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Abstract

Time-point relaxation methods have been in use in circuit simulators for a number of years. 

Typically, block time-point relaxation methods are used, where the circuit being analyzed is parti­

tioned into several subcircuits or blocks, each consisting of several nodes. Before a relaxation 

method is used in a circuit simulator, its convergence properties need to be ascertained. Previously 

known sufficient conditions are too restrictive, in the sense that they do not take into account the 

effect of circuit topology on the convergence properties of relaxation algorithms. In this paper, we 

develop new sufficient conditions for the convergence of the block Gauss-Seidel-Newton and the 

block Newton-Gauss-Seidel algorithms, when applied to circuit simulation. For a given partition­

ing of a circuit, we define a set of feedback nodes which capture the topology of the partitioned cir­

cuit to a certain extent. We then show that the G-S-N and the N-G-S algorithms converge under 

certain mild assumptions if there is a path consisting of capacitors from each feedback node to 

ground, and if the time-step of the (implicit) integration formula is small enough. We also provide 

an example of a linear circuit on which it is also necessary that the sufficient condition derived 

herein be satisfied to obtain convergence of the G-S-N and N-G-S algorithms. As corollaries to our 

main result, we obtain improved sufficient conditions for the Gauss-Jacobi-Newton and the 

Newton-Gauss-Jacobi algorithms and for circuits partitioned in the Bordered Block Diagonal Form.
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1. Introduction

A circuit simulator is used to analyze the behavior of circuits over a time period, given a set 

of input signals. The circuit being analyzed is described by a set of algebraic differential equations:

O ( y ( i ) . y ( O . u ( f ) )  =  0 t € [OX ] ( i >la)

y W  =  y o a i b )

In (1.1a), u ( t )  6 RP is the vector of input signals ( currents or voltages ). y (O  € R n is the 

vector of circuit variables, and y ( t ) is the time derivative o f y (r ). G : DG £  R n x R n x R p R n 

is the function that describes the behavior of the circuit. The details of the formulation of G for a 

circuit w ill be explained in Section 2. In most conventional circuit simulators such as SPICE [l], or 

SLATE [2], the set of algebraic differential equations (1.1a) is discretized by means of an integra­

tion formula [3], and an approximation of (1.1a) at a set of discrete time-points

0 = * 1 < t2 <  ' ‘ ' <tN = T  is obtained. If. for example, the Backward Euler Formula is used to 

discretize ( l . la ),  the transformed equations at time-point tq are

G (
y b q ) - y ( t q_ i)

- .  y (i7) .  u (ta )) = o . ( 1 .2 )
where hq r? i, is the time-step of the integration formula, chosen so that the local truncation 

error is small [3].

At time point tq , we can write (1.2) in the form

where F : D f C R " -  f?" is a nonlinear algebraic function o f *  = y (  f, ). [t can be noted here 

that F  at time r, is defined by the choice of h, and the input u ( r , ). This implicit dependence of 

F  on h, and u (t„ ) w ill be made clear when we discuss the details of the equation formulation in 

Section 2. If the Newton-Raphson (N-R) algorithm is used to solve ( 1.3). then at each Newton- 

Raphson iteration, a system of linear equations of the form
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A z =  b

is obtained. The n Xn matrix A is the jacobian o f evaluated at the previous iterate in the 

algorithm. The solution z of (1.4) gives the next iterate in the N-R algorithm.

(1.4)

N-R

The main result in this paper is a new sufficient condition for the convergence of certain relax­

ation algorithms used to solve (1.3). We consider two relaxation algorithms, the Gauss-Seidel- 

Newton (G-S-N) algorithm and the Newton-Gauss-Seidel (N-G-S) algorithm. The G-S-N algorithm 

uses relaxation at the nonlinear level to solve (1.3). That is. the system of nonlinear equations in 

(1.3) is partitioned into subsystems, and the solution of the entire system is obtained by solving 

the subsystems in a certain sequence. The solution of each subsystem is obtained by using a N-R 

method, and during the solution of each subsystem, the other subsystems are relaxed. The G-S-N

method has been used in circuit simulators such as SPLICE [4], The N-G-S algorithm uses relaxa­

tion to solve the linear systems in (1.4) arising out of a N-R algorithm used to solve (1.3). Thus.

N-G-S uses a relaxation method at the linear level. The details of the G-S-N and the N-G-S algo- 

rithms will be described in Section 2.

We consider block partitioning, where the circuit being analyzed is partitioned into subcircuits 

consisting of several nodes each, which then serve as the subsystems in the relaxation method. In 

Section 3. we introduce the concept of a feedback node or variable for a given partitioning of a cir­

cuit (or system). The set of feedback nodes captures some of the properties of the interconnection 

between the partitioned subcircuits (or subsystems). Our main result, which is stated and proved 

in Section 4. shows that under certain mild assumptions, the G-S-N and the N-G-S methods con­

verge for a given partitioning of the circuit if there is a path consisting entirely of capacitors from 

each feedback node to ground, and if the time-step is sufficiently small. Existing convergence 

results [5] provide sufficient conditions that do not take into account the effect of circuit partition­

ing on the convergence of the relaxation methods, and require a capacitor to ground at every node 

in the circuit and a sufficiently small time-step. The sufficient conditions that we derive are less 

restrictive, because the set of feedback nodes for a given partitioning may be much smaller than the
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set of all nodes in the circuit. Indeed, for unidirectional circuits, it is possible to partition the cir­

cuit such that there are no feedback nodes at all in the circuit, and the G-S-N and the N-G-S 

methods always converge (in one iteration) without the requirement of having a capacitor from 

any node to ground, as can be inferred from our sufficient condition. Related work on block relaxa­

tion algorithms to solve load flow problems can be found in [6], However, the sufficient condition 

derived in [6] requires a certain matrix to be block diagonally dominant, [7.8] and it is not clear 

how this can be achieved in the case of circuits. Our work provides a simple sufficient condition for 

convergence that takes into account the effect of circuit partitioning.
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(2.1a)

2. Mathematical Formulation of the Circuit Equations

Consider a circuit described by the nodal analysis formulation [9].

q ( (  )  + / (  x (r ), u (t  ) )  = 0. q , x  € R n

q ( t )  «  / (  x (r ) ). f  ;D f  c R n -  R n . ( 2.ib )

Here. *  represents the vector of node voltages in the circuit, and q is the vector of charges at the

nodes of the circuit. / : Df  C is the function describing the currents entering each

node. After applying the backward Euler formula to discretize ? ( r )  at time f? with time-step 

h 1. we get

1 Uq )~q ( t , - 0  _  f ( . x U „ ) ) - f i x  (t, ) )
h----------------------------h--------1----- =  - 1  ( *  ).«  (f„ ) )

which can be written as

F ( at )  = + J ( x . u (r. ) )  +  d =  0

(2.2)

(2.3)

where x - x  (r, ). and d is a constant vector dependent on x (r, . , ) .  The jacobian of F  can then be

written as

M _  = L  M .  + M .
fa h ax $X (2.4)

The first term on the right hand side of (2.4) can be expressed as C /A . where C is an „  xn mere- 

mental capacitance matrix. The entries of C are

Cij ( incremental capacitance between node i and node j  ) ^  0. 

c n = ( Sum of incremental capacitors at node i )  £  0.

(2.5)

We Sha“  aSSUme th3t th6re are " °  ne« ative increme« al capacitances. We do not require the capaci­

tance matrix to be symmetric, that is. C „ and C , need not be equal. However, the capacitance 

matrix satisfies the following property; For each i 6 11 . . .  n

—  C,o ^ 0.
j *i

where C, 0 is the incremental capacitance from node i
(2.6)

to ground. It is possible that C,0 = 0 if there



7

is no capacitor to ground at node i .

From this brief discussion o f the formulation of the circuit equations, it is evident that the 

function Fin (2.3) and its jacobian depend heavily on the time-step and on the capacitances in 

the circuit. In fact as his reduced, the capacitances play an increasing role in determining the pro­

perties of F .  Our convergence results in Section 4 w ill show that a certain configuration of capaci­

tances m the circuit, together with a small enough time-step, w ill be sufficient to make the G-S-N 

and the N-G-S algorithms converge for a given partitioning o f the circuit. For the purpose of our 

analysis, we shall assume that the backward Euler formula is used to discretize the circuit. The 

use of any other implicit integration formula w ill not change the results obtained. The essential 

property we use is that the effect of the capacitances increases as the time-step is reduced.

We introduce some notations. Assign each variable in x to an equation in F .  Now consider 

any partitioning of x into:

where

(2.7a)

*¿.1
*«.2

1. • • • ,m

This partitioning of x induces a corresponding partitioning of F  as follows:

F  i ( * l . * 2 .  = 0
F 2( • * • .Xm) = 0

(2.7b)

i. X2. • • • . Xm ) = 0

( 2.8a)
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F.,1 
F, 2

(2.8b)

In (2.8). F , : R 1 — R "  consists of the equations assigned to the variables in x , .

For this partitioning o f the equations in F .we describe the G-S-N and the N-G-S algorithms.

2.1: The Gauss-Seidel-Newton Algorithm

The G-S-N algorithm uses relaxation at the nonlinear level to solve (2.3) partitioned as in

(2.8).

Algorithm (G-S-N):

1) Set *  =0. Guess «>. i =  1. ■ • • j n .Typically, this initial guess is the solution at the previous 

time-point.

2) For i =  1. • • • ,m , perform a single N-R iteration in the solution of

F ‘ ( *  +1)' +1). • • • ^ . x t . * i+ l<* >. • • • <* ) )  = 0 (2.9)

obtain x t . Set x, a +1) = x , . ( Note that the initial guess in the solution of (2.9) for x, isto

3) Set ^ — & + 1. If the error II x  ̂— x ̂  -1MI iis small enough, then stop. Otherwise, go to step 2.

Step 2 may be modified such that the subsystems F, as shown in (2.9) are solved exactly, or

up to a fixed number ( >  1 ) of N-R iterations. This modification does not alter the sufficient condi- 

tions for convergence that we derive later.

2.2: The Newton-Gauss-Seidel Algorithm

The N-G-S algorithm has two iteration loops. The outer iteration loop is similar to the outer 

loop for the N-R method used to solve the nonlinear system in (2.3). The inner loop is the
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relaxation loop, wherein a relaxation procedure is used to solve the linear systems resulting from 

linearization of F  in the outer N-R loop.

Algorithm (N-G-Sh

1) Set k -0 , Guess ( } for i =  1, • • j n . As in the G-S-N case, this initial guess is the solution 

at the previous time-point.

2) Linearize F  at x (* } to get the system of linear equations.

A n  A 12

A 2i A 22

1 2

A l/7i 
A  2m

z l *1
z 2

= ¿>2

Zm K

where A u = — L. evaluated at x (* >.
Oxj

3) Set 1=0. Guess z, u ) . i =  X. ■ ■ ■ .m.The initial guess is *,«»>■*,<*>.

4) For i = 1.2. • • • ,m . solve

(2.10)

A » = *; -  I A ^ / /+1)- l A i ; z / ' )
j <‘ j> i

Set z«(/+1) = f , .

5) Set / = l + 1. If the iterates z {n have converged or if l ^  M A X I T , then 

wise, go to step 4.

6) For i =  1, • • • ,m , set x/* +1 ̂= ¿.(f).

7) Set * = k + 1. If the iterates x 1* > have converged, stop. Otherwise, go to step 2.

(2 .11)

go to step 6. Other-

The positive integer M A X IT  determines the maximum number of times the inner loop (steps

4.5) is executed. The conditions for convergence we derive in Section 4 are independent of

M A X I T . However, experimental evidence shows that the speed of convergence is dependent on 

M A X IT  [10],



10

° '  “ • 0 ' S- "  “  Ü . . . »  b, I „ 1  Th* G-S-N

“  S 0 IM W ” "  ™
N-G-S k  .  Newton-SOR .I jo H ,b „
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3. Feedback Variables

We introduce the concept of a feedback variable or node in a partitioned circuit. Consider the 

partitioning of the circuit variables as in (2.6). (2.7). and the corresponding partitioning o f the cir- 

cuit equations as in (2.8). Then, we have the following definition:

Definition 1:

A  circuit variable xkJ with l^ k  and 1 ^ n k

i . j  . k < i  . 1 <  j  . and z €DF , such that

is called a feedback variable if there exist

d*« j
( z )  y* 0.

The corresponding circuit node is then called a feedback node.

In other words, given a partitioning of a circuit into blocks ordered in a certain way. a node 

k ,1 inside a block k is a feedback node if the equation k l  is a function of some node i . j in block

‘ W'th l > k ’ That 'S- n° de k 1 reCeives f eedback from some node in a higher numbered block. An 

analogous concept is that of a feed-forward node, which is defined below.

Definition 2:

A circuit variable , with 1 < *  « »  and 1 «  is called a feed-forward variable if there 

exist i , j  , 1 <k  , 1 ^  j  ^ n . t and 2 €Df , such that

u 1J

The corresponding circuit node is then called a feed-forward node.

The circuit equation at a feed-forward node is thus a function of some node in a lower num­

bered block: that is. there is feed-forward from a lower numbered block to a feed-forward node.

A couple of examples will help in explaining these concepts. Consider Figures 1 and 2. In 

F.gure 1. node 2 is a feedback node for the partitioning shown, and node 3 is a feed-forward node.
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= [V i  V 2]  

= [V 3 V4 ]

FP-9487

xTi  = [ V i  V 2 ]  

*T2 = [ v 3 V4 ]

FP-946«

Now in Figure 2. for the partitioning shown, there are no feedback nodes at all, whereas nodes 3 

and 5 are feed-forward nodes.

There is a simple technique to detect all the feedback and feedforward nodes in a circuit for a

given partitioning of the circu.t into blocks, and an ordering of the blocks. First, we construct a

directed graph G = (.V . E )with vertex set V being the set of nodes in the circuit, and arc set 

defined by

E -  { (u , v ) : node u is "affected” by node v }.
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By a node u being affected by node v . we mean that the circuit equation at node u is a function of 

the node voltage at node v . For the partitioning and ordering o f the blocks of the circuit, define a 

labeling function L : V -  where L (« )  is the number o f the block to which «  belongs.

Then u is a feedback node if  there is some node v such that (v  .u) is an arc in £ .  and

L  ( v ) >  L  ( «  ). u is a feed-forward node if there is some node v with L  ( v ) >  L  (u )  such that

(v  .u) is an arc in E . I f the blocks o f the partitioned circuit are chosen so that they are the strongly

connected components of G . then it is possible to order them so that there are no feedback nodes at 

all [12].
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4. Convergence Properties

An extensive study o f iterative algorithms such as the G-S-N and the N-G-S algorithms can 

be found in [11], The general sufficient conditions for the convergence of these methods require the 

spectral radius o f a certain matrix to be less than 1. For a nonlinear system such as a circuit, it is 

difficult to predict if the spectral radius of a certain matrix associated with the circuit w ill be less 

than one. However, it is possible to show, as we do in this section, that if the topology of the cir­

cuit satisfies certain properties then the spectral radius of the required matrix w ill be less than one

if the time-step is sufficiently small. Specifically, we require the existence o f capacitors to ground 

at certain nodes in the circuit, and not necessarily at every node.

Let

where

H l {z ) =

H ,r {z )  =

and A,j is defined as in Section 2.

H ( z ) = H l ~ K z ) H u { z ) .

A. 11(2  )  0 0

^ 21( 2 )  A 22( z ) 0

A m i ( z  )  A m2{ z  )

N
O

O
 

O A  im (2  )

0 0
A  ) 

0

(4.1)

(4.2a)

(4.2b)

We shall state the theorems proven in [ l l ] .  These theorems establish sufficient conditions for

the convergence of the G-S-N and N-G-S algor.thms in terms of the spectral radius of the matrix 

as defined by (4.1). (4.2).
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Theorem 4.1 (Gauss-Seidel-Newton Theorem):

Given F : D f C R "  ~ R * . assume that F W  )=0 for some interior point of Dr  and that F  is con­

tinuously differentiable on an open neighborhood S C D ,  of x ' . Consider a partition of x as given 

in (4.2.5). Assume that A u Cx' ):i are nonsingular and that p ( f f ( x * ) )<  1 where is

defined as in (4.3.1) and p ( H ) is the spectral radius of H .  Let x* « = g  ( x * ) b e  the mapping defined 

by the Gauss-Seidel-Newton iteration. Then, the mapping (x ‘  )  is well defined on an open

ball 5 C 5 0. and is a point of attraction of the iteration x k +1=g (* *  ).

Proof: The proof is discussed in detail in [ l l ] ,  pages 323-325.

Theorem 4.2 (Newton-Gauss-Seidel Theorem): Let be G-differentiable in an

open neighborhood S 0C D F of a point x* eDF at which the iacobian nf F  •*F U,CX1 me jacooian of F  is continuous and

F ( X ' )  =  °- SUPP° Se H l ( x ' } as defined ^  (4-3-0  is nonsingular and that p(/? (x ’ ) ) < l .  Then, for 

any K  >1.  x* is a point of attraction of the Newton-Gauss-Seidel iteration.

Proof: The proof is discussed in detail in [ l l ] ,  pages 326-328.

We next state and prove the main result (Theorem 4.3) in this paper.
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Main Result

Theorem «  U . F  be, w  M U m ,  0 j )  „  Q  ^  ^

■he - W .  . (  (2.3). Let ,  b. ee.Uooom.y „  . . .  _  „

Assume the following;
Ò *

(1 ) A ll principal square submatrices of A ( x * )
are invertible, and their inverses have bounded

norms.

(2 ) The Jacobian « / / *  is independent o f the time-step and has bounded entries.

(3 ) There is a path consisting entirely of
capacitors from each feedback node to ground.

Then.

0 TheiterateS in theG ~ S - ;V « — verge t o , '  if the time-step h ls small enough, and 
if the initial guess is sufficiently close to x * .

10 " « r“ a t , - .  then the N-G-S method converges if the tim e ^ p h  is smal.
enough, and if the initial guess is sufficiently close to the solution , ' .

Proof:

We introduce the concept of capacitor connected
components of a circuit.

Definition 4.1:

Let Gc — ( V . Ec ) be 

(a , v )€ Ec if there
a graph with 1/ being the set of nodes in the circuit, and with nodes 

is a capacitor between them in the

to a connected component of G is a capacitor
circuit. Then the set of nodes corresponding

connected component of the circuit. The graph Gc 

called the graph induced by the capacitors of the circuit.
IS
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The following example w ill clarify the above Definition. Consider the circuit shown in Figure

3a. The corresponding graph Gc is shown in Figure 3b. The capacitor connected components are 

then {1,2} and {3,4}.

W -948»

Figure 3a
Figure 3b

Let * , 4. be the vectors of circuit variables with the following properties:

(1 ) For each t -  1. . K . xF , contains variables whose corresponding nodes form capacitor con-

nected components of the circuit.

(2) Each X f J . i = 1. • ■. A '. contains at least one feedback variable defined by the partition of the 

circuit.

(3) Each feedback variable belongs to exactly one of xF 1§ • • • K

L e t  * f  [ * f .i  x F  P ]. Let the vector xN contain all variables in x  that are not in 

Choose a permutation matrix P , such that
x F .
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Then it is easy to see that.

P T x =
xN
XF (4.3)

pT H  p _ f ^ X
H fn j .

P T H „ P  =
0 0

Hfn ,u Hff ,u
The submatrices on the right hand side of (4.4a). (4.4b) have

(4.4a)

(4.4b)

certain properties. First of all.

H f f z  = ^  CFFZ +  Df f z  

H ff .u = -j- CFF U + Dff u

(4.5a)

(4.5b)

where CFFX + CFFV =  CFF is the restriction of the capacitance matrix C to the nodes in The 

matrices DFFX, DFF U. H NFX . H FNJ_ and H FNV do not contain any entries that are contributed 

by capacitors, and hence their entries are bounded, irrespective o f the time-step. The matrices 

H nnj_ and H f f z  have inverses which have bounded norms.

Since P  is a permutation matrix. P~^ -  pT Hence

P( t P TH L P  )- i  ( p r h v P ) )  =  p( H l- iHu )

Note that for any h >0.

( P r H L P ) ~ K P r Hu P )  =  (h P r HL P Y K h P r Hv P )

Using (4.4a). (4.4b) and (4.7) together with extensive algebraic manipulation, we get

where.

( P t H l P ) - K P t H u P )
L M  
S T

L  ) - ' H NFLH f F'z H FNU

M  = h -l ~  X h f~f\l H fn l ) “ » H vf x H fF\L H ff u

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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s h (  h H FFj_ -h ) - i H fnju ( 4.n )

T  =  (hH F F i -h H F N iH ^ z H N F i ) " i  HFF U ( 412)

We show in Claim 1, that as h -*0 L  M  anH c ♦ ~v, , m  , and o tend to 0. and T  tends to a certain matrix. We

w ill need the following Lemma to prove Claim 1.

Lemma 4.1

Let B = [bij ] be an N  XN  matrix with the following properties:

16a 1 > Z  I > 0: i = 1. • • • ,n
j

such that strict inequality holds in (4.13) for at least one row of B.  

where equality holds in (4.13), and let Y  be the set of rows where strict

(4.13)

Let W be the set of rows 

inequality holds in (4.13).

Let G = (V. E) be the directed graph of B. that * ̂  = f 1. • • ' -Ai). and for i . (i J ) € £ if and

only if  b,j * 0 .  Assume that for each i € W.  there exists a k €7 such that there is a path from i to 

k inG.  LetZ) be the diagonal matrix whose entries are the diagonal elements o f B . Then

p U  - d - ' b  ) <  i.
Further, if bu >0, for all i . and <0  for all then 0. 

non-negative.)

(4.14)

(That is. each entry of B~l is

Proof o f Lemma 4.1: The proof is given in the Appendix. 

We use Lemma 4.1 to prove the following claim.

Claim 1:

lim r
h ^ 0 L =  0

lim 
h —*0 M =  0

lim c 
h -*0 ^ =  0

(4.13)

(4.14)

(4.15)
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lim 
h -*0 T  =  Cvj7FF Z ^FF.U (4.16)

Proof o f  Claim Is It can be easily seen from (4.9) and (4.10) that (4.13) and (4.14) are true. It 

remains to show that (4.15). (4.16) are true. From (4.5a). (4.5b). and (4.11). we can see that if 

Cff  z  is invertible, then

lim ç _  lim u r  - i  it 
h -»0 ^ h -»0 h Cf f z  H f n .u =  0. (4.17)

To see that CFFZ is invertible, note that Crr T + Crr r, is a sniitrir.« r  , ,T ^ f f .u is a splitting of CFF such that the diagonal

elements of CFF are the diagonal elements of CF F Z . In addition. C,'FF is a block diagonal matriz

with the diagonal blocks corresponding to the variables
xf .!• ' ‘ ’ ’¿FF-  Since each xF t contains at

least one feedback node, and each feedback node is connected to ground by a path of capacitors, 

each diagonal block is irreducibly diagonally dominant [13], The only nonzero rows in the matrix 

CFFU corresP°nd 10 feedback nodes. Each block of CFFZ is diagonally dominant. Let £ be a 

row m CFF such that the diagonal dominance in row £ is not strict. Then, there is a path

2 ' "  J “  the graph of Cff with strict diagonal dominance in row j .  let k be the smallest 

index such that the ikik +1 entry of CF F Z is zero. Then clearly there is a path in c FF , .

and strict diagonal dominance exists in row £t . Thus CFF L satisfies the assumptions of I ____ .

4.1. From Lemma 4.1. each diagonal block of CFFZ is invertible. ThusCFFZ is invertible. This 

proves (4.15) and (4.16) and consequently, Claim 1. □

To prove Theorem 4.3, we need the following claim;

Claim 2:

p( C f^ L CFF¡j ) <  1. (4 jg j

Proof o f  Claim 2: From the proof of Claim 1. we know that CFF = CFFZ +  C„ „  is block diago­

nal. w.th each diagonal block being irreducibly diagonally dominant. Also, since the matrix CFF is 

the restriction of a capacitance matrix to the set of nodes xF . it has positive diagonal entries and 

nonpositive off-d.agonal entr.es. Thus. CFF is a block diagonal matrix, with each diagonal block
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being an M -  matrix [ l l ] .  In the proof of Claim X. we have seen that CFFS satires the assume 

uons of Lemma 4.1. and thus CFFX is invertible, and Cfj>x  >  0. Thus the splitting 

CFFZ + CFFV is a regular splitting of the M -m atrix CFF [ l l ] .  Thus, from [11] page 56. we have

This proves Claim 2. □
p( Cfpj" Cpp u ) <  1.

(4.19)

The assertions of Claim 1 and Claim 2 together with (4.6) and (4.8) imply that

h ^ Q P i H t ' H u  )  <  1.

Since the spectral radius of a matrix is a continuous function of i 

exists a time-step h >  0 such that

(4.19)

its entries. (4.19) implies that there

P (  H l 1H u) <  1. (4 .20

Theorem 4.3 ,s now essentially proven. Part a) is immediate from (4.20) and Theorem 4.1. Part b)

is immediate given the assumption of G-differentiability together with (4.20) and Theorem 4.2. O

Results similar to Theorem 4.3 can be obtained for the Gauss-Jacobi-Newton (G-J-N) algo­

rithm and the Newton-Gauss-Jacobi (N-G-J) algorithm in which the relaxation method used is the 

Gauss-Jacobi method rather than the Gauss-Seidel method. As a corollary to Theorem 4.3. we have

Corollary 4.1: Let F , x ' and A (x ' ) be as defined in Theorem 4.3. In addition to the assumptions

of Theorem 4.3. assume that there is a path consisting of capacitors from each feed-forward node to 

ground.

Then.

0 The aerates in the G-J-N algorithm converge t o * '  if the time-step h is small enough, and if 

the initial guess is sufficiently close to x \
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ii) I f F  is G-differentiable at * \  then the N-G-J method converges if  the time-step is small 

enough, and if the initial guess is sufficiently close to the solution x * .

Proof: The proof o f Corollary 1 is identical to that of Theorem 4.3 with the feedback 

variable/node being replaced by ” feedback or feedforward variable/node

A special partition of the circuit is the Bordered Block Diagonal Form (BBDF). The circuit is 

partitioned into two subsystems: one subsystem corresponds to a set o f tearing nodes whose remo­

val causes the circuit to be decomposed into independent components which constitute the other 

subsystem [14]. The circuit variables are thus partitioned into

X = *1
*2 (4.21)

where *  ,  corresponds to the set of tearing nodes, and i , corresponds to the rest of the circuit. This

is essentially a partition o f the circuit variables as in (2.6) with m =2. The jacobian then has the 

form

g - A

A  1ii
A lii

21
11

12

22

(4.22)

Where the A A ....... A 'u correspond to the independent components of the circuit left after the

tearing nodes are removed from the circuit. The matrix A is thus block diagonal with the borders 

A 12 and A ,, tacked on. This leads to the name Bordered-Block Diagonal Form for the partitioning 

scheme. Details of the BBDF form and means to achieve such partitions can be found in [14. 15], 

The feedback nodes defined by this partition would lie entirely within the subsystem and the 

feed-forward nodes would lie in * 2. However Corollary 4.2 shows that in the case of a circuit par- 

titioned as in (4.21). capacitances to ground at tearing nodes, together with other assumptions as in
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Theorem 4.3. suffice for the convergence of the G-S-N and the N-G-S algorithms on circuits parti­

tioned as in the BBDF. This is surprising, since the tearing nodes contain the feed-forward nodes 

defined by the partition, and not the feedback nodes. Intuitively, the explanation for this is that 

when x  is partitioned into two systems, alternately solving for and x 2 may be viewed as solv­

ing for x i first, then x 2 and so on. or solving for x 2. then x  j and so on.

Corollary 4.2

Let F  ,x  \  and A  ( x * ) be as defined in the statement of Theorem 4.3. Consider a BBDF partitioning 

of F  and x . In addition to the assumptions of Theorem 4.3. assume that there is a path consisting 

of capacitors from each tearing node to ground.

Then.

i) The iterates in the G-S-N algorithm converge to x* if the time-step h is small enough, and if 

the initial guess is sufficiently close to x *.

ii) If F  is G-differentiable at x . then the N-G-S method converges if the time-step h is small 

enough, and if the initial guess is sufficiently close to the solution x * .

Proof: The proof of Corollary 2 is similar to that of Theorem 4.3.

It is to be expected that the partitioning of a circuit can play an important part in the conver­

gence properties of the G-S-N and the N-G-S algorithms applied to solving the circuit. The results 

in this Section justify this intuition. Every partitioning of a circuit determines a set of feedback 

nodes of the circuit. If paths to ground consisting entirely of capacitors exist at these nodes, con­

vergence of the G-S-N and the N-G-S algorithms is guaranteed if the time-step is sufficiently small. 

In case of the BBDF partitioning scheme, the tearing nodes play the part of the feedback nodes. In 

the next Section we give an example of a circuit for which the condition of Theorem 4.3 is also 

necessary for the G-S-N method to converge for some time-step. Thus, the sufficient conditions
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derived here are the best possible in the sense that they are topological, that is they require the 

topology of the circuit to satisfy certain constraints.
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5. Discussion and Examples

The main result in this paper (Theorem 4.3) basically says that all nodes in a circuit are not 

equal in their effect on the convergence properties of the G-S-N and the N-G-S methods used to 

solve the circuit. Earlier convergence results on block relaxation methods of the type we have dis­

cussed did not bring out this fact. In the work of [5], the sufficient condition that was derived did 

not take into account the effect of the partitioning of the circuit on the convergence properties of 

the G-S-N and N-G-S methods. Conditions on the convergence of block relaxation methods for the 

solution of load flow problems in power systems analysis have been studied in [6]. However, this 

work defines a concept of block diagonal dominance, and it is not clear what properties the circuit 

needs to satisfy for the matrix A in (2.10) to be block diagonally dominant.

Our work essentially contributes an easily testable sufficient condition for convergence, that 

also takes into account the partitioning of the circuit. We have introduced the concept of feedback 

and feedforward nodes which capture, to a certain extent, the topological properties of the parti­

tioned circuit. We have then shown that these sets of nodes play an important part in the conver­

gence of the G-S-N and the N-G-S methods (Theorem 4.3. Corollary 4.1). As a corollary to our 

main result (Corollary 4.2). we also obtain a sufficient condition for the convergence of the G-S-N 

and N-G-S algorithms on a circuit partitioned in the BBDF form.

We can show that in some sense, our sufficient condition is the best possible. Consider the 

partitioned circuit of Figure 4. Nodes 2 and 4 are the feedback nodes. We wish to use the back­

ward Euler formula with time-step h to discretize this circuit in time, and then use the G-S-N 

algorithm to solve the circuit at each time-point. Theorem 4.3 states that the G-S-N method 

applied to solve this partitioned circuit will converge for some choice of time-step if there are paths 

consisting of capacitors from the feedback nodes to ground. To establish a capacitive path to 

ground from each feedback node, we need a capacitor to ground from at least one of 2. 3 and one of
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Figure 4

4, 5. Let a = y = j3 = 100. Fix the time-step h to be 0.001 seconds. We checked for the conver­

gence of the G-S-N algorithm with different configurations of capacitances to ground in the circuit. 

The observations are summarized below:

1) No Capacitors to ground : If there are no capacitors to ground at any node in the circuit, the 

spectral radius of the iteration matrix is 1.1036, and the G-S-N algorithm does not converge. In 

fact, it can be checked that the spectral radius of the iteration matrix w ill be strictly larger than 1 

for any choice of the time-step h .

2) Capacitor (1 Farad) to ground at node 2 : If a capacitor to ground of 1 Farad is placed at node 

2. then there is a path consisting of capacitors from the feedback node 2 to ground, but there is no 

such path between node 4 ( the other feedback node ) and ground. The spectral radius of the itera­

tion matrix is 1.0956. and the G-S-N algorithm does not converge. This is true for any choice of
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the time-step h .

3) Capacitor (1 Farad) to ground at node 3 : There is a path to ground of capacitors from node 2 

but not from node 4 to ground. The spectral radius of the iteration matrix is 1.0956, and the G-S- 

N algorithm does not converge.

4) Capacitor ( l  Farad) to ground at node 4 : There is a path consisting of capacitors from node 4 

to ground, but not from node 2 to ground. The spectral radius of the iteration matrix is 1.0961, 

and the G-S-N algorithm does not converge.

5) Capacitors (1 Farad each) to ground at nodes 2, 4 : There are paths consisting of capacitors 

from each feedback node to ground. Theorem 4.3 implies that the G-S-N algorithm converges for 

some time-step. We observe that for h =0.001 seconds, the spectral radius of the iteration matrix 

is 0.5525, and the G-S-N method converges.

6) Capacitors ( l  Farad each) to ground at nodes 3, 5 : There are paths consisting of capacitors 

from each feedback node to ground. Theorem 4.3 implies that the G-S-N algorithm converges for 

some time-step. We observe that for h =0.001 seconds, the spectral radius of the iteration matrix 

is 0.5526, and the G-S-N method converges.

Thus, we see that for the G-S-N algorithm to converge for some time-step, it is necessary 

(Observations 5, 6) that the feedback nodes be connected to ground by paths consisting entirely of 

capacitors. This example thus demonstrates that the sufficient condition of Theorem 4.3 is also 

necessary for convergence in certain examples, and is thus the best possible (as mentioned at the 

end of Section 4).

This example also illustrates the distinctness of the sufficient condition of Theorem 4.3 from 

sufficient conditions which require the jacobian matrix A (Equation (2.10)) to be point-wise [5] or 

block-wise [6] diagonally dominant. Consider the circuit of Figure 1 with capacitors to ground as
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in 5) above. The matrix A  for this circuit (with capacitors replaced by companion models) is 

shown below.

2 -1 0 0 0 0
-1 2003 -1101 0 0 0
0 -1001 1003 -1 0 0
0 0 -1 2003 -1101 0

-100 0 0 -1001 1003 -1
0 0 0 0 -1 2

Figure 5

A close inspection of the matrix in Figure 5 shows that it is not point-wise diagonally dominant in 

the fifth row. and it is not block-wise diagonally dominant. However, the G-S-N algorithm con­

verges as predicted by Theorem 4.3.

Similar results were observed for a BBDF partitioning of the circuit in Figure 4. with nodes 2 

and 4 chosen as the tearing nodes. For the convergence of the G-S-N method (for some time-step), 

it was necessary to have paths consisting of capacitors to ground from each tearing node (Corollary 

4.2).

The G-S-N and the N-G-S methods were implemented in a simulator written in C. running on 

a VAX-11/780 computer. We tested some digital MOS circuits. Two of the circuits tested were a 

ring of inverters (Figure 6) and a one bit full adder (Figure 7). We summarize the results for the 

G-S-N algorithm in Table 1. The measured parameter NRI is the average number of iterations of 

the outer relaxation loop at every time-step (averaged over the simulation interval), and is a meas­

ure of the speed of convergence of the algorithm. The parameter K  is the maximum number of N-R 

iterations used to estimate the solution of each subsystem in the inner loop. The term NLBT stands 

for the Nearly Lower Block Triangular Form in which the circuit is partitioned into more than two 

subcircuits, and the partitioning is such that the adjacency matrix of the circuits (when linearized) 

are "nearly” lower block triangular. The term BBDF refers to a partition of the circuit by removal
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of a set of tearing nodes. The NLBT partition and the tearing nodes for the BBDF partitioning are 

marked in Figures 6 and 7.

Table 1: N R I  for the G-S-N Algorithm

K
Ring of inverters Full Adder
BBDF NLBT BBDF NLBT

1 4.97 4.97 4.05 4.46
2 4.95 4.96 3.52 4.03
3 4.95 4.96 3.50 3.95

Digital MOS circuits usually have low gain and seem to be robust with regard to convergence. 

We found that the G-S-N and the N-G-S methods converged for most of the partitions of the cir­

cuits we tested. ( However, the speeds of convergence varied widely for different partitionings of 

the same circuit [10].) This is not true in high gain analog MOS circuits and for bipolar circuits, 

where partitioning needs to be done carefully to ensure convergence. We believe that our results 

w ill be especially beneficial in choosing a partitioning for a circuit that has high gain, such as the 

example in Figure 4.

Figure 6: Ring of Inverters.
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Figure 7: One-Bit Full Adder.

The convergence results of Section 4 may be applied to other systems of algebraic differential 

equations of the form (2.1). The main assumption that the system of equations must satisfy is

that of (2.5) and (2.6). Our results can be applied to get similar convergence results for systems of 

the form

Q x ( r ) = F  ( x (t ), u ( t ) )  (5.1)

where x is the vector of unknown variables, and u is some known stimulus. The matrix Q in

(5.1) needs to satisfy the assumptions satisfied by the matrix C in (2.5), (2.6). The need for a

capacitor to ground at node i in the circuit is really a way of ensuring that there is strict diagonal
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dominance in the i th row of the capacitance matrix C . Similarly, the existence of a path consist­

ing of capacitors from node i to ground is equivalent to saying that in the matrix C . there is a path 

from row i to some row j  where strict diagonal dominance exists. Thus, the results of Theorem 

4.3. Corollaries 4.1 and 4.2 can be easily applied to systems of the form (5.1).

In conclusion, this paper provides a topological sufficient condition for the convergence of 

relaxation methods used to solve block-partitioned systems of algebraic equations arising from 

differential equations (after the application of an implicit integration formula). We have examples 

of circuits where these conditions are also necessary for convergence, thus showing that the 

sufficient conditions are the best possible.
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Appendix

We prove Lemma 4.1 by induction on n , the order of B . For the basis case, take n =1. that is 

B is a real number. It is easy to see that I  -  D ~ lB is 0. and thus (4.14) is satisfied. Assume the 

hypothesis is true for n < N . Let B be a matrix as in Lemma 4.1 with n . Denote by Q =  [qi} ] 

the matrix I  — D ~ lB . Note that Q has the same directed graph associated with it as does B . Also, 

each diagonal entry of Q is zero, and for W . Y  as defined in the statement of the Lemma.

iovo ll i €W . £  Iqi} I =  1 ( A1)
j =i

fo r d l i * Y .  Z  ]9ij I <  1 (A2 )
j -1

The statement of the Lemma regarding paths in the graph corresponding to B is equivalent to say­

ing that for every i € W . there is a path in the graph of Q between i and some j  € Y . It is easy to 

see from the Gerschgorin Circle Theorem[ll] that p( Q )  <  1. Assume that A is an eigenvalue of Q 

with IA I =1. and let a be the corresponding eigenvector, chosen so that ||a H «« 1. We differentiate 

two cases;

Case 1: I aj I — 1 for all i €{1. • • • , N }. For this case, consider i € Y . We have

1 = I A ai I <  £  \ql} I \aj I = Z  1 <  L
j =i ; =1

which is a contradiction.

Case 2: I I <  1 for some i . In this case, let 

T = i :  

A = i ;

l«i I 

la, I

(A3 )

(A4 )

(A5 )

We can assume without loss of generality that T = { l .  • • • , r } and A = {r +1. • • • j V }. ( I f  this
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were not so, we could choose a permutation matrix U  such that U a =  a . with I a{ I < 1 for i , 

and I ¿i 1=1 for r  +1 < N . Then consider the matrix Q = (J  Q U T . and note that a is the eigen-
.a A

vector of Q corresponding to A. We could thus work with Q instead o f Q j

The matrix Q can be written as

Q = (A  6)
Q a  Q 12
Q 21 Q 22

where Q u is r  X r , and Q 22 is N  —r x N  —r . Consider k >  r . Assume that qkj ^ 0  for some j  .

Then,

1 <  ! \ak I ^  I I I ai I <  Z  I I ^  1
/ *k l**k. (A7 )

(A 8 )

which is a contradiction. Hence qkj =0 for all ; < r .  Thus£2i=0- 

Let W j be the set of rows in Q n such that if i € then

Z !«a I = L
Clearly, W 1C W . Let Y 1 = { 1, • • • / } - Wj .  For each i 6 W lp let Si be the set of nodes in Y  such 

that there is a path in the graph associated with Q from i to every node in S i. Assume that j  €5f 

implies j  > r  . Then, for j  €5 j, let i i ji 2-..ir - i lr = / be the shortest path in G from i to j . Let id . 

2^d  be the first index > r  in this path. Then, it is clear that Çid_1i</*£0. That is. i j - i € Y lf and 

there is a path from i to in the graph corresponding to Q ^  On the other hand, assume there is 

a j  €Si with j  . Consider any path from i to j . This path cannot visit any l with l > r  , since

Q2\—0. Thus, there is a path from i to j  entirely in the graph corresponding to Qn- Also j  6T 

Thus Q u satisfies the assumptions of the Lemma. Similarly, we can show that Q 22 satisfies the 

assumptions of the Lemma. Also each of Q u . Q 22 has order at most N - l .  Thus, by the induction 

hypothesis.

P(Q 11)  ^  1 » p(Q22^ ^  1 - (A9 )

Since Q 2 1 —O, (A9 ) implies that p (Q ) < 1. Thus, by induction on the order of the matrix Q. the
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the lemma is proved.

To prove the second part of the Lemma, note that if bit >0. and <0  for all i * * j . then, 

using (A9 ) together with (2.4.8) from [ l l ] ,  we have 0. □
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