i ( ~ ) { H lz+ll2(m + l /2 ,n  + l / 2 , p )

-Hi+ll2(m + l / 2 , n - l / 2 , p ) - H ly+ll2(m + l /2 ,n ,p  + U 2) 

+Hly+ll2(m + 1 / 2 , n , p - 1 / 2 ) - j - [ H lz+1/2(m + 1 / 2,n + 3 / 2,p)

- H z+ll2(m +1 / 2 , n - 3 / 2 , p ) - H ly 112 (m + 1 / 2,n,p + 3 / 2)

+Hy+ll2(m + 1 / 2 , n , p - 3 12)]}

(5.33)

Similar formulas for the other electric and magnetic field components may also be 
derived but are omitted for brevity.

We begin by numerically verifying the 3-D stability criterion given by Equation
(5.9) . To do this, we place an electric field point source (Gaussian time dependence) 
inside a large pec cavity and plot the transient fields around the source using different 
time steps (see Fig. 5.1). It is found that time steps that are only slightly greater than
(5.9) , i.e., p = 0.251, will result in instability whereas time steps which are slightly less 
than (5.9), i.e., p = 0.242, will be stable after 1000 iterations. When p is equal to the 
theoretical stability limit of 0.250, the algorithm becomes unstable after several hundred 
iterations. We can conclude that the empirical stability limit is slightly stricter (3.0%) 
than that given by (5.9). The discrepancy can be attributed to the combination of round- 
off error and approximations in the physical constants.

To study the effect of time step on accuracy, the numerical simulations were run 
using several different time steps while keeping the total time of the simulation fixed. 
The frequency response was then computed using a discrete time Fourier transform 
(DTFT). Results for four TE modes, (0,1,1), (0,2,2),(0,2,1), (0,1,3), (0,1,2), of the cavity 
were then compared with the analytical solutions. The result are shown in Fig. 5.2. It is 
found that virtually all of the behaviour exhibited in this figure can be predicted by the 
previous analysis. Most notably, (5.23) dictates quantitatively the manner in which the 
accuracy of the computation will be improved. In particular, for large time steps it can be



seen that the dominant error term of the 2-4 scheme will be the second-order time error 
given by (5.19), i.e.,

for large p :  e(k,p) = etime(p) (5.34)

Because the sign of this enror is positive, the phase of the exact solution can be shown to 
be larger after each iteration resulting in resonances which are higher than what they 
should be. On the other hand, for very small time steps, it can be seen that the dominant 
phase error will correspond to the fourth-order space emor given by (5.18), i.e.,

for small p: e(k,p) = espace(k,p) (5.35)

Unlike the time error term, however, this error has a negative sign associated with it and 
will cause the phase of the exact solution to be retarded slightly after each iteration. It 
can be shown that this retardation will result in computed resonances which are slightly 
lower than what they should be. It can be seen from Fig. 5.2 that this behaviour is indeed 
observed in all cases except for the first two resonances. Specifically, though there is 
increased in accuracy as the time step is made smaller, the limiting values of the first two 
resonances appear to be slighdy higher than the exact solution rather than lower. A likely 
explanation for this phenomenon is the aliasing due to the finite bandwidth of the finite 
difference solutions.

One of the most important windfalls that one would expect from a higher-order 
scheme is an increase in the accuracy of the high frequency components. For time steps 
which satisfy the fourth-order criterion of (5.20) it is clear that the computed resonances 
shown in Fig. 5.2 are not only in very good agreement with those for the exact solution 
but that the high frequency agreement is much better than that of the 2-2 scheme (see 
Chapter 4). According to the effective dielectric concept, however, it should also be 
possible to make the larger time step solutions fourth-order accurate. To test this idea, 
the solutions of a 2-4 simulation which take into account an effective dielectric constant 
are compared with the exact solution. The results are again shown in Fig. 5.3. It can be 
seen that the effective dielectric concept results in a reasonably accurate prediction of the 
resonance curves. In theory, they should be within fourth-order error of each other with 
the numerical results being slightly less than the predicted.
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p =0.251 
p=0.240

Fig. 5.1 Numerical validation of the 2-4 scheme stability criterion for Maxwell’s 
equations. The excitation is a point source Ex field with a Gaussian time 
dependence located in the middle of a (60.60,60) cell pec cavity The 
observation point is equal to the source point. The predicted stability limit is



Fig. 5.2 Plot of the FDTD resonant frequencies for a (3,4,6) pec cavity vs. the time 
step fordtfferentmcxies The straight lines represent the exact solutions 
Note p 1/2 = cAt/As= 0.546: 1000 iterations

0.288: 2000 iterations 
0.144: 4000 iterations 
0.072: 8000 iterations.
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Fig. 5.3 Comparison of the 2-4 FDTD results with analytically predicted resonances 
using the effective dielectric constant concept (dotted line).



5.9 Conclusions

In this chapter, a quantitative comparison of the stability and accuracy of the 2-2 
difference scheme and the 2-4 difference scheme of the wave equation in homogeneous, 
isotropic space was made. The stability condition for the 2-D and 3-D 2-4 difference 
schemes was derived and compared with that of the 2-2 scheme. It was found that the 2-4 
stability condition is slightly stricter than that of the 2-2 scheme (approximately 15%) 
Analysis was also done to determine the relationship between time step and accuracy of a 
2-4 scheme particularly in comparison with the 2-2 scheme. Under the assumption that 
the spectral content of the continuous solution was primarily within the finite spectrum of 
the finite difference solution, it was found that unlike the 2-2 scheme the discretization 
error of the 2-4 scheme can be made fourth-order as the time step is made smaller. In 
additibn, it was found that the 2-4 scheme is much less anisotropic than the 2-2 scheme. 
It was shown that this isotropy can be exploited by using the concept of an effective 
dielectric constant to make the 2-4 scheme fully fourth-order accurate regardless of the 
size of the time step. Simple numerical results of a small rectangular cavity were given to 
verify the analysis and its conclusions.
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CHAPTER 6

A HYBRID YEE ALGORITHM/SCALAR-WAVE EQUATION APPROACH

6.1 Introduction

In the past few years the Yee algorithm has been demonstrated to be a viable 
technique for solving electromagnetic scattering problems. However, it suffers from two 
drawbacks, computer time and computer memory. Though there are other formulations 
of Maxwell's equations which can be mathematically equivalent, namely, the finite 
difference approximation of the vector-wave equation and the scalar-wave equation, it 
appears that only the scalar-wave equation can provide a possible computational and 
memory advantage over the Yee algorithm. Though commonly used in two-dimensional 
frequency domain problems in the late 1960s and early 1970s , with the exception of [1], 
there have been very few applications of the scalar-wave equation in three dimensions in 
the time domain. The purpose of this work is to study the applicability of the scalar-wave 
equation formulation in reducing the memory and computation of the finite difference 
algorithm for 3-D open region problems. The major objectives of this work are 1) to 
show the mathematical conditions under which a finite difference scalar-wave equation 
may be used in three dimensions and to demonstrate its mathematical and numerical 
equivalencies to the Yee algorithm, 2) show that the scalar-wave equation can be 
combined with the Yee algorithm (and the vector-wave equation) as a means of reducing 
the memory by at least 33% and the computations by at least 40% in simulating many 
planar geometry problems while being numerically equivalent to a full Yee algorithm, 
and 3) show how absorbing boundary conditions may be effectively applied to 
components normal to the outer boundary using the divergence relation and the vector- 
wave equation.

\

6.2 Different Types of FDTD Formulations

6.2.1 The Yee algorithm

The Yee algorithm is a central difference approximation of Maxwell's curl 
equations written in explicit form. Typical examples of the electric and magnetic field 
finite difference equations for lossless media are listed below.
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Elx+,(m + 1! 2,

•[Hl+m  (m + 1 / 2,n + 1 / 2 ,p) -  Hlz+I'2(m +1 / 2, n -  1 / 2, p)

+Hly+ll2(m +1 / 2,n,p - 1 / 2) -  Hly+!l2(m + 112,n,p + 1 / 2)1
Z
1+1/2

■1+112

- E lz(m + 1 / 2,n - 1 / 2,p) + Ex (m + 1 / 2,n, p -  1 / 2)

- E lx (m + l /2 ,n ,p  + l /2 ) ]  ^ 2)
where m, n, p are defined such that* = mAx, y =nAy, z = pAz 

As -  Ax -  Ay =Az = uniform space discretization 
/ = time index such that t = /At 
At = time discretization 
e=electric permittivity 
p=magnetic permeability.
A characteristic of these equations is that they are coupled, i.e., one cannot 

compute any single field component independently from the other components. 
Consequently, in order to advance the fields a single time step, 24 additions and 
subtractions and 6 multiplications per cell must be performed per cell. In addition, this 
also means that one must store six real numbers corresponding to the six field 
components to implement the algorithm.

6.2.2 The vector-wave equation

It is apparent from (6.1) and (6.2) that the Yee algorithm has a redundancy built 
into its formulation. In particular, one notes that it is possible to substitute all of the 
magnetic field terms in Equation (6.1), for example, strictly in terms of electric field 
expressions. By performing similar manipulations on the Ey and Ez equations one can 
reduce the total number of difference equations from 6 to 3. A complementary reduction 
can, of course, also be done with the magnetic fields expressions. This brings up the 
possibility of eliminating some of the additions and multiplications as well as reducing 
the memory requirements. To illustrate, replacing the magnetic field components in (6 .1 ) 

will result in the following expression
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^i+l . _ , _ . f v (m  + 1 / 2,n,p)At\  , rT , t ( „Ex (m + 1 / 2,n,p) = ( 2 - 4 Ì ----------------------  )Ex (m + 1 / 2,n,p)
V As y

r - h  ,7,o » , f v(m + U 2 , n , p ) à t \- E x (m + 1 / 2,n,p) + \ ---------- -----------
As

(Ex(m + 1 / 2,n + l,p)

+Ex (m + 1 / 2 ,n -  l ,p) + Ex(m + 1 / 2,n,p +1) + Ex(m + 1 / 2,n,p - 1)

-Ey(m + l,n + 1 / 2,p) + Ey(m + l , n - 1 / 2,p) -  E[(m + l,n,p + 112) 

+Ez(m + l,n,p -  1 / 2) + Ey(m,n + 112,p) -  Ey(m,n - 1 / 2,p)

+E[(m,n,p + 1 ! 2 ) -  E[(m ,n ,p -1 ! 2))

(6.3)
It can be shown that these equations are equivalent to the central difference 
approximation of the vector-wave equation, i.e.,

— l e f t  — 
VxVxE + —j — ^E  = 0

v2 d t2
(6.4)

where v2 = c2/£r(m+l/2,n,p), c=speed of light in free space, er = relative permittivity
Because (6.3) is derived directly from the Yee algorithm, (essentially a discrete 

manipulation of the continuous vector identities) their solutions will be identical (a fact 
verified by computer simulation). However, despite having eliminated the explicit 
computation of the magnetic fields, we have actually increased the total number of 
additions per iteration from 24 to 39 per cell. Moreover, since values at / and / -1 must 
be stored, the memory requirements turn out to be exactly the same as for the Yee 
algorithm. We conclude that a fully explicit finite difference vector-wave formulation 
will provide little, if any, practical advantage over the commonly used Yee algorithm.

6.2.3 The scalar-wave equation

To further simplify the Yee algorithm we can make the common assumption that 
the fields will be divergence free. The corresponding central difference approximation of 
this condition is

Êx (m + 1 / 2 ,n ,p)-  Êx (m - 112,n,p) + Ey(m,n + 1 / 2,p)

-Ey(m,n -  1 / 2,p) + Êz (m,n,p + 1 / 2) -  Êz (m,n,p -  1 / 2) = 0 (6.5)



Substituting this expression into (6.3) we obtain

Elx+1(m + l /2 ,

+Ex(m + 1 / 2 ,n -  l,p) + Ex(m + 112,n,p +1)+ Ex(m + 1 / 2,n,p -1 )

- E x(m + 3 / 2,n, p)+ Ex ( m -  1 / 2,n, p))
(6.6)

where to legitimately substitute (6.5) into (6.3) the permittivity, e, was made constant. It 
can be shown that the resulting expression (6.6) is the central difference approximation of 
the scalar-wave equation, i.e.,

where v is a constant.

Unlike the finite difference approximation of the vector-wave equation one notes 
that there is a modest computational savings in its implementation over the Yee 
algorithm. In particular, the scalar-wave equation formulation requires only 21 additions 
and 6 multiplications per cell as opposed to 24 addition and 6 multiplications while 
possessing the same memory requirements. However, the true advantage of a scalar- 
wave approach is not just confined to these meager savings but in the potential flexibility 
it offers. To be specific, the Yee algorithm and the finite difference vector-wave 
algorithm are made up of coupled equations in which one cannot omit computation of 
any field components. The scalar-wave formulation, on the other hand, consists of a set 
of uncoupled equations in which a given field component may be computed without 
necessarily having to compute the other field components. Hence, by making use of the 
scalar-wave formulation, it may be possible to reduce the computation and memory of the 
algorithm simply by omitting some of the field quantities and retaining a reduced number 
of fields. Since the scalar-wave formulation is directly derivable from the Yee algorithm, 
one would expect this reduced field formulation to generate results that are identical to 
that of the Yee algorithm provided the fields are divergence free.

(6.7)



6.2.4 On implementing a finite difference scalar-wave equation

Though there may be some advantage in using a finite difference scalar-wave 
formulation, one must exercise some care in implementation, because the scalar-wave 
equation, unlike the Yee algorithm or the equivalent vector-wave formulation, is valid if 
and only if the fields are divergence free. This poses some restriction on its application 
since this condition is not always true throughout the system. Furthermore, even if the 
physics of the problem dictates divergence free fields, it is not clear whether iterating a 
scalar-wave formulation will necessarily preserve the divergence-free condition as time is 
advanced. It turns out that it can be shown that if the initial conditions are such that the 
fields are divergence free at time, to, the scalar-wave formulation will in fact preserve the 
divergence-free condition for all time, t > to. A short mathematical proof of this is given 
in Appendix A. Hence, we conclude that the two conditions that are required to properly 
apply the scalar-wave formulation are 1) that the electric and magnetic field source 
distributions be divergence free for all time, 2) that the physics of the problem dictate that 
the resulting fields also be divergence free for all time.

6.3 A Hybrid Approach

6.3.1 Preliminary validation

Considering the previous discussion, the application of the scalar-wave 
formulation to simulate transient electromagnetic radiation, in general, appears to be 
somewhat limited. A notable exception to this statement is the scalar-wave formulations 
in two dimensions, because one can always formulate the 2-D problem in such a way 
that at least one of the field components will be divergence free regardless of the presence 
of dielectric interfaces and pec structures. In addition, it can be shown that one can 
always find a divergence-free source/initial condition in such cases. For 3-D problems, 
the applicability of the scalar-wave formulation is much more restricted. One can extend 
the applicability of the scalar-wave formulation in 3-D by partitioning the system into 
regions that are divergence free and other regions in which they are not. One can then 
apply the scalar-wave formulation in the divergence-free regions and in the remaining 
regions apply an alternate algorithm, such as the Yee algorithm or the FDTD vector-wave 
equation,. To verify the feasibility of this concept, a nondivergence free source radiating 
in a (50,50,50) isotropic, homogeneous space was simulated. The source was chosen to 
be a single cell electric field sinusoidal excitation with the problem domain partitioned



into two regions (Fig. 6.1). Region 1 was chosen to be a small nondivergence-free 
volume around the source and region 2 was chosen to consist of the remaining volume. 
The vector-wave equation formulation was used to simulate the fields in region 1 and the 
scalar-wave equation formulation was used to simulate the field in region 2. To lessen 
the effects of the outer boundary, the number of iterations was limited to 60. The 
resulting field distribution in the plane of the source was then compared with that 
obtained using a full Yee algorithm over the entire problem. A typical sampling is given 
iti Table 6.1. It can be seen that the results are virtually identical to one another, i.e., 
within 0.1% of each other with discrepancies attributable to machine error and to the 
inconsistencies between the physical constants used in each formulation. Parenthetically, 
it should be noted that identical results could also have been produced if we had replaced 
the vector-wave equation in region 1 with the Yee algorithm.

6.3.2 Partitioning the problem into planar regions

Despite having demonstrated the validity of a hybrid scheme, one notes that for 
problems partitioned in the previous manner, there is actually little to be gained by using 
a hybrid approach, because the number of field components in the scalar-wave 
formulation used in region 2 could not be reduced to properly interface the field 
information with region 1. Obviously, one of the major factors in determining how much 
can be gained from a scalar formulation is how one partitions the system. If one 
partitions the problem in such a way that the divergence-free regions may be completely 
interfaced with the nondivergence free regions without having to use all three field 
components, one can omit field components from the algorithm and reduce the 
computation and memory. An example of such a scheme is to partition the problem into 
planar volumes. Since each interface is two dimensional in nature, the uniqueness 
theorem tells us that the fields within each region will be completely characterized by the 
two tangential components on that planar interface. Consequently, one may neglect the 
normal component and use the scalar-wave equation formulation on the two tangential 
components in each divergence free region. The result is a reduction in the number of 
computations compared to those for the Yee algorithm from 24 additions and 6 
multiplications to 14 additions and 4 multiplications. For the special case of modeling 
free space, however, the number of additions can be reduced to just 12 additions simply 
by choosing the time step to be near the stability limit. (We note that although it can be 
shown that choosing such a time step will increase the accuracy, care must be taken in 
doing this due to the danger of instability. For all of the simulations given in this work,



Fig. 6.1 Partitioning scheme used to apply a combined finite difference vector-wave 
equation/scalar-wave equation formulation for a single cell Ex-field excitation 
radiating in infinite, isotropic free space. Region 1 is defined to be a cubic 
volume around the source of (2As, 2As, 2As) in which the vector-wave 
formulation is to be applied, where As = cell size. Region 2 is defined to be 
all of the remaining space in which the scalar-wave formulation is applied to 
all electric field components.
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Table 6.1 Comparison of the Ex field values in the xz plane (y=25) for an x-directed 

sinusoidal point dipole inside a 50,50,50 FDTD uniform mesh using a) the 
combined wave equation/vector-wave equation, b) the standard Yee 
algorithm. The number of iterations was 60, cAt/As = 0.5.

z a x i s

23 24 25 26 27
22 2.3350e-02 3.3226e-02 3.7026e-02 3.3226e-02 2.3350e-02

23 2.9875e-02 4.2894e-02 5.0536e-02 4.2894e-02 2.9875e-02
24 3.4206e-02 4.9644e-02 7.8578e-02 4.9644e-02 3.4206e-02

25 3.2808e-02 3.7923e-02 2.4610e-09 3.7923e-02 3.2808e-02
26 3.4206e-02 4.9644e-02 7.8578e-02 4.9644e-02 3.4206e-02
27 2.9875e-02 4.2894e-02 5.0536e-02 4.2894e-02 2.9875e-02
28 2.3350e-02 3.3226e-02 3.7026e-02 3.3226e-02 2.3350e-02

a)

z a x i s

23 24 25 26 27

22 2.3353e-02 3.3235e-02 3.7036e-02 3.3235e-02 2.3353e-02
23 2.9883e-02 4.2906e-02 5.0553e-02 4.2906e-02 2.9883e-02
24 3.4214e-02 4.9661e-02 7.8604e-02 4.9661e-02 3.4214e-02

C/3
X 25 3.2818e-02 3.7933e-02 2.4610e-09 3.7933e-02 3.2818e-02
<3
X 26 3.4214e-02 4.966le-02 7.8604e-02 4.9661e-02 3.4214e-02

27 2.9883e-02 4.2906e-02 5.0553e-02 4.2906e-02 2.9883e-02

28 2.3353e-02 3.3235e-02 3.7036e-02 _3.3235e-02 2.3353e-02

b)



the time step will be chosen to be near the stability limit.) Although partitioning the 
problem into planar regions can always be done, the final determining factor on how 
much time and memory can be saved clearly depends on the relative volumes of the 
divergence-free region compared to the nondivergence-free region. To minimize the 
computation and the memory, the volume of the nondivergence-free regions should be 
made as small as possible, thus, increasing the computation of the fields using the scalar- 
wave formulation and decreasing the application of the more computationally and 
memory intensive Yee algorithm. Fortunately, for an important class of problems this 
can be easily done. In particular, if we consider planar circuit structures or stratified 
media geometries, the nondivergence-free regions can often be restricted to very thin 
planar volumes, i.e., two cells thick, which are sufficient to take care of the 
nondivergence-free fields. Such a region would be placed around planar dielectric 
interfaces and planar pec edges. The remaining volume would then be divergence free 
and amenable to a scalar-wave formulation. For a moderately discretized system of 20 
cells, this means that only 10 percent of the problem has to be simulated using the Yee 
algorithm. Therefore, for all practical purposes, a hybrid Yee algorithm/scalar-wave 
formulation of many planar circuit geometries will often provide a memory and 
computational savings that is approximately equivalent to that provided by a complete 
scalar-wave formulation based on just two field components. Table 6.2 summarizes and 
compares all of the computational and memory requirements of the Yee algorithm, the 
vector-wave equation and the hybrid Yee algorithm/scalar-wave equation approaches for 
the planar circuit geometries.

6.3.3 V e rifica tion  o f a hyb rid -fo rm u la tion  using p lanar region p a rtit io n in g

To demonstrate the validity and effectiveness of using planar partitioning to 
reduce the computation and the memory of a system we consider the previous problem 
partitioned into three planar volumes (Fig. 6.2). Region 2 was chosen to be a planar 
volume two cells thick surrounding the source. Regions 1, 3 were chosen to consist of 
the remaining planar volumes. A reduced field scalar-wave formulation, i.e., 
computation and storage of the normal field component omitted, was then applied to 
regions 1 and 3 and the Yee algorithm applied to region 2. Results of the simulation are 
given in Table 6.3. As before, the number of iterations was limited to 60 in order to 
eliminate the effects of the outer boundary. It is once again found that the numerical 
results are virtually identical with those produced by a full Yee algorithm of the system.
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Table 6.2 Comparison of the minimum computation and memory costs of the various 
differencing techniques for a) general geometries, b) planar circuit geometries.

additions mult. m em o ry /ce ll

Y ee  algorithm 24 6 6

vector w ave FD T D 36 6 6

hybrid Yee/scalar wave 
(3 component formulation)

21 6 6

a)

additions m ult. m em o ry /ce ll

Y ee  algorithm 24 6 6

vector w ave FD T D 36 6 6

hybrid Yee/scalar wave 
(2 component formulation)

14(12)* 4(2)* 4

* indicates the potential cost of the algorithm for use in free space

b)
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region 1

region 2

region 3

Fig. 6.2 Planar partitioning scheme used to apply a combined Yee algorithm/scalax- 
wave equation formulation with a single cell Er field excitation radiating in 
infinite, isotropic free space. Region 2 is defined to be a planar volume 
around the source of thickness 2As in which the Yee algorithm is applied
w^ei?  cf slze- Regions 1, 3 are defined to be the remaining spaces in 
which the scalar-wave algorithm is applied to the Ey, Ez fields.
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Table 6.3 Comparison of the Ey component in the xz plane (y=25) for a y-directed 
sinusoidal point dipole inside a 50,50,50 uniform mesh using a) the hybrid 
Yee/scalar wave algorithm, b) the standard Yee algorithm. The number of 
iterations was 60, cAt/As = 0.577.

Z axis

23 ' 24 25 26 27

22 1.0908e-02 1.475 le-02 1.5943e-02 1.4751e-02 1.0908e-02
23 1.7291e-02 2.1596e-02 2.2541e-02 2.1596e-02 1.7291e-02
24 2.1596e-02 2.525 le-02 2.3452e-02 2.525 le-02 2.1596e-02
25 2.2541e-02 2.3452e-02 2.4610e-09 2.3452e-02 2.254le-02
26 2.1595e-02 2.5250e-02 2.3452e-02 2.5250e-02 2.1595e-02
27 1.729 le-02 2.1595e-02 2.2540e-02 2.1595e-02 1.7291e-02
28 1.0908e-02 1.4751e-02 1.5943e-02 1.475 le-02 1.0908e-02

a)

Z axis

23 24 25 26 27
22 1.0903e-02 1.4753e-02 1.5938e-02 1.4753e-02 1.0903e-02
23 1.7294e-02 2.159 le-02 2.2544e-02 2.159 le-02 1.7294e-02
24 2.1591e-02 2.5253e-02 2.3448e-02 2.5253e-02 2.159 le-02
25 2.2544e-02 2.3448e-02 2.4610e-09 2.3448e-02 2.2544e-02
26 2.159 le-02 2.5253e-02 2.3448e-02 2.5253e-02 2.159 le-02
27 1.7294e-02 2.1591e-02 2.2544e-02 2.159 le-02 1.7294e-02
28 1.0903e-02 1.4753e-02 1.5938e-02 1.4753e-02 1.0903e-02

b)



Discrepancies can, as before, be attributed to machine error and inconsistencies in the 
physical constants used in each formulation.

6.4 A pp lica tion  o f an A bsorb ing  Boundary Condition to a H y b r id  Approach

In the previous examples, the validity of the hybrid approach using planar 
partitioning was verified by restricting the number of iterations in order to ignore the 
effect of the outer boundaries. However, many problems of interest, i.e., planar circuit 
antennas, spurious microstrip line radiation, are open region in nature and require 
thousands of iterations. Consequently, one must consider how to apply an absorbing 
boundary condition (ABC) to the hybrid approach. Usually when using the Yee 
algorithm one applies the ABC directly on the two tangential components of the outer 
boundary. Unfortunately, if one uses a reduced scalar-wave formulation one does not 
always have access to both tangential components but rather one tangential component 
and the normal component, which leads to a novel predicament. Since a single tangential 
component on the outer boundary cannot provide enough information to uniquely 
compute all of the interior fields one must adapt the commonly used ABC to compute the 
normal field components on the outer boundary. There are several possible ways to do 
this: 1) apply the ABC to the normal component on the outer boundary, 2) set the normal 
component on the outer boundary equal to zero, 3) use the divergence relation to translate 
the normal component information into tangential field information and then apply the 
ABC. (It will be shown that this can be accomplished in two different ways.) We now 
examine each approach using the first-order Engquist-Majda ABC to illustrate the results.

6.4.1 A pp ly ing  the A B C  to the norm al component

The most obvious solution to the problem is to apply the ABC as is, directly to the 
normal component. To test this approach, a sinusoidal electric line source distribution ten 
cells long was placed inside a 50x50x50 volume of free space and the resulting field 
distribution studied (Fig. 6.3). The results are then compared with those obtained by 
applying the same ABC on the tangential components of the outer boundary using the 
Yee algorithm (Fig. 6.4). It can be seen that the resulting field pattern obtained by 
applying the ABC on the normal component in the hybrid algorithm appears to be 
comparable to those obtained using the ABC on the tangential components. However, for 
more complicated systems, one finds that the effectiveness of this approach is severely 
degraded. Figure. 6.5 shows the field plot of a truncated slot line radiating in
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Fig. 6.3 Contour plot of the electric field distribution at x=18 of a ten cell electric field 
sinusoidal excitation located at (18,15,5) radiating in free space. The first- 
order Engquist-Majda ABC was applied to the normal component to the 
boundary in conjunction with a hybrid Yee algorithm/scalar-wave 
formulation. The problem domain was (50,50,50) and the number of 
iterations was 3000.



Fig. 6.4 Contour plot of the electric field distribution at x=18 of a ten cell electric field 
Sinusoidal excitation located at (18,15,5) radiating in free space. The first- 
order Engquist-Majda ABC was applied to the tangential components to the 
boundary in conjunction with a full Yee algorithm formulation. The problem 
domain was (50,50,50) and the number of iterations was 3000.



Fig. 6.5 Contour plot of the electric field distribution at x=18 of a ten cell electric field 
sinusoidal excitation located at (18,15,5) radiating inside an infinitely thin pec 
slot line 30 cells long in free space. The first-order Engquist-Majda ABC was 
applied to the normal component (relative to the boundary wall) in 
conjunction with a hybrid Yee algorithm/scalar-wave formulation. The 
problem domain was (50,50,50) and the number of iterations was 300.



free space with the slot placed asymmetrically in the 50x50x50 problem domain. In 
contrast to applying the ABC to the tangential components (Fig. 6.6), it can be seen that 
the fields are severely distorted by the absorbing boundaries. Furthermore, it is found 
that the system becomes unstable after a large number of iterations. A likely explanation 
for the poor performance is the inconsistency in applying the ABC to a normal 
component. In particular, the Engquist-Majda ABC, both first and second order, are 
designed to be the most accurate for plane waves that are normally incident to the outer 
boundary (this can be shown by substituting a plane wave function into the ABC). Such 
a plane wave, however, should have no normal component and, therefore, the very 
application of the ABC. to the normal component would be in violation of the 
mathematical conditions for accuracy.

6.4.2 Setting the norm al component equal to zero

In light of the previous discussion, an obvious alternate approach to applying an 
ABC to the normal component is to set it to zero on the outer boundary. Such a boundary 
condition has the advantage that it is extremely simple to implement and requires 
absolutely no computation or storage. Results of using this approach on the previous 
geometries are shown in Figs. 6.7 and 6.8. Figure 6.7 shows that setting the normal 
component equal to zero is noticeably less effective than applying the ABC to the normal 
component for the case of the source radiating in infinite free space. On the other hand, 
Fig. 6.8 shows that setting the normal component equal to zero results in a much more 
stable and accurate absorbing boundary than the previous approach. Comparing Figs.
6.7, 6.8 with Figs. 6.3 and 6.4, however, it is clear that applying the ABC to the tangential 
components is still more accurate.

6.4.3 A pp lica tion  o f the A B C  to the tangentia l components v ia  the divergence
relation

From the previous examples, we can conclude that applying directly the ABC to 
the normal components will provide varying degrees of absorption; however, the 
effectiveness is still not as good as that of the ABC applied to the tangential components. 
This leads us to consider other methods. In particular, we consider applying the ABC 
indirectly to the tangential fields through information about the normal components. The 
most obvious way to do this would be to assume that the fields at the outer boundary are
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Fig. 6.6 Contour plot of the electric field distribution at x=18 of a ten cell electric field 
smusoidd excitation located at (18,15,5) radiating inside an infinitely thin pec 
slot line 30 cells long m free space. The first-order Engquist-Majda ABC was 
applied to the tangential components to the boundary wall along with a full 
Yee algorithm formulation. The problem domain was (50,50,50) and the 
number of iterations was 3000. ’ '



Fig. 6.7 Contour plot of the electric field distribution at x=18 of a ten
sinusoidal excitation located at (18,15,5) radiating in free spt

e7  t0,the bou"dary wal1 is ^ t  equal to zero an.
rsn sA^m/SC!. T wave, formulation was used. The proble 

and the number of iterations was 3000.

I electric field 
The normal 
hybrid Yee 

domain was
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Fig. 6.8 Contour plot of the electric field distribution at x=18 of a ten cell electric field 
sinusoidal excitation located at (18,15,5) radiating inside an infinitely thin pec 
slot line 30 cells long in free space. The normal component to the boundary 
wall is set equal to zero and a hybrid Yee algorithm/scalar-wave formulation 

ThC problem domain was (50,50,50) and the number of iterationswas j Uuu.
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divergence free. We can then use the central difference approximation of the divergence 
relation (5.5) to relate the normal derivative to the tangential derivatives, i.e.,

Gx = Ex (m +1 / 2,n,p)~ Ex ( m - 1 / 2,n,p)

= -Ey(m,n + 1 / 2,p) + Ey(m,n - 1 / 2 ,p ) -  Ez (m,n,p + 1 / 2) + Ez (m,n,p - 1 12)

(6.8)

Having established a relation between the normal components with the tangential 
components, we now note that the first- and second-order Engquist-Majda ABC (as well 
as many other ABC's) are linear operators, i.e.,

+ 0 2int) ~ ^-($lint)^r ^-($2int) ~ filbound + $2bound- (6.9)
where L = Engquist-Majda ABC operator

$1 int’Q 2 int = interior fields adjacent to the outer boundary at the 1 th iteration, 

Qlbound> $2bound = ^e^ s  on the outer boundary at the (l+l)th iteration

Therefore, one can apply the Engquist-Majda ABC to (5.8) and compute the 
tangential derivatives on the outer boundary. The vector-wave formulation given in (5.3) 
can then be used to re-incorporate this information back into the scalar-wave formulation,
i.e.,

Ex+i (m + 1 / 2,n,p) = (2 -  5 v(m + 112,n,p)At'\2 / .
---------------------- )Ex(m + 112,n,p)

As J

-E x }(m + 1 / 2,n,p) + v(m + 1 / 2,n,p)At /
As 'J

( Ex(m +1 / 2,n + l,p)

+ Ex(m + 1 / 2, n -  l,p) + Ex(m + 1 / 2,n,p +1) + Ex(m + 1 / 2,n,p -  1)

+Ex(m + 3 / 2,n, p) -  Gx)

(6. 10)

where Gx, is computed by applying the ABC to the normal derivative with the outer 
boundary located at x=m. The results of using such an approach are shown in Fig. 6.9 for 
a source radiating in free space. It is found that they are virtually identical to that obtained 
using the standard Yee algorithm for approximately 500 iterations. However, as the 
iterations are increased the hybrid system becomes unstable and the two start to differ 
markedly from one another. The instability is believed to be linked to the fact that
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Fig. 6.9 Contour plot of the electric field distribution at x=18 of a ten cell electric field 
sinusoidal excitation located at (18,15.5) radiating in free space Thl f i r t  
order Engquist-Majda ABC was applied to the normal derivative of the 
akrori^h °°mPonent to  the boundary wall in conjunction with a hybrid Yee
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1) th e  h y b r id  a lg o r i th m  w a s  b e in g  im p le m e n te d  n e a r  th e  u p p e r  l im i t  o f  th e  s ta b ili ty  

c r i te r ia  a n d  2) th e  a p p lic a t io n  o f  th e  A B C  d id  n o t  e x p lic it ly  p re s e rv e  th e  d iv e rg e n c e - f re e  

re la tio n  to  s u f f ic ie n t  a c c u ra c y . F u r th e r  w o rk  n e e d s  to  b e  d o n e  to  d e te rm in e  th e  p re c ise  

c a u se  o f  th is  p ro b le m .

A n  a lte rn a te  w a y  o f  a p p ly in g  th e  d iv e rg e n c e  re la t io n  w ith  th e  A B C  is  to  u se  the 

k n o w n  ta n g e n t ia l  c o m p o n e n t  in fo rm a tio n  in  c o n ju n c t io n  w ith  th e  n o rm a l  c o m p o n e n t  

in fo rm a tio n  to  c o m p u te  th e  d e r iv a tiv e  o f  th e  u n k n o w n  ta n g e n tia l  c o m p o n e n t, i.e .,

Gy = Ey(m,n+ J / 2, p ) -  Ey(m,n -  1 / 2,p)

= - E x(m + 1 / 2,n,p) + Ex ( m - 1 / 2 ,n ,p)-  Ez (m,n,p + 1 / 2) + Ez (m,n,p -  1 / 2) ^

w h e re  it is a s su m e d  th a t  th e  E x a n d  E z c o m p o n e n ts  a re  th e  k n o w n  n o rm a l a n d  ta n g e n tia l 

c o m p o n e n ts ,  a n d  E y is  th e  u n k n o w n  ta n g e n t ia l  c o m p o n e n t  to  an  x = m  p la n e  o u te r  

b o u n d a ry . R e c a ll in g  th a t th e  A B C  is a  l in e a r  o p e ra to r , w e  c a n  c o m p u te  th e  d e r iv a tiv e  o f  

th e  u n k n o w n  ta n g e n tia l  c o m p o n e n t, E y, lo c a te d  a t x = m + l /2  a n d  s o lv e  fo r  th e  d e r iv a tiv e  

o f  E y a t x = m . T h is  in fo rm a tio n  c a n  th en  be re c o m b in e d  w ith  the  d e r iv a tiv e  o f  th e  k n o w n  

ta n g e n t ia l  c o m p o n e n t  a n d  in te g ra te d  b a c k  in to  th e  s c a la r -w a v e  fo rm u la t io n  u s in g  the 

fo llo w in g  v a r ia tio n  o f  th e  v e c to r-w a v e  e q u a tio n

Ex+i (m+ 1 / 2,n, p) = (2 -  5 v(m + 1 / 2,n,p)Aty  /
As

)Ex (m + 1 / 2,n,p)

~EX  ̂( yyi ■+■ l / 2, n, p) +
. 2 

f v(m + 1 / 2,n,p)At \  /
As

(Ex(m + 1 / 2,n + 1,p)

+Ex(m + 1 / 2,n -  l ,p)+ Ex(m + 1 / 2,n,p +1)+ Ex(m + 1 / 2 , n , p - 1) 

- E x(m + 3 / 2,n,p) + Ez(m,n,p + 1 / 2 ) -  Ez(m,n,p -  1 / 2) + Gv)

(6 . 12)

w h e re  Eiz(m,n,p+ 1 /  2 ), Elz(m,n, p -  1 / 2), Gy a re  c o m p u te d  u s in g  th e  A B C .

T h o u g h  th e re  is  a  c e r ta in  r e d u n d a n c y  in  th is  a p p ro a c h , i t  h a s  th e  p r o p e r ty  o f  

e x p l ic i t ly  m a k in g  th e  n o rm a l  c o m p o n e n t  a n d  th e  ta n g e n t ia l  c o m p o n e n ts  s a t i s fy  th e  

d iv e rg e n c e - f re e  c o n d it io n  in  th e  p re s e n c e  o f  th e  A B C . In  c o n tra s t, th e  p re v io u s  ap p ro ach  

a s s u m e d  th e  d iv e r g e n c e  f re e  r e la t io n  w o u ld  im p l ic i t ly  h o ld . T o  d e m o n s t r a te  th e



the numerical values of this approach are virtually identical to that of the full Yee 
algorithm with the conventional ABC application. More importantly, there are no signs 
of the instability which had afflicted the previous formulation involving the divergence 
relation. Hence, we conclude tentatively that this formulation appears to be a more stable 
formulation.

6.5 Conclusions

A hybrid Yee algorithm/scalar-wave equation formulation has been proposed. 
Limitations on its application as well as the applicability of the absorbing boundary 
conditions were also discussed. It is found that this hybrid approach is a viable way to 
reduce the memory by 33% and the computation by at least 40% for many planar circuit 
structures. In addition, a method of applying the absorbing boundary condition on the 
normal components using the divergence relation in conjunction with the vector-wave 
equation is presented which yield results that are virtually identical with those obtained 
by applying the ABC on the tangential components. An advantage of this hybrid 
approach is that it may be adapted to help reduce the memory and computation in 
conjunction with many recent advances in the FDTD method such as nonuniform or 
curvilinear gridding schemes.
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Fig. 6.11 Contour plot of the electric field distribution at x=l 8 of a ten cell electric field 
sinusoidal excitation located at (18,15,5) radiating inside an infinitely thin pec 
slot line 30 cells long in free space. The first-order Engquist-Majda ABC was 
applied by combining information about the known tangential and normal 
component in conjunction with a hybrid Yee algorithm/scalar-wave 
formulation. The problem domain was (50,50,50) and the number of 
iterations was 3000.



CHAPTER 7

ANALYSIS OF VIVALDI AND LINEAR TAPERED SLOT ANTENNAS 
USING A HYBRID YEE/SCALAR-WAVE ALGORITHM

7.1  Introduction

Recently, the use of the Vivaldi and linear tapered slot antennas (LTSA) has been of 
interest (Figs. 7.1a,b). They are traveling wave antennas that belong to a general class of 
planar, printed circuit antennas called by some the tapered slot antenna (TSA) [1]. These 
antennas were first suggested in 1979 [2], [3], and have two particularly attractive 
characteristics. First, because the antennas are planar structures, they can be fabricated 
easily and cheaply using standard etching techniques. Second, these antennas, in particular 
the Vivaldi, have a relatively broadband frequency of operation. These characteristics make 
these antennas ideal for the transmission and reception of transient signals as well as for a 
variety of steady-state applications [1], [4].

There has been numerical and experimental work done on the Vivaldi and the 
LTSA. Much of the published experimental study on these antennas has been done by 
Yngvesson et al. [1], [5], [6], while most of the published numerical work has been a 
moment method (MoM) analysis done by Jamaswamy [7], [8].

The purpose of this work is to use the hybrid Yee algorithm/scalar-wave approach 
developed in the previous chapter to compute the E-plane radiation patterns of various 
Vivaldis and LTSAs. The results will then be compared with measured data given in [5]- 
[7]. In general, it is found that the FDTD method yields better agreement with experimental 
results in the E-plane than the MoM approach given in [7], [8]. In the H-plane, however, it 
is found that the lack of information about the feed geometry coupled with modeling 
resolution errors results in poor agreement between the FDTD and measured radiation 
patterns. In addition, the accuracy of the far-field time domain transformation proposed in 
[9] and [10] is investigated. It is found that the smallest equivalent surface will produce the 
most accurate far-field results. It is also found that the far-field computations are expensive 
requiring a large percentage of overall FDTD simulation time.



a)

Fig. 7.1 a) The Vivaldi and b) the LTSA
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7 .2  Numerical Analysis

7 .2.1  The hybrid Yee algorithm/scalar-wave formulation

The antenna radiation patterns will be solved using a more efficient yet numerically 
equivalent formulation of the Yee algorithm which combines the standard Yee algorithm 
with the scalar-wave equation. The details of this hybrid formulation are given in the 
previous chapter. The simulations will be performed by placing the antenna structures 
inside a rectangular volume which has been discretized uniformly in space (Fig. 7.2). 
Since these antennas are open structures, a first-order Engquist-Majda absorbing boundary 
condition (ABC) is placed along the entire outer surface (see previous chapter). The 
problem is then broken into three regions: Regions 1 and 3 consist of divergence-free 
volumes in which the scalar-wave equation will be applied; Region 2 is made up of the 
nondivergence-free regions which must be modeled using the Yee algorithm, i.e., the pec 
edges and dielectric interfaces. All nonrectangular features are modeled using a staircase 
approximation and each antenna is fed by a y-directed electric field source placed across the 
slotline.

7.2 .2  Computation of the far-field radiation patterns

Before comparing the results for the FDTD and experiment, it is instructive to 
known how much error can be introduced by the far-field computation. This computation 
is facilitated by an efficient algorithm that translates near-field time domain data into far- 
field time domain data [9], [10], and represents a significant improvement in what had been 
done m the past [11], [12]. The method is based on a central difference approximation of 
the time-dependent far-field expressions that are derived from the commonly used steady-
state far-field expressions [12]. This derivation is done by making the following 
substitution

d
dt

The resulting far-field time domain equations become

1 d 
4 Tire dt

(L^ + r\Ne)

(7.1)

(7.2a)



Fig. 7.2 Diagram of how the hybrid FDTD problem domain was partitioned. The six 
outer walls surrounding the antennas are absorbing boundary walls The

wans™ ^ finite ^  Width and length and iS n0t ln contact with the absorbing
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E* 3 4 * r c A (L' - r,lf*) (7.2b)

(7.3a)

(7.3b)

Er = Hr =0
where

(7.4)

• N = \ \ J s ( t+ (f  W
cS c

(7.5a)

L  = p > + ^ ' - V
S C

(7.5b)

A/y, Js are the equivalent magnetic and electric surface currents.

By enclosing the radiating structure in a closed (but arbitrary) surface, S, the 
equivalence principle may be used in conjunction with finite difference approximations of 
Equations (7.2)-(7.5) to compute the far-field radiation patterns using the time data 
generated by the FDTD algorithm. It should be noted that even though the approach is a 
significant improvement over what had been done previously, these extra computations can 
be time-consuming if the scatterer is large. In fact, for the simulations being considered 
later in this work, it will be found that the far-field computations require more computation 
than the FDTD simulation itself. Consequently, a more efficient scheme of implementing 
the far-field algorithm would be of some value.

7.2 .3  Validation of the far-field calculations

To validate the accuracy as well as to deteimine the limitations of the time domain far-field 
computation the far-field patterns of a small z-directed dipole are computed using the hybrid 
Yee/scalar-wave algorithm to generate its transient response. Figures 73-7.5 show the Eq 
and E(j) radiation patterns of a small dipole (< 0.1 Ao) computed using (7.2)-(7.5). It can be 
seen that the far-field computations are in good agreement with the analytical solution (to 
within 2 dB). Moreover, Fig. 7.5 shows that the patterns are relatively insensitive to the 
geometry of the equivalent surface and the position of the dipole used to compute the 
pattern as required by the equivalence theorem. Interestingly, Figs. 73-7.5 demonstrate



a) <j> plane

b) 0 plane

Fig. 7.3 Comparison of the hybrid FDTD radiation patterns of a small z-directed dipole
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a) <j> plane

b) 0 plane

Fig. 7.5 Comparison of the hybrid FDTD radiation patterns of a small z-directed dipole 
wmh the analytic solution at different frequencies, i.e., As/X. The equivalent 
n A a% A Rectangle of dimensions 2Asx60Asx77As with a dipole located at
rinA;3°i7nAAaÔAS^ etly " T  us<£  ‘°  create an overaU Problem domain of (40As, 120As,40As). The number of iterations was 500.



that using smaller equivalent surfaces will result in better agreement with the analytical 
solution than using the larger equivalent surfaces. This can be attributed to the fact that the 
phase error introduced by the finite difference approximation is proportional to the 
frequency of operation and the distance traveled (see Chapters 3, 4). Hence, to accurately 
compute the far-field patterns of a scatterer using the Yee algorithm, the smallest equivalent 
surface should always be used. It should also be noted that an important benefit of using a 
smaller equivalent surface is a reduction in the somewhat high computational overhead 
associated with these far-field calculations. In all numerical simulations of the Vivaldi and 
LTSA given in this work, the equivalent surface will be chosen to be the minimum surface 
required to enclose the antenna.

7.3 Numerical Computation of the Vivaldi and LTSA E-plane
Radiation Patterns

7 .3.1  The LTSA results

We begin by computing the E-plane radiation patterns of an LTSA antenna with no 
dielectric substrate (L = 5.08 \ q, a=  11.4®, Wc =W max = 1.014 W min =0.025 Jt0,
operating frequency, f0 = 8.5 GHz.) The results are given in Fig. 7.6a and compared with 
measured data from [5]. The feed used in the measurement consisted of a diode detector 
soldered across a slotline of unknown location. The hybrid FDTD model of the antenna 
was constructed assuming that Xq = 20As where As = mesh size. For computational 
efficiency and accuracy, the time step, At, was chosen to correspond to the maximum value 
allowed by the CFL stability condition. To minimize the effect of reflections, the ABC 
walls were placed at least 0.5 X0 away from the antenna. After running several 
simulations, it was found that the best agreement with the experiment occurred when a 
dipole source was placed at the mouth of the LTSA and the equivalent surface extended just 
enough to include the source. It can be seen that the agreement between the E-plane 
patterns of theory and experiment is good. In particular, we can see very good agreement 
in the mam beam and first side lobe. Discrepancies in the remaining side lobes are
probably due to a combination of FDTD numerical error, i.e., anisotropy, stair casing, and 
experimental error.

The second example considered was an LTSA on a low dielectric substrate (er = 
2.22, d = 0.06 mm, L = 6.1 10, a  = 14.25°, Wmax = 1.525 X0, Wc = 2.55 X0, Wmin 
approximately 0.02 X0, with f0 = 12 GHz). The comparison between results for theory



angle (rad)

a)

Fig. 7.6 Comparison of the hybrid FDTO with measured E-plane radiation patterns for 
an LTSA antenna, a) without dielectric substrate, b) with dielectric substrate.



and experiment is shown in Fig. 7.6b. As before, the feed consisted of a diode soldered 
across a slotline. The mesh was chosen so that the dielectric thickness could be modeled 
by a single cell, i.e., As = 0.059 m m o r l 0 = 17As. This, in turn, resulted in 
approximating Wmjn to be 0.118 Xo. As before, the ABC was placed at least 0.5 Xo away 
from the LTSA structure and the equivalent surface extended just enough to include a 
dipole source. It can be seen that there is fair agreement between the FDTD simulation and 
experiment in both the E- and the H-planes. The agreement, however, in the sidelobe 
regions is found to be worse than in the previous case which suggests that the dielectric 
may be having some effect on the accuracy. Moreover, the mesh resolution is not as good 
as in the previous case which also may be contributing to error.

7 .3 .2  Vivaldi results

Figure 7.7a compares the numerical with the measured results for a Vivaldi without 
a dielectric substrate (L = 6.3 Xq, Wmax = 1.77 X0, Wmin = 0.02 Xo, Wc = 2.55 Xo with 
fo = 10 GHz, dipole/diode feed). The FDTD mesh was chosen such that Xo = 20As. This 
resulted in modeling Wmin to be much larger than the experimental Wmm , i.e., 0.10 Xq. It 
was found that this structure was more sensitive to the FDTD mesh than the LTSA. Due to 
the arbitrariness of the mesh, several attempts were needed before obtaining this result. It 
can be seen that the agreement between theory and experiment is good. In particular, 
though the first side lobe is somewhat poorly modeled, the rest of the side lobes are in 
good agreement. It is believed that more iterations will most likely result in improved 
agreement.

Figure 7.7b compares the numerical E-plane pattern for a Vivaldi on a low dielectric 
substrate (er = 2.22, d = 0.5 mm, L = 0.677 X0, Wmax = 0.315 Xo, Wmin = 0.023 Xo, Wc
= Wmax with f0 = 35 GHz) with experimental results in [6]. In contrast to the previous 
cases, the antenna was fed by a rectangular waveguide/finline structure rather than a diode. 
Though an FDTD method could handle such a feed, the extra memory and computation 
would have made simulating the structure difficult. Since it has been found that the E-plane 
is relatively insensitive to the feed [13], a dipole source was used instead. It can be seen 
that despite the use of a different feed the agreement between the numerical and measured 
radiation patterns is good. As before, however, different meshing schemes were needed to 
determine the scheme which would yield the best results.
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a)

b)

Fig. 7.7 W ” n °{ the ^b rid  FDTD with measured E-plane radiation 
Vivaldi, a) without dielectric substrate, b) with dielectric substrate. patterns for a



7 .4  Comments about the Computation of the H-pIane

In this work we have compared the FDTD results only with measured E-plane 
radiation patterns. The H-plane radiation patterns have been, as alluded to in the 
Introduction, omitted due to difficulties in modeling the feed. It has been shown 
experimentally that the feed will often introduce a significant amount of spurious radiation 
into the H-plane while only moderately affecting the E-plane [13]. Consequently, the 
position of the feed and the presence of varying lengths of slotline transmission line which 
precede the TSA can have a profound effect on the H-plane radiation pattern. For the 
published experimental data being used for comparison in this work, this information was 
not given and, consequendy, accurate feed modeling was not possible.

However, even if all of the necessary information about the feed is provided, it is 
believed that there are other problems which might make obtaining an accurate H-plane 
pattern difficult. In particular, it has been found that the H-plane is very sensitive to the 
broadside field distribution of the antenna [6]. Consequently, we can expect the H-plane to 
be more sensitive to errors in modeling the taper than the E-plane. Because we are using a 
uniform mesh, there are a number of small anomalies along the taper due to stair casing. 
Moreover, there is a certain degree of arbitrariness in choosing how the stair casing should 
be done, and there is no way of knowing the optimum scheme that should be used. In 
addition, there is the problem of modeling small features. Due to the computer memory 
limitations, the minimum conductor spacing, Wmin, could not accurately be modeled. This 
seemingly small error, however, can have a profound affect on the H-plane since the 
geometry of the taper is dependent on the relative sizes of Wmjn and Wmax. If, for 
example, Wmin is large, then the geometry of the conductors needed to flare out to Wmax 
over a fixed antenna length, L, can be significantly different than if the Wmin were small.

7 .5  Conclusions

The hybrid Yee/scalar-wave algorithm has been used in conjunction with the time 
domain far-field transformations to successfully compute the E-plane radiation patterns of 
four different LTSA structures. Good agreement was found with several published works. 
t.e., < 0.5 dB and < 2 dB difference in the main and first sidelobes, respectively. Poor 
agreement, however, was found in the H-plane due to lack of information regarding the 
geometry of the feeds used in the experiment and errors created by the mesh due to the use 
of a uniform, rectangular grid. It is believed that extensions to a curvilinear, nonuniform



grid may result in better agreement in the H-plane. Moreover, use of higher-order 
differencing schemes such as the 2-4 scheme may also improve the results.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

With the growing interest in the FDTD method within the electrical engineering 
community , there has been an ever-increasing number of publications on the subject. It 
has been the author s observation that many of these works are focused almost 
exclusively on applications. Where applications are an extremely important aspect of 
understanding the limitation and accuracy of the FDTD method, this thesis was based on 
the premise that mathematical analysis could also be used to assist in understanding the 
method. Inspired by research done decades ago, this work has been a very modest 
attempt to mathematically examine the FDTD method in the hopes of not only improving 
the understanding of the technique but to suggest fundamental ways to improve its 
accuracy and efficiency. The mathematical analysis used in this work is by no means 
intended to match the rigor of many comparable papers on the subject published in 
standard mathematical journals. In fact, much of the analysis in this work, particularly, 
those involving Fourier analysis, should be considered heuristic in nature since the effect 
of possible boundary conditions, i.e., absorbing boundaries conditions, dielectric 
interfaces, was not taken into account. Nonetheless, this presentation is believed to 
provide the nonmathematician an easy to understand and familiar framework by which to 
understand the various forms of the FDTD method.

The purpose of Chapter 2 was to demonstrate an anomaly in the symmetric 
condensed node TLM algorithm. In particular, it is found that the transient 
electromagnetic fields modeled near the source region can exhibit spurious high- 
frequency oscillation which disappears suddenly when the observation point is moved 
only a few cells away. The accuracy of the low frequency response of this system, 
however, appears to be relatively unaffected by these oscillations. It is shown that using 
a different field/voltage relationship will eliminate these spurious oscillations while 
retaining the accuracy of the method. We conclude that a likely source of the spurious 
oscillations is the fact that the original field/voltage relation was not derived in 
accordance with the mathematical requirements required to insure convergence between 
the TLM solution and the exact solution to Maxwell’s equations. It is suggested that 
further work on a rigorous mathematical proof be done to demonstrate the equivalence 
between the symmetric node TLM and Maxwell’s equations. This will not only help 
define the proper field/voltage relationship but also allow a quantitative comparison with



the more commonly used Yee algorithm to be made to determine the relative advantages 
and disadvantages of each.

Chapter 3 provided a simple mathematical explanation for the presence of a 
fictitious dc offset field. It was shown mathematically and verified numerically that any 
transient charges present in the system will be artificially maintained by the Yee 
algorithm even after the charges have been removed from the system. Consequently, 
using field distributions as a transient source will generally result in a static charge 
buildup and an associated dc field. Several methods of removing this dc offset are 
presented. Though other approaches exist, including using divergence-free sources and 
filtering techniques, it is believed that the most efficient way to eliminate this offset field 
is to use a source with no dc component, because this approach requires no additional 
computations and offers a great deal of flexibility in choosing the distribution or the 
source.

Chapter 4 provided mathematical evidence verifying an empirical observation 
made several years earlier. In particular, it was found that the Yee algorithm has the 
highest accuracy when run at the largest time step. The eigenfunctions of the finite 
difference solution were derived using Fourier analysis and the bandlimited nature of the 
system demonstrated. Expressions for the truncation and the discretization error 
demonstrated that the leading-order error term of the Yee algorithm is generated by 
second-order error contributions from both the time and space discretizations. It is found 
that by choosing the maximum time step allowed by stability, maximum cancellation 
between the two errors will occur resulting in a smaller global error. It was concluded 
that the Yee algorithm should be run at the maximum allowable time step for not only 
maximum computational efficiency but accuracy as well.

Chapter 5 discussed the use of higher-order explicit differencing schemes to solve 
Maxwell's equations. In particular, a Fourier analysis of a higher order 2-4 differencing 
scheme was performed. A comparison with the Yee algorithm (2-2 scheme) was then 
made and the relative advantages of each discussed in detail. It is found that the 2-4 
scheme has a better accuracy in the high-frequency response of a system and will have 
less from grid anisotropy than the 2-2 scheme. In addition, the accuracy of the 2-4 
scheme can be increased from second-order to fourth-order accuracy by using 1) smaller 
time steps or 2) an effective dielectric constant concept. Potential drawbacks of a 2-4 
scheme include an increase in computational requirements and a decrease in spectral



bandwidth compared to the 2-2 scheme. The decrease in spectral bandwidth can be of 
particular consequence resulting in errors due to aliasing or decreased spatial resolution 
requiring higher discretization than the 2-2 scheme. Further work needs to be done to 
evaluate the possible effects of these errors.

Chapter 6 introduced a new and efficient formulation of the Yee algorithm. In 
particular, the Yee algorithm was combined with the finite difference scalar-wave 
equation to reduce the number of computations and computer memory needed per 
iteration. It was found that the hybrid approach is optimal for planar structures and 
geometries, i.e., planar circuit boards, microstrip structures and TSA antennas, resulting 
in identical numerical results with the Yee algorithm but at approximately twice the speed 
and one-third less memory. The accuracy and applicability of the Engquist-Majda 
absorbing boundary condition (ABC) were also demonstrated.

Chapter 7 demonstrated the applicability of the hybrid Yee/scalar-wave algorithm 
by solving the E-plane radiation patterns of the Vivaldi and the linear tapered slot 
antennas. The far-field patterns were computed using recently introduced far-field time 
domain transformations and the results compared with the published measured data. 
Though the overall agreement was found to be good, the results were found to be 
sensitive to the discretization scheme. It is suggested that future work should be 
concentrated on using curvilinear discretization in conjunction with the hybrid scheme in 
an effort to improve the accuracy.



APPENDIX A

PROOF THAT THE DIVERGENCE RELATION WILL BE PRESERVED 

BY THE INITIAL CONDITIONS OF THE SCALAR-WAVE EQUATION

106

We wish to show that a solution to the initial value problem of the wave equation, i.e,
2— 1 d2 —

y  E(x>y>z,t) 2" 2 ^ ( x >y>z,t)= 0 (A.l)
C C't

where E -  Exx + Eyy + Ezz; c -co n st, will preserve the divergence relation, 

V • E (x,y ,z,t) = 0 for t > t0 , if V • E(x,y,z,t = t0) = 0.

Proof:

Taking the divergence of (A.l), we obtain
2

V2(V-E(x,y,z,t))— I7 l  
c at

This can be rewritten as

2 I d 2
V <p(x,y,z,t—7 —j<p(x,y,z,t) = 0 

c d r
where V -E (x ,y ,z ,t)  = <p(xfy ,z,t).

If we assume the following

V-E(x,y,z,t = t0) = 0

then we have the following initial value problem (IVP),
2 I d 2V <p(x,y,z,t) — J — (p(Xiy>Z)t) = 0

c dt

By inspection, the solution to this IVP is given by 

<p(x,y,z,t) = V -E (x ,y ,z,t)  = 0 for t > t0.

Q.E.D.

(A.2)

(A.3)

(A.4)

(A.5)<P(x,y,z,t = t0) = o


