WEIGHT DISTRIBUTION FORMULA FOR SOME CLASS OF CYCLIC CODES

Tadao Kasami

```
REPORT R-285 APRIL, 1966
```


UNIVERSITX OF HLLINOIS URBANA HLLINOIS

WEIGHT DISTRIBUTION FORMULA FOR SOME CLASS OF CYCLIC CODES
 Tadao Kasami

This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28043 AMC 00073 (E), and in part by the National Science Foundation under Grant NSF GK-690, and in part by the Air Force Cambridge Research Laboratories under Contract AF 19(628)4379。

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited. Qualified requesters may obtain copies of this report from DDC.

WEIGHT DISTRIBUTION FORMULA FOR SOME CLASS

 OF CYCLIC CODES
Tadao Kasami

Abstract

Let $h_{1}(X)$ and $h_{2}(X)$ be different irreducible polynomials such that $h_{1}\left(\alpha^{-2^{h}-1}\right)=0$ for some $h(0<h<m)$ and $h_{2}\left(\alpha^{-1}\right)=0$, α being a primitive element of $\mathrm{GF}\left(2^{\mathrm{m}}\right)$. This paper presents the weight distribution formula of the code of length $2^{m}-1$ generated by $\left(x^{2^{m}-1}-1\right) /\left(h_{1}(X) h_{2}(X)\right)$ for any m and h. Some applications to the cross-correlation problem between two different maximum length sequences are presented.

1. Introduction

W. W. Peterson [1] calculated a number of weight distributions for BCH codes of lengths 63 to 1023 and their dual codes by digital computation. He observed that some BCH codes with large t for a given $m(5 \leq m \leq 10)$ have a very simple structure of weight distribution. The result presented here is a theoretical development of his observation.

Let C be a cyclic code of length $2^{m}-1$. The extended code of C is the code with an overall parity check added to C as the first digit. The first symbol in a code vector is numbered 0 , and for $i>1$ the $i-t h$ digit is numbered α^{i-2}, α being a primitive element of $G F\left(2^{m}\right)$. Now for $a(\neq 0)$ and $b \in G F\left(2^{m}\right)$ and for a code vector v of the extended code, permute the symbol in position X to position $\mathrm{aX}+\mathrm{b}$. Then, the resulting vector is denoted by $\pi_{a b}$. W. W. Peterson [1] proved that the extended codes of BCH codes are invariant under doubly transitive group of permutations $\pi=\left\{\pi_{a b} \mid a(\neq 0)\right.$, beGF (2^{m}) \}. This paper presents the weight distribution formula for a class of cyclic codes of length $2^{m}-1$ whose extended codes are invariant under π.

Let $g_{1}(X)$ and $g_{2}(X)$ be different irreducible polynomials such that

$$
\begin{align*}
& g_{1}\left(\alpha^{2^{h}+1}\right)=0 \quad \text { for some } h(0<h<m) \tag{1}\\
& g_{2}(\alpha)=0 \tag{2}
\end{align*}
$$

The degree of $g_{1}(X)$ is a factor m^{\prime} of m and the degree of $g_{2}(X)$ is m. Let

$$
h_{1}(x)=x^{m^{\prime}} g_{1}\left(x^{-1}\right), h_{2}(x)=x^{m} g_{2}\left(x^{-1}\right)
$$

Let C_{0}, C and C^{\prime} denote binary cyclic codes with length $2^{m}-1$ generated by $g_{1}(X) g_{2}(X),\left(X^{2^{m}-1}-1\right) /\left(h_{1}(X) h_{2}(X)\right)$ and $\left(x^{2^{m}-1}-1\right) /\left[(X-1) h_{1}(X) h_{2}(X)\right]$ respectively. Then C is the dual code of C_{0} and a subcode of C^{\prime}. If $h=1$, then C_{o} is a double error correcting $B C H$ code, and if m is odd and $h=(m-1) / 2$, then C is
a BCH code with the second largest t for given m.
In what follows, the weight distribution formula of code C for any m and h will be derived. This problem is closely related to the crosscorrelation problem between two different maximum length sequences.* Some applications to the problem will be presented in section 6 .

2. Preliminary Lemmas

Lemma 1: The extended code of C^{\prime} or C_{0} is invariant under π.
This lemma follows from the definition of C^{\prime} or C_{o} and a general theorem [2]. Let

$$
\begin{equation*}
m=m^{\prime} m^{\prime \prime} . \tag{1}
\end{equation*}
$$

Since $\alpha^{2^{m-h}+1}$ is a root of $g_{1}(X)$, it can be assumed that

$$
\begin{equation*}
2 \mathrm{~h} \leq \mathrm{m} . \tag{2}
\end{equation*}
$$

Since $\left(2^{m^{\prime}}-1\right)\left(2^{h}+1\right)$ is divisible by $\left(2^{m}-1\right)=\left(2^{m^{\prime}}-1\right)\left(2^{m^{\prime}\left(m^{\prime \prime}-1\right)}+\right.$ $\left.2^{m^{0}\left(m^{\prime \prime}-2\right)}+\ldots+1\right)$,

$$
h \geq m^{\prime}\left(m^{\prime \prime}-1\right) .
$$

From (1) and (2),

$$
\begin{equation*}
m^{\prime} m^{\prime \prime} \geq 2 h \geq 2 m^{\prime}\left(m^{\prime \prime}-1\right) \tag{3}
\end{equation*}
$$

Hence,

$$
\mathrm{m}^{\prime \prime}=1 \text { or } 2 .
$$

If $m^{\prime \prime}=2$, then it follows from (3) that

$$
m^{\prime}=h .
$$

That is, there are only two cases:

$$
m^{\prime}=m
$$

and

$$
m^{\prime}=m / 2=h .
$$

[^0]The following well-known lemmas will be used later.
Lemma 2: Let $u(\ell)$ denote the smallest positive integer u such that $2^{u} \equiv 1(\bmod \ell)$. Then, $2^{u^{\prime}} \equiv 1(\bmod \ell)$ if and only if $u^{\prime} \equiv 0(\bmod u(\ell))$. Let $\left(\ell, \ell^{\ell}\right)$ denote the greatest common divisor of ℓ and ℓ :

Coro1lary 3: Let $u=\left(u_{1}, u_{2}\right)$. Then,

$$
2^{\mathrm{u}}-1=\left(2^{\mathrm{u}_{1}}-1,2^{\mathrm{u}_{2}}-1\right)
$$

Lemma 4: $2^{\mathrm{u}}+1$ (or $2^{\mathrm{u}}-1$) is divisible by $2^{\mathrm{u}^{\prime}}+1$, if and only if u is divisible by u^{\prime} and u / u^{\prime} is odd (or even).

$$
\begin{align*}
& \text { Let } c^{0}=(m, h), c=(m, 2 h) \text { and } v=\left(2^{m}-1,2^{h}+1\right) . \text { By Corollary } 3 \\
& 2^{c^{\prime}}-1=\left(2^{m}-1,2^{h}-1\right) \tag{4}\\
& 2^{c}-1=\left(2^{m}-1,2^{2 h}-1\right) \tag{5}
\end{align*}
$$

Since $\left(2^{h}+1,2^{h}-1\right)=1$,

$$
\left(2^{m}-1,2^{2 h}-1\right)=\left(2^{m}-1,2^{h}+1\right)\left(2^{m}-1,2^{h}-1\right)
$$

Thus,

$$
\left(2^{c}-1\right) / v=2^{c^{\prime}}-1
$$

By definition, $c=c^{\prime}$ or $2 c^{\prime}$. Therefore, we have:
Lemma 5: If $c=c^{\prime}$, then $v=1$. Otherwise,

$$
\begin{equation*}
v=2^{c^{\prime}}+1=2^{c / 2}+1 \tag{6}
\end{equation*}
$$

The next lemma is due to Pless [3].
Lemma 6: Let a_{j} and b_{j} denote the number of code vectors of weight j in a code A and the number of code vectors of weight j in the dual code of A respectively. If $b_{1}=b_{2}=0$, then the following power moment identities hold:

$$
\begin{aligned}
& \Sigma a_{j}=2^{k} \\
& \Sigma j a_{j}=2^{k-1} n \\
& \Sigma j^{2} a_{j}=2^{k-2} n(n+1) \\
& \Sigma j^{3} a_{j}=2^{k-3}\left(n^{3}+3 n^{2}\right)-3!2^{k-3} b_{3} \\
& \Sigma j^{4} a_{j}=2^{k-4}\left(n^{4}+6 n^{3}+3 n^{2}-2 n\right)-4!2^{k-4} n b_{3}+4!2^{k-4} b_{4},
\end{aligned}
$$

where k denotes the number of information digits.
Let C_{1} and C_{2} denote binary cyclic codes with length $2^{m}-1$ generated by $\left(x^{2^{m}-1}-1\right) / h_{1}(X)$ and $\left(x^{2^{m}-1}-1\right) / h_{2}(X)$ respectively. Codes C_{1} and C_{2} are subcodes of C and C^{\prime}. If the degree of $g_{1}(X)$ is m, then the roots of $h_{1}(X)=X^{m} g_{1}\left(X^{-1}\right)$:are:

$$
\begin{aligned}
& \alpha^{-\left(2^{h}+1\right)}=\alpha^{2^{m}-2^{h}-2}, \alpha^{-2\left(2^{h}+1\right)}=\alpha^{2^{m}-2^{h+1}-2-1}, \cdots, \\
& \alpha^{-2^{m-h-1}\left(2^{h}+1\right)}=\alpha^{2^{m-1}-2^{m-h-1}-1}, \alpha^{-2^{(m-h)}\left(2^{h}+1\right)}=\alpha^{2^{m}-2^{m-h}-2}, \\
& \cdots, \alpha^{-2^{m-1}}\left(2^{h}+1\right)=\alpha^{2^{m-1}-2^{h-1}-1} .
\end{aligned}
$$

There is no $i\left(0 \leq i<2^{m-1}\right)$ with $h_{1}\left(\alpha^{i}\right)=0$ except for

$$
i_{1}=2^{m-1}-2^{m-h-1}-1
$$

and

$$
i_{1}^{\prime}=2^{m-1}-2^{h-1}-1
$$

By (2) , $i_{1}<i_{1}^{p}$ 。
If $m^{p}=m / 2$, then the roots of $h_{1}(X)$ are:

$$
\begin{aligned}
& \alpha^{-\left(2^{m^{p}}+1\right)}=\alpha^{2^{m}-2^{m^{\prime}}-2}, \alpha^{-2\left(2^{m^{\prime}}+1\right)}=\alpha^{2^{m}-2^{m^{\prime}+1}-2-1}, \ldots \\
& \alpha^{-2^{m^{0}-1}\left(2^{m^{\prime}}+1\right)}=\alpha^{2^{m-1}-2^{m^{\prime}-1}-1} .
\end{aligned}
$$

there is no $i\left(0 \leq i<2^{m-1}\right)$ with $h_{1}\left(\alpha^{i}\right)=0$ except for

$$
i_{1}=2^{m-1}-2^{m^{\prime}-1}-1
$$

The roots of $h_{2}(X)$ are $\alpha^{-1}=\alpha^{2^{m}-2}, \alpha^{-2}=\alpha^{2^{m}-3}, \ldots, \alpha^{-2^{m-1}}=\alpha^{2^{m-1}-1}$. As it is done above, here we let

$$
i_{2}=2^{m-1}-1
$$

Let $X_{1}, X_{2}, \ldots, X_{w}$ be the location numbers of code vector* $v(x)$ of C^{\prime}. Then,

$$
v\left(\alpha^{i}\right)=\sum_{f=1}^{W} X_{f}^{i} \quad, \quad 0 \leq i<2^{m}-1
$$

For any $B_{0} € G F(2)$, any $B_{1} \in G F\left(2^{m^{\prime}}\right)$ and any $B_{2} \in G F\left(2^{m}\right)$, there exists a unique code vector $v(x)$ of C^{\prime} such that $v(1)=B_{0}, v\left(\alpha^{i_{1}}\right)=B_{1}$ and $v\left(\alpha^{i_{2}}\right)=B_{2}$ (Mattson, Solomon [5]). Let $v\left(B_{o}, \beta_{1}, B_{2} ; x\right)$ denote the code vector specified by B_{0}, B_{1} and B_{2}. By definition,

$$
x^{\ell} v\left(B_{0}, B_{1}, B_{2} ; x\right)=v\left(B_{0}, \alpha^{l i} 1_{B_{1}}, \alpha{ }^{l i}{ }_{B_{2}} ; x\right)
$$

If and only if $B_{0}=0, v\left(B_{0}, \beta_{1}, \beta_{2} ; x\right) \in C$. If and only if $B_{0}=\beta_{1}=0$ (or $B_{0}=B_{2}=0$), then $v\left(B_{0}, B_{1}, B_{2} ; x\right) \in C_{2}$ (or C_{1}). The cyclic permutations on code word symbols induce a permutation group on the code vectors of C^{\prime}, which divides $\mathrm{C}-\mathrm{C}_{2}$ into disjoint sets of transitivity. Since $\nu=\left(\mathrm{i}_{1}, 2^{m}-1\right)$, each set consists of $\left(2^{m}-1\right) / \nu$ code vectors. In case of $m^{\prime}=m$, let $v\left(0, \alpha^{i}, B_{2} ; x\right)\left(0 \leq i<\nu, B_{2} \in G F\left(2^{m}\right)\right)$ represent each set. In case of $m^{\prime}=m / 2$, let $\mathrm{v}\left(0,1, \beta_{2} ; x\right)$ represent each set.

[^1]Now, consider the extended code $C_{\text {ex }}$ of code C^{\prime}. Let $\bar{v}\left(B_{0}, B_{1}, B_{2}\right)$ denote the vector with an overall parity check added to $v\left(B_{0}, \beta_{1}, B_{2} ; x\right)$ as the first digit. By definition $C e x=\left\{\bar{v}\left(\beta_{0}, B_{1}, \beta_{2}\right) \mid v\left(B_{0}, B_{1}, B_{2} ; x\right) \in C^{\prime}\right\}$. Let $X_{1}, X_{2}, \ldots, X_{w}$ be the location numbers of $\bar{v}\left(B_{o}, B_{1}, B_{2}\right)$ and let

$$
\begin{equation*}
S_{i}=\sum_{f=1}^{W} x_{f}^{i}, \quad 0 \leq i<2^{m}-1 \tag{7}
\end{equation*}
$$

Then, by definition

$$
\begin{align*}
& s_{i_{1}}=B_{1}, \tag{8}\\
& s_{i_{2}}=B_{2}, \tag{9}\\
& S_{i}=0\left(i \neq i_{1} 2^{\ell}, i_{2} 2^{\ell}\left(\bmod 2^{m}-1\right), 0 \leq \ell<m\right)
\end{align*}
$$

Therefore,

$$
\begin{equation*}
S_{i}=0\left(i \neq i_{1}, i_{1}^{\prime}, \quad 1 \leq i<2^{m-1}-1\right) \tag{10}
\end{equation*}
$$

By Lemma $1, \pi_{1 b} \overline{\mathrm{v}}\left(\mathcal{B}_{o}, \beta_{1}, B_{2}\right) \in C$ ex for any $b \in G F\left(2^{m}\right)$. Let

$$
\begin{equation*}
\pi_{1 b} \overline{\mathrm{v}}\left(\beta_{0}, B_{1}, \beta_{2}\right)=\overline{\mathrm{v}}\left(B_{0}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}\right) . \tag{11}
\end{equation*}
$$

The weights of $\bar{v}\left(B_{0}, \beta_{1}, \beta_{2}\right)$ and $\bar{v}\left(\beta_{0}^{\prime}, \beta_{1}^{\prime}, B_{2}^{\prime}\right)$ are the same. By the definition of $\pi_{1 b}$,

$$
\begin{aligned}
& B_{1}^{i}=\sum_{f=1}^{w}\left(X_{f}+b\right)^{i_{1}} \\
& B_{2}^{\prime}=\sum_{f=1}^{w}\left(X_{f}+b\right)^{i}{ }_{2} .
\end{aligned}
$$

Hence

$$
B_{1}^{p}=\sum_{f=1}^{w} \sum_{i=0}^{i_{1}}\left({ }_{i}{ }^{i_{1}}\right) x_{f}{ }^{i_{b}{ }^{i_{1}-i}}=\sum_{i=0}^{i_{1}}\left({ }_{i}{ }^{i}\right) S_{i} b^{i_{1}-i}
$$

From (8) and (10),

$$
\begin{equation*}
B_{1}^{\prime}=B_{1} \tag{12}
\end{equation*}
$$

Note that $\left(X_{f}+b\right)^{i_{2}}=\left(X_{f}+b\right)^{2^{m-1}-1}=\left(X_{f}{ }^{2^{m-1}}+b^{2^{m-1}}\right) /\left(X_{f}+b\right)=X_{f}^{2^{m-1}-1}+$ $x_{f}^{2^{m-1}-1} b+\cdots+b^{2^{m-1}-1}$. Then,

$$
\begin{equation*}
B_{2}^{0}=\sum_{f=1}^{w} \sum_{i=0}^{2^{m-1}-1} x_{f} i^{i} b^{m-1}-1-i=\sum_{i=0}^{2^{m-1}-1} S_{i} b^{2^{m-1}-1-i} \tag{13}
\end{equation*}
$$

Consider the case of $m^{\prime}=m$. Since $i_{1}^{\prime} \equiv 2^{h} i_{1}\left(\bmod 2^{m}-1\right), S_{i_{1}^{\prime}}=s_{i_{1}}^{2^{h}}$. From (8), (9), (10) and (13),

$$
\begin{align*}
& B_{2}^{0}=B_{1} b^{2^{m-1}-1-i} 1+B_{1}^{2^{h}} b^{2^{m-1}-1-i} 1 \\
&+B_{2}=B_{1} b^{2^{m-h-1}} \tag{14}\\
&+B_{1}^{2^{h}} b^{2^{h-1}}+B_{2}
\end{align*}
$$

For the case of $m^{9}=m / 2$, it follows from (8), (9), (10) and (13) that

$$
\begin{equation*}
B_{2}^{\prime}=B_{1} b^{2^{h-1}}+B_{2} . \tag{15}
\end{equation*}
$$

Hereafter we shall consider the case of $m^{\prime}=m$ except for section 5 . For each $i(0 \leq i<\nu), V_{i}=\left\{\alpha^{i} b^{2^{m-h-1}}+\alpha^{i 2^{h}} b^{2^{h-1}} \mid b \in G F\left(2^{m}\right)\right\}$ forms a subspace of GF (2 2^{m}. Let

$$
\begin{aligned}
F_{i}(X) & =\alpha^{i} x^{2^{m-h-1}}+\alpha^{i 2^{h}} x^{2^{h-1}} \\
& =\alpha^{i} x^{2^{h-1}}\left(x^{2^{h-1}}\left(2^{m-2 h}-1\right)+\alpha^{i\left(2^{h}-1\right)}\right)
\end{aligned}
$$

If $i=0$, the order of a nonzero root in $G F\left(2^{m}\right)$ of $F_{O}(X)$ is a factor of $2^{m-2 h}-1$. Since $c=(m, 2 h)=(m, m-2 h), 2^{c}-1=\left(2^{m}-1,2^{m-2 h}-1\right)$. This implies
that the roots in $G F\left(2^{m}\right)$ of $F_{0}(X)$ are in subfield $G F\left(2^{c}\right)$. Conversely, any element in this subfield is a root of $\mathrm{F}_{0}(\mathrm{X})$. Hence, the dimension of V_{0} is m^{-c}. Let $\mathrm{V}_{00}\left(=\mathrm{V}_{0}\right), \mathrm{V}_{01}, \mathrm{~V}_{02}, \ldots, \mathrm{~V}_{02}{ }^{\mathrm{c}}-1$ be the cosets of $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ with respect to V_{0}. Each coset has $2^{\mathrm{m}-\mathrm{c}}$ elements.

For $i \neq 0$, assume that α^{j} is a root of $F_{i}(X)$. Then,

$$
\begin{aligned}
& 2^{h-1}\left(2^{m-2 h}-1\right) j \equiv i\left(2^{h}-1\right)\left(\bmod 2^{m}-1\right) \\
&\left(1-2^{2 h}\right) j \equiv i 2^{h+1}\left(2^{h}-1\right) \\
&\left(\bmod 2^{m}-1\right) \\
&-\left(2^{h}+1\right) j \equiv i 2^{h+1}\left(\bmod 2^{m}-1\right)
\end{aligned}
$$

Since v divides both $2^{h}+1$ and $2^{m}-1$, v must divide i. However, $0<i<v$. Therefore, there is no root in $G F\left(2^{m}\right)$ of $F_{i}(X)$ except for zero. Consequently, $V_{i}=G F\left(2^{m}\right)$.

Let $B_{0 j}=\left\{\left(\alpha^{\ell i_{1}}, \alpha^{\ell i^{2}} B\right) \mid 0 \leq \ell<2^{m}-1, B \in V_{0 j}\right\} \quad\left(0 \leq j \leq 2^{C}-1\right)$ and $B_{i}=\left\{\left(\alpha^{i+\ell i_{1}}, B\right) \mid 0 \leq \ell<2^{m}-1, \quad B \in G F\left(2^{m}\right)\right\}(0<i<v)$. Then,

$$
\begin{array}{ll}
\left|B_{0 j}\right|=\left(2^{m}-1\right) 2^{m-c} / \nu & \left(0 \leq j<2^{c}\right), \\
\left|B_{i}\right|=\left(2^{m}-1\right) 2^{m} / \nu & (0<i<\nu)^{*} . \tag{17}
\end{array}
$$

It follows from the definition of $B_{0 j}$ or B_{i} that for any $\left(B_{1}, B_{2}\right)$ and $\left(B_{1}^{0}, B_{2}^{0}\right)$ in the same B_{0} or B_{i} and for any $B_{o} \in G F(2)$, there exists permutation $\pi_{a b}$ such that $\pi_{a b} \bar{v}\left(B_{o}, B_{1}, B_{2}\right)=\bar{v}\left(B_{o}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}\right)$ and $B_{o}^{\prime} \in G F(2)$. Therefore, $\overline{\mathrm{v}}\left(B_{0}, B_{1}, B_{2}\right)$ and $\overline{\mathrm{v}}\left(B_{0}^{\prime}, B_{1}^{\prime}, \beta_{2}^{\prime}\right)$ have the same weight w. If B_{0} (or B_{0}^{\prime}) is zero,

[^2]then $v\left(0, B_{1}, B_{2} ; x\right)$ (or $\left.v\left(0, B_{1}^{\prime}, B_{2}^{\prime} ; x\right)\right)$ has weight w. If B_{0} (or B_{0}^{\prime}) is one, then $v\left(1, B_{1}, \beta_{2} ; x\right)$ (or $\left.v\left(1, B_{1}^{\prime}, \beta_{2}^{\prime} ; x\right)\right)$ has weight $w-1$ by definition. Since C^{0} contains all one vector $e=(1,1, \ldots, 1)$ and $e\left(\alpha^{i}\right)=\sum_{f=0}^{2^{m}-2} \alpha^{i f}=\left[\left(\alpha^{i}\right)^{2^{m}-1}-1\right] /$ $\left(\alpha^{i}-1\right)=0\left(0<i<2^{m}-1\right)$,
$$
v\left(1, B_{1}, B_{2} ; x\right)=v\left(0, B_{1}, B_{2} ; x\right)+e(x) .
$$

Hence, if B_{0} (or B_{0}^{0}) is one, then $v\left(0, B_{1}, \beta_{2} ; x\right)$ (or $v\left(0, B_{1}^{\prime}, \beta_{2}^{\prime} ; x\right)$) has weight $2^{m}-w$. Therefore, we have Lemma 8 .

Lemma 8: For each j (or i) $\left(0 \leq j<2^{c}, 0<i<\nu\right)$, there is $w_{o j}$ (or w_{i}) such that for any $\left(B_{1}, B_{2}\right) \in B_{0 j}$ (or B_{i}) the weight of $v\left(0, B_{1}, B_{2} ; x\right)$ is either $w_{0 j}\left(\right.$ or $\left.w_{i}\right)$ or $2^{m}-w_{0 j}\left(\right.$ or $\left.2^{m}-w_{i}\right)$.
3. Case I: $\quad(m, h)=(m, 2 h)$

Hereafter a_{w} will denote the number of code vectors of weight w in C and b_{w} will denote the number of code vectors of weight w in C_{0}.

Lemma 9: For even w,

$$
\begin{aligned}
& w a_{w}=\left(2^{m}-w\right) a_{2^{m}-w} \\
& w b_{w}=\left(2^{m}-w\right) b_{2^{m}-w}
\end{aligned}
$$

This lemma follows from a theorem due to Peterson [1] and Lemma 1. Consequently, if the values of $w_{0}{ }^{\prime} s\left(0 \leq j<2^{c}\right)$ and $w_{i}^{\prime} s(0<i<\nu)$ are known, the weight distribution of $\mathrm{C}-\mathrm{C}_{2}$ is completely determined. Furthermore, any nonzero vector of C_{2} has weight 2^{m-1}, because C_{2} is a maximum length sequence code.

Lemma 10: $\quad b_{1}=b_{2}=0, b_{3}=\left(2^{c^{\prime}-1}-1\right)\left(2^{m}-1\right) / 3$.

Proof: Since C_{0} is a subcode of Hamming code,

$$
b_{1}=b_{2}=0
$$

Assume that $\alpha^{j_{1}}, \alpha^{j_{2}}$ and $\alpha^{j_{3}}$ are the location numbers of a code vector of weight 3 in C_{0}. Then,

$$
\begin{align*}
& \alpha^{j_{1}}+\alpha^{j_{2}}=\alpha^{j_{3}} \tag{18}\\
& \alpha^{j_{1}\left(2^{h}+1\right)}+\alpha^{\left.j_{2}^{(2 h}+1\right)}=\alpha^{j_{3}\left(2^{h}+1\right)} \tag{19}
\end{align*}
$$

From (18),

$$
\begin{aligned}
\alpha^{j_{3}\left(2^{h}+1\right)} & =\left(\alpha^{j_{1}}+\alpha^{j_{2}}\right)^{2^{h}+1}=\left(\alpha^{j} 1^{2^{h}}+\alpha^{j_{2} 2^{h}}\right)\left(\alpha^{j_{1}}+\alpha^{j_{2}}\right) \\
& =\alpha^{j_{1}\left(2^{h}+1\right)}+\alpha^{j_{1} 2^{h}} \alpha^{j_{2}}+\alpha^{j_{1}} \alpha^{j_{2} 2^{h}}+\alpha^{j_{2}\left(2^{h}+1\right)}
\end{aligned}
$$

By combining with (19),

$$
\begin{align*}
& \alpha^{j_{1} 2^{h}} \alpha^{j_{2}}+\alpha^{j} 1_{1}{ }^{2^{2^{h}}}=0 \\
& \alpha^{\left(j_{1}-j_{2}\right)\left(2^{h}-1\right)}=1 \tag{20}
\end{align*}
$$

Thus,

$$
\left(j_{1}-j_{2}\right)\left(2^{h}-1\right) \equiv 0 \quad\left(\bmod 2^{m}-1\right)
$$

If $c^{\prime}=(m, h)=1$, then $\left(2^{h}-1,2^{m}-1\right)=1$. Therefore

$$
j_{1}=j_{2}
$$

This is a contradiction, which leads to the conclusion that $b_{3}=0$. If $c^{\prime} \neq 1$, then $\left(2^{m}-1,2^{h}-1\right)=2^{c}-1$. Let

$$
\begin{equation*}
\mu=\left(2^{m}-1\right) /\left(2^{c}-1\right) . \tag{21}
\end{equation*}
$$

Then,

$$
j_{1} \equiv j_{2}(\bmod \mu) .
$$

Let $j_{1}=\ell_{1} \mu+i$ and $j_{2}=\ell_{2} \mu+i(0 \leq i<\mu)$. Since $\alpha^{\ell_{1} \mu}+\alpha^{\ell_{2} \mu}=\alpha^{\ell_{3} \mu}$ for some ℓ_{3}, it follows from (18) that $j_{3}=\ell_{3} \mu+i$. Conversely, for any i $(0 \leq i<\mu)$ and for ℓ_{1}, ℓ_{2}, and ℓ_{3} such that

$$
\begin{align*}
& \alpha^{\ell_{1} \mu}+\alpha^{\ell_{2}^{\mu}}=\alpha^{\ell_{3}^{\mu}} \tag{22}\\
& 0 \leq \ell_{1}, \ell_{2}, \ell_{3}<2^{c^{\prime}}-1 \tag{23}
\end{align*}
$$

$\alpha^{\ell_{1} \mu+i}, \alpha^{\ell_{2} \mu+i}$, and $\alpha^{\ell_{3} \mu+i}$ satisfy (18) and (19). The number of unordered triplets $\left(l_{1}, l_{2}, l_{3}\right)$'s satisfying (22) and (23) is equal to $\left(2^{c^{\prime}}-1\right) / 3$. Consequently,

$$
b_{3}=\mu\left(2^{c^{\prime}}-1\right) / 3=\left(2^{m}-1\right)\left(2^{c^{\prime}-1}-1\right) / 3
$$

Lemma 11: Let I_{2} and I_{4} denote $\sum_{j \neq 0}\left(j-2^{m-1}\right)^{2} a_{j}$ and $\sum_{j \neq 0}\left(j-2^{m-1}\right)^{4} a_{j}$ respectively. Then,

$$
\begin{aligned}
& I_{2}=2^{2 m-2}\left(2^{m}-1\right) \\
& I_{4}=2^{3 m+c^{\prime}-4}\left(2^{m}-1\right)
\end{aligned}
$$

Proof: Note that $k=2 \mathrm{~m}$. By using the power moment identities of Lemma 6,

$$
\begin{aligned}
I_{2} & =\Sigma j^{2} a_{j}-2^{m} \Sigma j a_{j}+2^{2 m-2} \sum_{j \neq 0} a_{j} \\
& =2^{2 m-2} n(n+1)-2^{3 m-1} n+2^{2 m-2}\left(2^{2 m}-1\right) \\
& =\left(2^{m}-1\right)\left(2^{3 m-2}-2^{3 m-1}+2^{3 m-2}+2^{2 m-2}\right) \\
& =\left(2^{m}-1\right) 2^{2 m-2}
\end{aligned}
$$

$$
\begin{align*}
I_{4}= & \sum j^{4} a_{j}-2^{m+1} \Sigma j^{3} a_{j}+3 \cdot 2^{2 m-1} \Sigma j^{2} a_{j}-2^{3 m-1} \Sigma j a_{j} \\
+ & 2^{4 m-4} \sum_{j \neq 0} a_{j} \\
= & 2^{2 m-4}\left(n^{4}+6 n^{3}+3 n^{2}-2 n\right)-2^{3 m-2}\left(n^{3}+3 n^{2}\right) \\
+ & 3 \cdot 2^{4 m-3} n(n+1)-2^{5 m-2} n+2^{4 m-4}\left(2^{2 m}-1\right) \\
+ & 3\left(2^{3 m-1}-2^{2 m-1} n\right) b_{3}+3 \cdot 2^{2 m-2} b_{4} \\
= & n\left\{2^{2 m-4}\left[(n+1)^{3}+3(n+1)(n-1)\right]-2^{3 m-2}\left[(n+1)^{2}+\right.\right. \\
& \left.n-1]+3 \cdot 2^{4 m-3}(n+1)-2^{5 m-2}+2^{4 m-4}\left(2^{m}+1\right)\right\} \\
+ & 3 \cdot 2^{2 m-1}\left(b_{3}+b_{4}\right) \\
= & n\left\{2^{5 m-4}-2^{5 m-2}+3 \cdot 2^{5 m-3}-2^{5 m-2}+2^{5 m-4}\right. \\
& \left.+3 \cdot 2^{3 m-4}\left(2^{m}-2\right)-2^{3 m-2}\left(2^{m}-2\right)+2^{4 m-4}\right\} \\
+ & 3 \cdot 2^{2 m-1}\left(b_{3}+b_{4}\right) \\
= & \left(2^{m}-1\right) 2^{3 m-3}+3 \cdot 2^{2 m-1}\left(b 3^{+b}\right) \tag{24}
\end{align*}
$$

Since all one vector $(1,1, \ldots, 1)$ is in C_{0},

$$
\mathrm{b}_{2^{\mathrm{m}}-4}=\mathrm{b}_{3}
$$

By Lemmas 9 and 10 ,

$$
\begin{align*}
b_{3}+b_{4} & =b_{2^{m}-4}+b_{4}=2^{m-2}{ }_{2^{m}-4}=2^{m-2} b_{3} \\
& =2^{m-2}\left(2^{c^{\prime}-1}-1\right)\left(2^{m}-1\right) / 3 \tag{25}
\end{align*}
$$

By substituting the right hand side of (25) into (24),

$$
I_{4}=\left(2^{m}-1\right) 2^{3 m+c^{1}-4}
$$

Let j_{M} be the smallest nonzero integer such that

$$
a_{j_{M}}+a_{2^{m}-j_{M}} \neq 0
$$

By the definition of I_{2} and I_{4},

$$
\begin{equation*}
\left(j_{M}-2^{m-1}\right)^{2} \geq I_{4} / I_{2}=2^{m+c^{\prime}-2} \tag{26}
\end{equation*}
$$

Consider the case where $c=c^{\prime}$. Then, $\nu=1$ by Lemma 5. Since all nonzero vectors in C_{2} are of weight 2^{m-1}, it follows from Lemma 8 and (16) that $a_{j}+a_{2^{m}-j}\left(j \neq 0,2^{m-1}\right)$ must be divisible by $2^{m-c^{\prime}}\left(2^{m}-1\right)=2^{m-c}\left(2^{m}-1\right)$.
Therefore, from (26)

$$
\begin{equation*}
I_{2} \geq\left(j_{M}-2^{m-1}\right)^{2}\left(a_{j_{M}}+a{ }_{2^{m}-j_{M}}\right) \geq 2^{2 m-2}\left(2^{m}-1\right) \tag{27}
\end{equation*}
$$

By Lemma 11 and (27),

$$
I_{2}=\left(j_{M}-2^{m-1}\right)^{2}\left(a_{j_{M}}+a{ }_{2^{m}-j_{M}}\right)=2^{2 m-2}\left(2^{m}-1\right)
$$

Consequently,

$$
\begin{align*}
& \left(j_{M}-2^{m-1}\right)^{2}=2^{m+c^{\prime}-2}=2^{m+c-2} \tag{28}\\
& a_{j_{M}}+a_{2^{m}-j_{M}}=2^{m-c}\left(2^{m}-1\right) \tag{29}\\
& a_{j}=0\left(j \neq 0, \quad j_{M}, 2^{m-1}, 2^{m}-j_{M}\right)
\end{align*}
$$

Hence,

$$
\begin{align*}
j_{M} & =2^{m-1}-2^{(m+c) / 2-1} \\
a_{2^{m-1}} & =2^{2 m}-1-\left(a_{j_{M}}+a^{m}-j_{M}\right) \tag{30}\\
& =\left(2^{m}-2^{m-c}+1\right)\left(2^{m}-1\right)
\end{align*}
$$

By Lemma 9, (29) and (30),

$$
\begin{aligned}
& a_{j_{M}}=\left(2^{m-c-1}+2^{(m-c) / 2-1}\right)\left(2^{m}-1\right) \\
& a_{2^{m}-j_{M}}=\left(2^{m-c-1}-2^{(m-c) / 2-1}\right)\left(2^{m}-1\right)
\end{aligned}
$$

Thus, we have the following theorem.
Theorem 1: If $(m, h)=(m, 2 h)=c$, then

$$
\begin{aligned}
& a_{0}=1 \\
& a_{2^{m-1}-2^{(m+c) / 2-1}}=\left(2^{m-c-1}+2^{(m-c) / 2-1}\right)\left(2^{m}-1\right) \\
& a_{2^{m-1}}=\left(2^{m}-2^{m-c}+1\right)\left(2^{m}-1\right) \\
& a_{2^{m-1}}+2^{(m+c) / 2-1}=\left(2^{m-c-1}-2^{(m-c) / 2-1}\right)\left(2^{m}-1\right) \\
& a_{j}=0 \text { for other } j .
\end{aligned}
$$

4. Case II: $2(\mathrm{~m}, \mathrm{~h})=(\mathrm{m}, 2 \mathrm{~h}) \neq \mathrm{m}$

Consider the case in which $2(m, h)=(m, 2 h)$. Then, $\nu=2^{c^{0}}+1$ by
Lemma 5. Since $v\left(0, B_{1}, 0 ; x\right)$ is in $C_{1}, w_{00}=w_{0}, w_{1}, \ldots, w_{v-1}$ can be found from the weight distribution of C_{1}. Each code vector of C_{1} is a ν concatenation of a code vector in cyclic code C_{1}^{\prime} of length $\left(2^{m}-1\right) / \nu$ which is generated by $\left(X^{\left(2^{m}-1\right) / \nu}-1\right) / h_{1}(X)$. Let $v^{\prime}(B ; x)$ denote a code vector $v^{0}(x)$
in C_{1}^{\prime} such that $v^{\prime}\left(\alpha^{i}\right)=B$. With the same argument as the one of section 3 , set $C_{1 i}^{\prime}=\left\{v\left(\alpha^{i+\ell \nu} ; x\right) \mid 0 \leq \ell<\left(2^{m}-1\right) / \nu\right\} \quad(0 \leq i<\nu)$ consists of $\left(2^{m}-1\right) / \nu$ vectors of the same weight w_{i}^{\prime}. Since $v(0, B, 0 ; x)=\left(v^{\prime}(B ; x)\right.$, $\underbrace{\left.v^{\prime}(B ; x), \ldots, v^{\prime}(B ; x)\right)}_{\nu}, w_{i}$ can be given by the following equation:

$$
w_{i}=\nu w_{i}^{\prime} \cdot \quad(0 \leq i<\nu)
$$

Therefore, by applying Lemma 6 to code C_{1}^{\prime}, we have

$$
\begin{aligned}
& \left(2^{m}-1\right) / \nu \sum_{i=0}^{\nu-1} w_{i} / \nu=2^{m-1}\left(2^{m}-1\right) / \nu \\
& \left(2^{m}-1\right) / \nu \sum_{i=0}^{\nu-1}\left(w_{i} / \nu\right)^{2}=2^{m-2}\left(2^{m}-1\right)\left(2^{m}-1+\nu\right) / \nu^{2}
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \sum_{i=0}^{\nu-1} w_{i}=\nu 2^{m-1} \tag{31}\\
& \sum_{i=0}^{\nu-1} w_{i}^{2}=\nu 2^{m-2}\left(2^{m}-1+\nu\right)=\nu 2^{m-2}\left(2^{m}+2^{c^{\prime}}\right) \tag{32}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\sum_{i=0}^{\nu-1}\left(w_{i}-2^{m-1}\right)^{2} & =\nu 2^{m-2}\left(2^{m}-1+\nu\right)-2^{m} \nu 2^{m-1}+2^{2 m-2} \nu \\
& =\nu 2^{m-2}(\nu-1)=\nu 2^{m+c^{\prime}-2} \tag{33}
\end{align*}
$$

On the other hand, it follows from Lemma 8, (16), (17) and the definition of I_{2} that

$$
\begin{align*}
& I_{2}=I_{20}+I_{21}, \\
& I_{20}=2^{m-c}\left(2^{m}-1\right) \sum_{j=1}^{2^{c}-1}\left(w_{0} j^{-2^{m-1}}\right)^{2} / \nu \tag{34}\\
& I_{21}=2^{m-c}\left(2^{m}-1\right)\left(w_{0}-2^{m-1}\right)^{2} / \nu+2^{m}\left(2^{m}-1\right) \sum_{i=1}^{\nu-1}\left(w_{i}-2^{m-1}\right)^{2} / \nu .
\end{align*}
$$

By Lemma 11 and (33),

$$
\begin{align*}
I_{2} & =2^{2 m-2}\left(2^{m}-1\right) \\
& \geq I_{21}=2^{2 m+c^{\prime}-2}\left(2^{m}-1\right)-\left(2^{m}-1\right)\left(2^{m}-2^{m-c}\right)\left(w_{0}-2^{m-1}\right)^{2} / \nu . \tag{35}
\end{align*}
$$

By a simple calculation,

$$
\begin{aligned}
\left(w_{0}-2^{m-1}\right)^{2} & \geq 2^{2 m-2}\left(2^{c^{\prime}}-1\right) v /\left(2^{m}-2^{m-c}\right) \\
& =2^{m+c-2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left.w_{0}=2^{m-1} \pm 2^{(m+c) / 2-1}+\delta\right), \quad \delta \geq 0 \tag{36}
\end{equation*}
$$

Now, by (31) and (32)

$$
\begin{align*}
I_{2}^{\prime} & =\sum_{i=0}^{\nu-1}\left(w_{i}-\left(2^{m-1} \mp 2^{m / 2-1}\right)\right)^{2} \\
& =\nu 2^{m-2}\left(2^{m}-1+\nu\right)-2\left(2^{m-1}+2^{m / 2-1}\right) \nu 2^{m-1}+\left(2^{m-1} \mp 2^{m / 2-1}\right)^{2} \nu \\
& =\nu\left\{2^{2 m-2}+2^{m+c^{\prime}-2}-2^{2 m-1} \pm 2^{3 m / 2-1}+2^{2 m-2}+2^{3 m / 2-1}+2^{m-2}\right\} \\
& =2^{m-2}\left(2^{c^{\prime}}+1\right)^{2} \tag{37}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
I_{2}^{\prime} \geq\left(w_{0}-\left(2^{m-1}+2^{m / 2-1}\right)\right)^{2} & =\left[2^{m-1} \pm\left(2^{(m+c) / 2-1}+\delta\right)-2^{m-1} \pm 2^{m / 2-1}\right]^{2} \\
& =2^{m-2}\left(2^{c^{\prime}}+1+\delta 2^{1-m / 2}\right)^{2} \tag{38}
\end{align*}
$$

From (35), (36), and (37), we have that

$$
\begin{align*}
& \delta=0 \\
& w_{0}=2^{m-1} \pm 2^{(m+c) / 2-1} \tag{39}\\
& w_{i}=2^{m-1} \mp 2^{m / 2-1} \quad(0<i<\nu) \tag{40}
\end{align*}
$$

Since $w_{i}(0 \leq i<\nu)$ is divisible by ν, the \pm sign is determined by Lemma 4 . Thus, we have:

Theorem 2: Let $a_{j \nu}^{\rho}$ denote the number of code vectors of weight j in C_{1}^{ρ}. If m / c is odd (or even), then

$$
\begin{aligned}
& a_{0}^{\prime}=1 \\
& a_{2^{\prime}}^{\prime m-1}-2^{(m+c) / 2-1}\left(\text { or } a_{2^{\prime}}^{m-1}+2^{(m+c) / 2-1}\right)=\left(2^{m}-1\right) /\left(2^{c / 2}+1\right) \\
& a^{\prime} \\
& 2^{m-1}+2^{m / 2-1}\left(\text { or } a_{2^{\prime}}^{m-1}-2^{m / 2-1}\right)=2^{c / 2}\left(2^{m}-1\right) /\left(2^{c / 2}+1\right) . \\
& a_{j}^{\prime}=0 \quad \text { for other } j .
\end{aligned}
$$

From (35) and (39) it follows that

$$
\begin{aligned}
I_{21} & =2^{2 m+c^{\prime}-2}\left(2^{m}-1\right)-\left(2^{m}-1\right)\left(2^{m}-2^{m-c}\right) 2^{m+c-2} / \nu \\
& =2^{2 m-2}\left(2^{m}-1\right)\left(2^{c^{\prime}}-\left(2^{c}-1\right) / \nu\right) \\
& =2^{2 m-2}\left(2^{m}-1\right) \\
& =I_{2}
\end{aligned}
$$

By (34),

$$
I_{20}=\left(2^{m}-1\right) 2^{m-c} / \nu \sum_{j=1}^{2^{c}-1}\left(w_{0 j}-2^{m-1}\right)^{2}=0
$$

Hence,

$$
\begin{equation*}
w_{0 j}=2^{m-1} \quad\left(1 \leq j<2^{c}\right) \tag{41}
\end{equation*}
$$

By (16), (17), Lemma 8, (39), (40) and (41), we have:

$$
\begin{aligned}
& a_{2^{m-1}} 2^{m / 2-1}+a{ }_{2^{m-1}+2^{m / 2-1}}=\left(2^{m}-1\right) 2^{m+c / 2} /\left(2^{c / 2}+1\right) \\
& a_{2^{m-1}}=\left(2^{m}-1\right) 2^{m-c}\left(2^{c}-1\right) /\left(2^{c / 2}+1\right)+2^{m}-1
\end{aligned}
$$

$$
{ }_{2}^{m-1}-2(m+c) / 2-1+a_{2^{m-1}+2}(m+c) / 2-1=\left(2^{m}-1\right) 2^{m-c} /\left(2^{c / 2}+1\right)
$$

Thus, the next theorem follows from Lemma 9.
Theorem 3: If $2(m, h)=(m, 2 h)=c$ and $c \neq m$, then

$$
\begin{aligned}
& a_{0}=1 \\
& a_{2^{m-1}-2}(m+c) / 2-1=\left(2^{m}-1\right)\left(2^{(m-c) / 2}+1\right) 2^{(m-c) / 2-1} /\left(2^{c / 2}+1\right) \\
& a_{2^{m-1}-2^{m / 2}}=\left(2^{m}-1\right)\left(2^{m / 2}+1\right) 2^{(m+c) / 2-1} /\left(2^{c / 2}+1\right) \\
& a_{2^{m-1}}=\left(2^{m}-1\right)\left(\left(2^{c / 2}-1\right) 2^{m-c}+1\right) \\
& a_{2^{m-1}}{ }^{m} 2^{m / 2}=\left(2^{m}-1\right)\left(2^{m / 2}-1\right) 2^{(m+c) / 2-1} /\left(2^{c / 2}+1\right) \\
& a_{2^{m-1}}^{m-2}(m+c) / 2-1=\left(2^{m}-1\right)\left(2^{(m-c) / 2}-1\right) 2^{(m-c) / 2-1} /\left(2^{c / 2}+1\right) \\
& a_{j}=0 \quad \text { for other } j .
\end{aligned}
$$

5. Case III: $2(m, h)=(m, 2 h)=m$

Consider the case of $m=2 h$. For any $B_{1} \neq 0$, B_{2} in $G F\left(2^{m}\right)$, there exists $b \in G F\left(2^{m}\right)$ such that

$$
B_{1} b^{2^{h-1}}+B_{2}=0
$$

because $\left(2^{h-1}, 2^{m}-1\right)=1$. From (15) and a similar argument to the one for the case of $m=m^{\prime}$, it follows that there exists w such that the weight of any code vector in $C-C_{2}$ is either w or $2^{m}-w$. Since C_{1}^{\prime}, the cyclic code of length $2^{m / 2}-1$ generated by $\left(x^{2^{m / 2}-1}-1\right) / g_{1}(X)$, is a maximum length sequence code, C_{1} consists of one zero vector and $2^{m / 2}-1$ vectors of weight $2^{m / 2-1}$ $\left(2^{m / 2}+1\right)$. Therefore,

$$
\mathrm{w}=\left(2^{\mathrm{m} / 2}+1\right) 2^{\mathrm{m} / 2-1}
$$

On the other hand, C_{2} is a maximum length sequence code of length $2^{m}-1$. Hence,

$$
a_{2^{m-1}}=2^{m}-1
$$

According to Lemma 9, we have:
Theorem 4: If $m=2 h$, then

$$
\begin{aligned}
& a_{0}=1 \\
& a_{2^{m-1}}-2^{m / 2-1}=\left(2^{m / 2}-1\right)\left(2^{m-1}+2^{m / 2-1}\right) \\
& a_{2^{m-1}}=2^{m}-1 \\
& a_{2^{m-1}}+^{m / 2-1}=\left(2^{m / 2}-1\right)\left(2^{m-1}-2^{m / 2-1}\right) \\
& a_{j}=0 \quad \text { for other } j .
\end{aligned}
$$

6. Crosscorrelation Functions of Two Maximum Length Sequences

It follows from Lemma 5 that $\alpha^{2^{h}+1}$ is a primitive element if and only if $c=c^{\prime}$. Assume that $c=c^{\prime}$. Let

$$
\begin{aligned}
& v(0,1,0 ; x)=\sum_{f=0}^{2^{m}-2} v_{1 f^{x}} x^{f} \\
& v(0,0,1 ; x)=\sum_{f=0}^{2^{m}-2} v_{2 f} x^{f}
\end{aligned}
$$

Then, $\mathrm{v}_{1}=\mathrm{v}_{10}, \mathrm{v}_{11}, \ldots, \mathrm{v}_{12^{\mathrm{m}}-2}$ and $\mathrm{v}_{2}=\mathrm{v}_{20}, \mathrm{v}_{21}, \ldots, \mathrm{v}_{22^{\mathrm{m}}-2}$ are maximum length sequences of length $2^{m}-1$. In v_{1} and v_{2}, replace 0 by -1 . Let $\mathrm{u}_{1}=\mathrm{u}_{10}, \mathrm{u}_{11}, \ldots, \mathrm{u}_{12^{\mathrm{m}}-2}$ and $\mathrm{u}_{2}=\mathrm{u}_{20}, \mathrm{u}_{21}, \ldots, \mathrm{u}_{22^{\mathrm{m}}-2}$ be the resulting
sequences of real numbers 1 and -1 . Correlation function $\theta(j)$ of u_{1} and u_{2} is defined by

$$
\theta(j)=\sum_{f=0}^{2^{m}-2} u_{1 f} u_{2 f-j}
$$

where suffix $f-j$ is to be taken $\bmod 2^{m}-1$. Note that

$$
v(0,1,0 ; x)+x^{j} v(0,0,1 ; x)=v\left(0,1, \alpha^{j i_{2}} ; x\right)
$$

If $v\left(0,1, \alpha^{j i} ; x\right)$ has weight w, then

$$
\begin{equation*}
\theta(j)=2^{m}-1-2 w . \tag{42}
\end{equation*}
$$

Let s_{i} denote the number of $j^{\prime} s\left(0 \leq j<2^{m}-1\right)$ with $\theta(j)=i$. Then, s_{i} is the number of vectors $v(0,1, \beta ; x)$ with weight $\left(2^{m}-1-i\right) / 2$. From sections 2 and 3 , we have theorem 5.

Theorem 5:

$$
\begin{aligned}
& s_{-2}^{(m+c) / 2}-1=2^{m-c-1}-2^{(m-c) / 2-1} \\
& s_{-1}=2^{m}-2^{m-c} \\
& s_{2}^{(m+c) / 2}-1=2^{m-c-1}+2^{(m-c) / 2-1}, \\
& s_{i}=0 \quad \text { for other } i .
\end{aligned}
$$

For $0 \leq j<2^{m}-1$, let

$$
\begin{aligned}
& \theta_{j}=1 \text { if } \theta(j)=-2^{(m+c) / 2}-1 \text { or } 2^{(m+c) / 2}-1, \\
& \theta_{j}=0 \text { if } \theta(j)=-1
\end{aligned}
$$

Sequence $\theta=\theta_{0}, \theta_{1}, \ldots, \theta_{2^{m}-2}$ will be called the correlation sequence of u_{1} and u_{2}. We shall characterize the correlation sequence below. Recall that

$$
v_{0}=v_{00}=\left\{b^{2^{m-h-1}}+b^{2^{h-1}} \mid b \in G F\left(2^{m}\right)\right\}
$$

Since $\left(2^{\mathrm{h}-1}, 2^{\mathrm{m}}-1\right)=1$,

$$
v_{00}=\left\{b^{2^{m-2 h}}+b \mid b \in G F\left(2^{m}\right)\right\}
$$

Since $(m-2 h, m)=c$, the Galois group of $G F\left(2^{m}\right)$ over $G F\left(2^{c}\right)$ is generated by the automorphism $x \rightarrow x^{2^{m-2 h}}$ (by Theorem 9, p. 127 of [6]). Therefore, from the trace theorem (p. 121 of [6]) it follows that

$$
\mathrm{V}_{00}=\left\{b \mid \sigma(b)=0, \quad b \in G F\left(2^{m}\right)\right\},
$$

where $\sigma(b)$ denotes the trace of b in $\operatorname{GF}\left(2^{m}\right)$ over $\operatorname{GF}\left(2^{c}\right)$, and

$$
\sigma(b)=b+b^{2^{c}}+b^{2^{2 c}}+\ldots+b^{2^{m-c}}
$$

Hence, any element of each coset $V_{0 j}$ has the same trace $t_{j} \in G F\left(2^{c}\right)$, and if $j \neq j^{r}, t_{j} \neq t_{j r}$ 。

Note that $v^{2}\left(0, B_{1}, B_{2} ; x\right)=v\left(0, B_{1}, B_{2} ; x^{2}\right)=v\left(0, B_{1}{ }^{2}, B_{2}{ }^{2} ; x\right) \in C$ and that $v\left(0, B_{1}, B_{2} ; x\right)$ and $v\left(0, B_{1}, B_{2} ; x^{2}\right)$ have the same weight. Consequently, if $t_{j^{\prime}}=t_{j}{ }^{2}$, then $w_{0 j^{\prime}}=w_{0 j^{\prime}}$. From the proof of Theorem 1 it follows that there is only one j_{0} such that

$$
\begin{aligned}
& { }^{w_{0}} j_{0}=2^{m-1}-2^{(m+c) / 2-1} \\
& { }^{w_{0 j}}=2^{m-1}, \quad j \neq j_{0} .
\end{aligned}
$$

Since $t_{j_{0}}=t_{j_{0}}^{2}, t_{j_{0}}=0$ or 1 . Since C_{1} is a maximum length sequence code, ${ }_{0} 0$ must be 2^{m-1}. Therefore, $t_{j_{0}}=1$. This implies that the weight of $v(0,1, B ; x)$ is not equal to 2^{m-1} if and only if $B+B^{2^{c}}+\beta^{2^{2 c}}+\ldots+$ $B^{2^{m-c}}=1$. From (42), $\theta(\mathrm{j}) \neq-1$, if and only if $\alpha^{j i} 2+\alpha^{j i} 2^{2 c}+\alpha^{j i^{2} 2^{2 c}}+$ $\ldots+\alpha^{j i} 2^{2^{m-c}}=1$. Since $\alpha^{2 i_{2}}=\alpha^{2^{m}-2}=\alpha^{-1}$ and $\alpha^{-2^{m-1}}=\alpha^{i_{2}}$, we have

Theorem 6 。

Theorem 6: $\theta_{j}=1$ if and only if $\alpha^{-j}+\alpha^{-j 2^{c}}+\alpha^{-j 2^{2 c}}+\ldots+\alpha^{-j 2^{m-c}}$ $=1$ 。

Now consider the case of $c=1$. By definition, $v\left(0,0,1 ; \alpha^{i}\right)=1$. Therefore,

$$
\mathrm{v}\left(0,0,1 ; \alpha^{-2^{\ell}}\right)=1 \quad(0 \leq \ell<m)
$$

On the other hand, for any $\alpha^{j} \neq \alpha^{-2^{\ell}}(0 \leq \ell<m)$,

$$
v\left(0,0,1 ; \alpha^{j}\right)=0
$$

By the formula due to Reed and Solomon [7],

$$
\begin{aligned}
v_{2 f} & =\sum_{j=0}^{2^{m}-2} v\left(0,0,1 ; \alpha^{j}\right) \alpha^{-j f} \\
& =\alpha^{f}+\alpha^{2 f}+\alpha^{2^{2} f}+\cdots+\alpha^{2^{m-1}} f
\end{aligned}
$$

Hence, by Theorem 6

$$
\theta_{j}=v 2^{m}-1-j
$$

This implies the following corollary.
Corollary 7: If $(m, h)=(m, 2 h)=1$, then the correlation sequence of the maximum length sequence generated by $h_{1}(X)$ and the one generated by $h_{2}(X)$ is the maximum length sequence generated by $g_{2}(X)=X^{m} h_{2}\left(X^{-1}\right)$.
R. Gold and E. Kopitzka [8] observed that for some pairs of maximum length sequences the correlation sequences are also maximum length sequences and they listed all such pairs of sequences of length 8191 or less. Among 28 listed pairs, 25 cases are covered by Corollary 7.

Acknowledgment
The author is grateful to Professors W. W. Peterson, R. T. Chien and
J. S. Lin for many valuable suggestions and to Professors M. E. Van Valkenburg and H. Ozaki for their support.

References

1. Peterson, W. W., "On the Weight Structure and Symmetry of BCH Codes, " Report of University of Hawaii, Contract No. AF19(628)-4379, No. 1; (July, 1965).
2. Kasami, T., "Some Invariant Properties of BCH Codes and RM Codes," Seminar Note of CSL, University of Illinois, (March, 1966). A full paper is being prepared jointly with W. W. Peterson and S. J. Lin.
3. Pless, V., "Power Moment Identities on Weight Distributions in Error Correcting Codes," Information and Control, 6, 147-152 (1963).
4. Peterson, W. W., Error Correcting Codes, Wiley, New York (1961).
5. Mattson, H. F. and Solomon, G., "A New Treatment of Bose-Chaudhuri Codes," J. Soc. Indust. App1. Math., 9, No. 4, (December, 1961).
6. Reed, I. S. and Solomon, G., "Decoding Procedure for a Polynomial Code," Group Report 47,24, Lincoln Laboratory, (1959).
7. Albert, A. A., Fundamental Concepts of Higher Algebra, The University of Chicago Press, (1956).
8. Gold, R. and Kopitzka, E., "Study of Correlation Properties of Binary Sequences Vol. $1 \sim 5$," Reports of Magnovon Research Laboratories, (August, 1965).
Dr. Chalmers Sherwin Deputy Director
DDSRE Rm 3E1060The PentagonWashington, D. C. 20301
Dr. Edward M. Reilley Asst. Director (Research)
Ofc. of Defense Res $\&$ Eng Department of DefenseDr. James A. WardOffice of Deputy Director (Research andInformation Rm 3D1037)
Department of DefensThe Pentagon
Washington, D. C. 20301DirectorAdvanced Research Projects AgencyDepartment of Defense
Washington, D. C. 20301
Mr. Charles Yost, Director Mr. Charles Yost, Direc
for Materials SciencesAdvanced Research Projects AgencyDepartment of DefenseDepartment of Defense
Washington, D. C. 2030120 Defense Documentation CenterDefense Documentation CentCameron Station, Bldg.
Alexandria, Virginia 22314Attn: TISIA
Director
National Security Agency
Attn: Librarian C-332
Chief of Research and DevelopmenHeadquarters, Department of the ArmyWashington, D. C. 20310
Attn: Physical Sciences Division $P \& E$
Chief of Research and DevelopmentHeadquarters, Department of the ArmyWashington, D. C. 20310
Attn: Mr. L. H. Geiger, Rm 34442
Research Plans Office
U. S. Army Research
3045 Columbia Pike Arlington, VirginiaCommanding General E-E
U. S. Army Materiel
Attn: AMCRD-RS-PE-E
U. S. Army Materiel
Attn: AMCRD-RS-PE-E
Attn: AMCRD-RS-PE-E
Commanding General
U. S. Army
Washington, D. C. 20315
1 Commanding Office
U. S. Army Materia
Watertown Arsenal
Watertown, Massa
Commanding office
U. S. Army BallisticsAberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding office
U. S. Army Ballistics
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
U. S. Army Ballistics
Aberdeen Proving Ground
Aberdeen, Maryland 2100
U. S. Army A Air Defense School S. Army Air
Fort Bliss, Texas 79916
Attn: Missile
Commanding General
U. S. Army Missile Conmand
Redstone Arsenal, Alabama 35809
Commanding General
Frankford Arsenal
Philadelphia, Pa. 19137
Attn: SMUFA-1310
Commanding General
Frank ford Arsenal
Philadelphia, Pa .Philadelphia, Pa.
Attn: SMUFA-130019137
U. S. Army Munitions Comman
Picatinney Arsenal
Dover, New Jersey 07801
Commanding office
Harry Diamond Laboratories
Connecticut Ave. \& Van Ne
Washington, D. C. 20438
Attn: Mr. Berthold Altman
Commanding officer
Harry Diamond Labo
Attn: Library

Commanding officer
U. S. Army Security Agency

Arlington Hall
Arlington, Virginia 22212
1 Commanding officer
U. S. Army Limited War Laboratory

Aberdeen, Maryland 2100
Attn: Technical Director
1 Commanding officer

uman Engineering Laboratories

Aberdeen Proving Ground, Maryland 21005
Director
U. S. Army
U. S. Army EngineerGeodesy. Inte1ligence and Mapping, Research \& Devel. Agency
Fort Belvoir, Virginia 22060

Commandant
U. S. Army Command and General

Staff College
Fort Leavenworth, Kansas 66207
Attn: Secretary
Dr. H. Robl, Deputy Director
U. S. Army Research
. Ar. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Caroli
Durham, North Carolina 27706
Commanding Officer
U. S. Army Research Office (Durham)
P. O. Box CM, Duke Station
Durham, North Carolina 27706 Durham, North Carolina 27706
Attn: CRD-AA-IP (Richard O. U1sh)

Commanding General

U. S. Army Electronics Command
Fort Monmouth, New Jersey 0770 Attn: AMSEL-SC

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: Dr. S. Benedict Levin, Director Institute for Exploratory Researc

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Mr. Robert O. Parker, Executive
Secretary, JSTAC (AMSEL-RD-X)
Superintendent
U. S. Military Academy

West Point, New York 10996
The Walter Reed Institute of Research Walter Reed Army Medical Center
Washington, D. C. 20012

Director Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-DR
Attn: AMSEL-RD-DR

Director

U. S. Army Electronics Laboratories Attn: AMSEL-RD-X
Fort Monmouth, New Jersey 07703
1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-XE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-XC

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-XS

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NR

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NE

Directo

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Fort Monmouth, Ne
Attn: AMSEL-RD-N
Director
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-NP
Attn: AMSEL-RD-NP
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-SA

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SE

1 Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SR

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703

Director
. S. Army Electronics Laboratorie Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-PE

Director

U. S. Army Electronics Laboratories
U. S. Army Electronics Laboratorie
Fort Monmouth, New Jersey 07703 Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PF

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PR
AtEn: AMSEL-RD-PR
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RL-GF
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-ADT

Director
Fort. Army Electronics Laboratories Fort Monmouth, New Je
Attn: AMSEL-RD-FU Fl 1
1 Commanding officer
Fort Huachuca, Arizons R\&D Activity
1 Commanding officer
U. S. Army Engineers R\&D Laboratory Fort Belvoir, Virginia 22060

1 Cormanding Officer
U. S. Army Electronics IuvD Activity White Sands Missile Range
New Mexico 88002

Director
Human Resources Restarch Office The George Washington University Alexandria Virginin

Commanding Officer
U. S. Army Personnel Research Office
Washington 25, D. C.
Washington $25, \mathrm{D} . \mathrm{C}$.
Commanding officer
Fort Knox, Kentucky
1 Commanding General
U. S. Army Signal Center and School

Attn: Chief, Office of Academic
Fort Monmouth, New Jersey 07703
Dr. Richard H. Wilcox, Code 437
Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Weapons
Attn: Technical Library, DL1-3
Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Ships
Department of the Navy Department of the Navy
Washington, D. C. 20360 Attn: Code 680 .
1 Chief, Bureau of Ships Department of the Navy
Washington, D. C. 20360 Attn: Code 732
U. S. Naval Air Development Center

Johnsville, Pennsylvania
1 Commanding officer
Naval Electronics Laboratory San Diego, Calc At

1 Commanding Officer
Naval Electronics Laboratory San Diego, California 9205 Attn: Code 2800, C. S. Manning

Commanding officer and Directo

(Code 142 Library)
David W. Taylor Model Basin
Washington, D. C. 20007
6 Director
Naval Research Labhingtory
Attn:
(Code 2000)
(Code 2000)
Commanding Officer
Office of Naval Research Branch Office ž19 S. Dearborn Street
Chicago, Illinois 60604
1 Chief of Naval Operations
Department of the Navy
Attn: OP-07T

1. Chief of Naval Operations

Department of the Navy
Washington, D.
Attn: Library
Connecticut AveConnecticut Ave. \& Van Ness St., N.W.

Commanding Office
Office of Naval Research Branch Office
1000 Geary Street
San Francisco, California
94109
1 Commanding officer
Asst. Director for Computatory
Asst. Director for Computatio
Dahlgren, Virginia 22448
Attn: G. H. Gleissner (Code K-4)
Inspector of Naval Material
Bureau of Ships Technical Representative
St. Paul 4, Minnesota
5 Lt. Col, E. T. Gaines, SREE
Chief, Electronics Division
Directorate of Engineering Sciences
Air Force Office of Scientific Research
Washington, D. C. 20333
Director of Science \& Technology
Deputy Chief of Staff ($R \& D$)
USAF
Washington, D. C.
Attn: AFRST-EL/GU
Director of Science \& Technology
Deputy Chief of Staff ($R \& D$)
Washington, D. C.
Attn: AFRST-SC
1 Kar1 M. Fuechsel
Electronics Division
Director of Engineering Sciences
Air Force Office of Scient
Washington, D. C. 20333
Lt. Col. Edwin M. Myers
Headquarters, USAF (AFRDR)
Director, Air University Library
Maxwell Air Force Base
Alabama 36112
Attn: CR-4803
Commander
Research \& Technology Division
AFSC (Mr. Robert L. Feik)
office of the Scientific Director
Bolling AFB $25, \mathrm{D}$. C.
Commander
Research \& Technology Division
Office of the Scientific Director
Bolling AFB 25, D. C.
Attn: RTHR

Commander Air Force
 Attn: Cambridge Research Laboratories

Research Library
CRMXL-R
L. G. Hanscom Field
Bedford, Massachusetts
01731

Dr. Lloyd Hollingsworth
AFCRL
AFCRL
L. G. Hanscom Field
L. G. Hanscom Field
Bedford, Massachusetts 01731

Air Force Cambridge Research Laboratories
Attn: Data Sciences Lab
L. G. Hanscom Field Kahne, CRB)
L. G. Hanscom Field
Bedford, Massachusetts 01731

Commander
Air Force Systems Command
office of the Chief Scientist
Andrews AFB, Maryland 20331
1 Commander
Air Force Missile Development Center
Attn: MDSGO/Major Harold Wheeler, Jr
Holloman Air Force Base, New Mexico
Commander
Research \& Technology Division
Atti: MAYT (Mr. Evans)
Wright-Patterson Air Force Base
Ohio 45433

Distribution list as of March 1, 1965 (Cont'd.)

Lincoln Laboratory
Massachusetts
P. O. Box 73
Lexington 73 , Massachusetts
Attn: Dr. Robert Kingston
APGC (PGAPI)
Eglin Air Force Base
Mr. Alan Barnum
Rome Air Development Center
Griffiss Air Force Base
Rome, New York 13442
Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Polytechnic Institute of Brooklyn
55 Johnson Street
Brook1yn, New York 11201 Attn: Mr. Jerome Fox

Research Coordinator
Director
Columbia Radiation Laboratory
Columbia University Columbia University 538 West 120th Street
New York, New York 10027

Director
Coordinated Science Laboratory University of Illinois Urbana, Illinois 61803

Director
Stanford Electronics Laboratories Stanford University Stanford, California
1 Director
Electronics Research Laboratory University of California
Berkeley 4, California

Professor A. A. Dougal, Director Laboratories for Electronics and Related e Research
ty of Texa University of Texas
Austin, Texas 78712
Professor J. K. Aggarwal Department of Electrical Engineering Austin, Texas 78712

Director of Engineering \& Applied Physics 210 Pierce Hall
Cambridge, Massachusetts 02138
Capt. Paul Johnson (USN Ret.) National Aeronautics \& Space Agency 1520 H. Street, N. W,

NASA Headquarters
Office of Applications
400 Maryland Avenue,
Washington 25, D. C.
Attn: Code FC Mr. A. M. Gr
Research Information Center and Advisory Serv, on Info. Processing Data Processing Systems Division Washington 25 , D. C.

Dr. Wallace Sinaiko
Institute for Defense Analyses
Research \& Eng. Support Div. 1666 Connecticut Avenue, N. W.
Washington 9, D. C.

Data Processing Systems Division
National Bureau of Stand
National Bureau of Standards
Conn, at Van Ness
Room 239, B1dg. 10
Attn: A. K. Smi iow
Exchange and Gift Division
The Library of Congress
Washington 25, D. C.
Dr. Alan T. Waterman, Director Washington 25, D. C.
H. E. Cochran

Oak Ridge National Laboratory
Oak Ridge, Tennessee
U. S. Atomic Energy Conmission office of Technical Information Extension P. O. Box 62

Mr. G. D. Watson
Defense Research Member
Canadian Joint Staff
2450 Massachusetts Avenue, N. W.

Martin Company
P. O. Box 5837
orlando Florida
Attn: Engineering Library MP-30
Uaboratories for Appli
University of Chicag
6220 South Drexel
Chicago, Illinois 60637

1 Librarian
School of Electrical Engineering Purdue University

1 Donald L. Epley
Dept. of Electrical Engineering State University of Iowa

Instrumentation Laboratory
Massachusettis Institute of Technology
68 Albany Street
Attn: Library WI-109
1 Sylvania Electric Products, Inc.
Electronics System
Wal tham Labs. Library
100 First Avenue
2 Hughes Aircraft Company
Centinela and Teale Streets Culver City, California Attn: K. C. Rosenberg, Supervisor

3 Autonetics
9150 East Imperial Highway Downey, California

1 Dr. Arnold T. Nordsieck General Motors Corporation Defense Research Laboratories
6767 Holl 6767 Hollister Aven

1 University of California
Lawrence Radiation Laboratory P. O. Box 808

Livermore, California
1 Mr. Thomas L. Hartwick
Aerospace Corporation
P. O. Box 95085

Los Angeles 45, California
Lt. Col. Willard Levin
Aerospace Corporatio
P. O. Box 95085
Los Angeles 45, California
1 Sylvania Electronic Systems-West Electronic Defense Laboratories
P. O. Box 205

Mountain View, California
Attn: Documents Center
1 Varian Associates
611 Hansen Way
Palo Alto, California 94303
Attn: Tech, Library
1 Huston Denslow
Library Supervisor
California Institute of Technology
Pasadena, Californía
1 Professor Nicholas George
California Institute of Technology
Electrical Engineering Department
1 Space Technology Labs., Inc One Space Park
Redondo Beach, California
Attn: Acquisitions Group
1 The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Library
Miss F. Cloak
Radio Corp. of America RCA Laboratories David Sarnoff Research Center on, New Jerse
$1 \quad \mathrm{Mr}, \mathrm{A}, \mathrm{A}$. Lundstrom
Bell Telephone Laboratories
Room 2E-127
Room 2E-127
Whippany Road
Whippany, New Jersey
1 Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
Buffalo 21, New York
Attn: J. P. Desmond, Librarian
Sperry Gyroscope Company
Marine Division Library
155 Glenn Cove Road
Carle Place, L. I., New York
Attn: Miss Barbara Judd
1 Library
Light Military Electronics Dept. General Electric Company Armament \& Control Products Section Johnson City, New York

Dr. E. Howard Holt Director
Plasma Research Laboratory Rennselaer Polytechnic Institute
Troy, New York Troy, New York

1 Battele-DEFENDER
Battelle Memorial Institute 505 King Avenue

Laboratory for Electroscience Research New York University
Bronx 53, New York
1 National Physical Laboratory
Teddington, Middlesex
Attn: Dr. A. M. Uttley, Superintendent, Autonomics Division
Dr. Lee Huff
Behavioral Sciences
Advanced Research Projects Agency
The Pentagon (Room 3E175)
1 Dr. Glenn L. Bryan
Head, Personnel and Training Branch
Office of Naval Research
Washington, D. C. 20360
Instituto de Fisica Aplicado
"L. Torres quevedo"
High Vacuum Laboratory
Attn: Jose L
Stanford Research Institute
Attn: G-037 External
Attn: G-037 External Reports
Menlo Park, California

REVISED U. S. ARMY DISTRIBUTION LIST
(As received at the Coordinated Science Laboratory 27 July 1965)

Dr. Chalmers Sherwin
Deputy Director (Research \& Technology)
DD\&RE Rm 3E1060
The Pentagon
Washington, D. C. 20301
Dr. Edward M. Reilley Asst. Director (Research)
Ofc. of Defense Res. \& Eng.
Department of Defense
Washington, D. C. 20301
Dr. James A. Ward
Office of Deputy Director (Research and Information Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301
1 Mr . E. I. Salkovitz, Director for Materials Sciences
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301
1 Colonel Charles C. Mack
Headquarters
Defense Communications Agency (333)
The Pentagon
Washington, D. C. 20305
20 Defense Documentation Center
Attn: TISIA
Cameron Station, Building 5
Alexandria, Virginia 22314
1 Director
National Security Agency
Attn: Librarian C-332
Fort George G. Meade, Maryland 20755
1 U. S. Army Research Office Attn: Physical Sciences Division 3045 Columbia Pike Arlington, Virginia 22204

1 Chief of Research and Development
Headquarters, Department of the Army Attn: Mr. L. H. Geiger, Rm 3D442 Washington, D. C. 20310

1 Research Plans Office
U. S. Army Research Office

3045 Columbia Pike
Arlington, Virginia 22204
1 Commanding General
U. S. Army Materiel Command

Attn: AMCRD-RS-PE-E
Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Command Washington, D. C. 20315

1 Commanding Officer
U. S. Army Materials Research Agency

Watertown Arsenal
Watertown, Massachusetts 02172
1 Commanding Officer
U. S. Army Ballistics Research Laboratory U. S. Army Ballistics

Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
U. S. Army Ballistics Research Laboratory

Attn: Keats A. Pullen, Jr.
Attn: Keats A. Pullen,
Aberdeen, Maryland 21005
1 Commanding Officer
U. S. Army Ballistics Research Laboratory Attn: George C. Francis, Computing Lab. Aberdeen Proving Ground, Maryland 21005

1 Commandant
U. S. Army Air Defense School

Attn: Missile Sciences Division, C\&S Dept. Attn: Missile
P. O. Box 9390
Fort Bliss, Texas 79916
1 Commanding General
U. S. Army Missile Command
. S. Amy Missile Comman
Attn: Technical Library
Redstone Arsenal, Alabama 35809
1 Commanding General
Frankford Genera
Attn: SMUFA-1310 (Dr. Sidney Ross)
Attn: SMUFA-1310 (Dr. Sidney Ross)
Philadelphia, Pennsylvania 19137

1 Commanding General
Frankford Arsenal
Attn: SMUFA-1300
Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command
Attn: Technical Information Branch
Picatinney Arsenal
Dover, New Jersey 07801
1 Commanding Officer
Harry Diamond Laboratories
Attn: Mr. Berthold Altman
Connecticut Avenue and Van Ness St., N.W. Washington, D. C. 20438

1 Commanding Officer
Harry Diamond Laboratories
Attn: Library
Connecticut Avenue and Van Ness St.,N.W.
Washington, D. C. 20438
1 Commanding Officer
U. S. Army Security Agency

Arlington Hall
Arlington, Virginia 22212
1 Commanding Officer
U. S. Army Limited War Laboratory

Attn: Technical Director
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
Human Engineering Laboratories Aberdeen Proving Ground, Mary1 and 21005

1 Director
U. S. Army Engineer Geodesy,

Intelligence \& Mapping
Research and Development Agency

1 Commandant
U. S. Army Command and General Staff College Attn: Secretary
Fort Leavenworth, Kansas 66207
1 Dr. H. Robl, Deputy Chief Scientist U. S. Army Research Office (Durham) Box CM, Duke Station
Durham, North Carolina 27706
U. S. Army Research Office (Durham)

Attn: CRD-AA-IP (Richard 0. Ulsh)
Box CM, Duke Station
Durham, North Carolina 27706
1 Superintendent
U. S. Army Military Academy

West Point, New York 1099
1 The Walter Reed Institute of Research Walter Reed Army Medical Center Washington, D. C. 20012

1 Commanding Officer
U. S. Army Electronics R\&D Activity Fort Huachuca, Arizona 85163

1 Commanding Officer
U. S. Army Engineers R\&D Laboratory Attn: STINFO Branch
Fort Belvoir, Virginia 22060
1 Commanding Officer
U. S. Army Electronics R\&D Activity White Sands Missile Range, New Mexico 88002

1 Director
Human Resources Research Office
The George Washington University
300 N. Washington Street
Alexandria, Virginia 22300
1 Commanding Officer
U. S. Army Personnel Research Office

Washington, D. C.
1 Commanding Officer
U. S. Army Medical Research Laboratory

Fort Knox, Kentucky 40120
1 Commanding General
U. S. Army Signal Center and School

Fort Monmouth, New Jarsey 07703
Attn: Chief, Office of Academic Operations
1 Dr. S. Benedict Levin, Director
Institute for Exploratory Research
U. S. Army Electronics Command

Fort Monmouth, New Jersey 07703

1 Director
Institute for Exploratory Research
U. S. Army Electronics Command

Attn: Mr. Robert 0. Parker, Executive
Secretary, JSTAC (AMSEL-XL-D)
Fort Monmouth, New Jersey 07703
1 Commanding General
U. S. Army Electronics Comman

Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC
RD-D
RD-G RD-G
RD-MAF-I RD-MAF-
RD-MAT
$\mathrm{RD}-\mathrm{GF}$
$\mathrm{RD}-\mathrm{MN}$ (Marine Corps LnO) XL-D
XL-E $\mathrm{XL}-\mathrm{E}$
$\mathrm{XL}-\mathrm{C}$ $\mathrm{XL}-\mathrm{C}$
$\mathrm{XL}-\mathrm{S}$
$\mathrm{HL}-\mathrm{D}$ HL-D
HL-L HL-L
HL-J HL-J
HL-P
HL-O HL-O
HL-R HL-R
NL-D NL-A
NL-P NL-P
NL-R
NL-R
NL-S
$\mathrm{NL}-\mathrm{S}$
$\mathrm{KL}-\mathrm{D}$
$\mathrm{KL}-\mathrm{E}$
\qquad
VL-D

1 Mr. Charles F. Yost
Special Assistant to the Director of Research
National Aeronautics \& Space Admin
Washington, D. C. 20546
1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
1 Polytechnic Institute of Brooklyn 55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120 th Street
New York, New York 10027
1 Director
Stanford Electronics Laboratories
Stanford University
Stanford University
Stanford, California 94301
1 Director
Electronics Research Laboratory
University of California
Berkeley, California 94700
1 Director
Electronic Sciences Laboratory
University of Southern California
Los Angeles, California 90007
1 Professor A. A. Dougal, Director Laboratories for Electronics
and Related Science Research
University of Texas
Austin, Texas 78712
1 Professor J. K. Aggarwal
Department of Electrical Engineering
University of Texas
Austin, Texas 78712
1 Division of Engineering and Applied Physics 210 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138

KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
weight distribution						
cyclic codes						
cross correlation						
maximum length sequences						

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data is included. Marking is to be in accordance with appropriate security regulations.
b. GROUP: Automatic downgrading is specified in DoD Direc tive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified If a meaningful title cannot be selected without classificaIf a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesion, show title classification in a
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name (s) of author (s) as shown on or in the report. Enter last name, first name, middle initial If military, \& wank and branch of service. The name of the principal author is an absolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day, month year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, \& 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security clas sification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

[^0]: * Dr. B. Elspas pointed out this relation.

[^1]: *A polynomial representation will be used for a code vector [4].

[^2]: *|B| means the number of elements of B.

