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Compact Representation of the Separating £-sets of a Graph

Arkady Kanevsky

Coordinated Science Laboratory 
University o f Illinois 

Urbana, IL  61801

January 1988

ABSTRACT
W e present an 0 (n) space representation for the separating ¿-sets o f an undirected 

¿-connected graph G for fixed ¿, where n is the cardinality o f the vertex set o f G. 
Namely, the total space used by the representation is Oik1 rT). W e also improve the

upper bound on the number o f separating ¿-sets o f G to 0  ( 2 * which has a matching
¿

lower bound.

1. Introduction

Connectivity is an important graph property and there has been a considerable amount o f work on algorithms 

for determining connectivity o f graphs [BeX,Ev2JEvTa,Ga,GiSo,LiLoWi]. An undirected graph G = (V,E) is k- 

connected if for any subset V ' o f ¿ -1  vertices o f G the subgraph induced by V -V ' is connected [Ev]. A  subset V ' 

o f ¿ vertices is a separating k-set for G if  the subgraph induced by V -V ' is not connected. For ¿=1 the set V ' 

becomes a single vertex which is called an articulation point, and for ¿=2,3 the set V ' is called a separating pair 

and a separating triplet, respectively. Efficient algorithms are available for finding all separating ¿-sets in k- 

connected undirected graphs for ¿<3 [Ta,HoTa,MiRa,KaRa].

In [KaRa2,Ka] we addressed the question o f the maximum number o f separating pairs, triplets and ¿-sets in 

biconnected, triconnected and ¿-connected undirected graphs, respectively?

An undirected graph G on n vertices has a trivial upper bound o f on the number o f separating k-

This research was supported by NSF under ECS 8404866, the Semiconductor Research Corporation under S7-DP-109 and the Joint Services 

Electronics Program under N00014-84-C-0149.



sets, ¿ > 1. The graph that achieves this bound for all £ is a graph on n vertices without any edges. For k= 1 the 

maximum number o f articulation points in a connected graph is (n - 2) and a graph that achieves it is a path on n ver-

n (yi -3 )
tices. For k=2 the maximum number o f separating pairs in an undirected biconnected graph is — —— -  and a graph

that achieves it is a cycle on n vertices [KaRa2]. Further, we observed that there is an 0 (n) representation for the 

separating pairs in any biconnected graph (although the number o f such pairs could be G(n2)) [KaRa2]. For k=3

the maximum number o f separating triplets in a triconnected graph is — ■— ^  we presented a graph,

namely the wheel [Tu], that achieves it [KaRa2]. The number o f separating ¿-sets in a ¿-connected graph is 

0 (3kn2) and we show that the bound is tight up to the constant [Ka]. The lower bound on the number o f separating

n2k-sets in a ¿-connected undirected graph is £2(2*

In this paper we present a linear representation o f separating ¿-sets in ¿-connected undirected graphs. For 

¿=2 representation is different from the one presented in [KaRa2]. W e also give the alternative prove o f the upper 

bound on the number o f separating ¿-sets, which match the previous upper bounds for ¿ = 2  and ¿ = 3 , and improves

n2
the upper bound for general ¿ to 0 (2*— ). W e will first present representation for ¿=2 and ¿=3 and then general

ized the technique for general ¿.

2. Graph-theoretic definitions

An undirected graph G=(V,E) consists o f a vertex set V and an edge set E containing unordered pairs o f dis

tinct elements from V. A  path P in G is a sequence o f vertices < v 0, • • • ,v*> such that (vt_! ,v, )g £ ,z = 1 , • • • ,k. The 

path P contains the vertices v0, • • • ,vk and the edges (vq^ ) ,  • • • ,(vfc_! ,vk) and has endpoints v0, vk, and internal 

vertices v lt • • • ,vk_i.

W e will sometimes specify a graph G structurally without explicitly defining its vertex and edge sets. In such 

cases, V (G ) will denote the vertex set o f G and E (G ) will denote the edge set o f G. Also, i f  V' c  V and vg  V we will 

use the notation V 'uv to represent V \ j {v } .

An undirected graph G =(V,E) is connected if there exists a path between every pair o f vertices in V. For a 

graph G that is not connected, a connected component o f G is an induced subgraph o f G which is maximally con

nected.
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A  vertex veV  is an articulation point o f a connected undirected graph G = (V ,£ ) if the subgraph induced by 

K - {v }  is not connected. G is biconnected if it contains no articulation point.

Let G=(V,E) be a biconnected undirected graph. A  pair o f vertices v l 5v 2e V7 is a separating pair for G if the 

induced subgraph on V - { v ltv2} is not connected. G is triconnected if it contains no separating pair.

A  triplet ( v 1 ,v2,v3) o f distinct vertices in V is a separating triplet o f a triconnected graph if the subgraph 

induced by V -  { v 3 ,v 2,v 3} is not connected. G is four-connected if it contains no separating triplets.

Let G = (F ,£ ) be an undirected graph and let V'qV. A  graph G'=(V',E') is a subgraph o f G if 

E'^E(^){(Vi,vj) I vhVjG V ).  The subgraph of G induced by V  is the graph G"=(V\E") where E"=E^  

{ (vi,vJ)\vitvjeV

3. Representation for £=2

Let G =  (V,E) be an undirected biconnected graph with n vertices and m edges. W e denote with g(n) the 

upper bound on the size o f a compact representation o f separating pairs o f a graph on n vertices. Let { v ! , v 2} be a 

separating pair that divides G into nonempty G\ and G 2. Let {w 1,w 2} be a "cross" separating pair with wl eG\ 

and w 2g G 2. It divides G x into G \ and G , and divides G 2 into G 2 and G " 2 (see Figure 1).

Consider a maximal set o f vertices u in G 2 such that (w j ,m} is a cross separating pair and, analogously, consider a
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maximal set o f vertices x in G\ such that {x ,w 2} is a cross separating pair. The set o f u’ s is the set o f articulation 

points in G 2- Moreover, the set o f u’s along with the subgraphs o f G 2 between them is a path from vj to v 2. 

Analogously, the set x ’s is a set o f articulation points o f G 1 with additional condition that the x ’s along with the sub

graphs o f G 1 between them is a path from vj to v2. Number the vertices v lt u’s, v 2, and x ’ s by y 1} y2 and so on 

going clockwise along the paths. W e denote by G, the subgraph o f G between yt and yt+1. Note that some G, can 

be empty (consists o f a single edge). Thus, the graph G becomes a cycle with vertices y ’s and G ,’s alternating on it. 

Every pair o f vertices y ’ s give a separating pair o f G unless they are adjacent and the subgraph between them is 

empty. Hence, we can represent all o f them by the following structure:

1 ) the cycle: the set o f vertices y ’ s

2) a vertex for every G, with a flag to specify i f  G, is empty. Edges between G, and y,, yi+1.

Note that when there are no cross separating pairs then we get a trivial cycle with two vertices v{ and v 2 and 

two edges connecting them. Since the sets x ’ s and u’s are maximal all other separating pairs are inside G ,uytu y ,+1. 

Note that Gt can be the union o f disconnected components, but each o f them is connected to y, and yi+1. Let the 

cardinality o f set o f vertices y ’ s be /. Based upon the above observations we get the following recurrence relation

1
$ ( * ) £  Z s (« .-  +  2) + 4/,

i=i

where g(n, + 2) represent the upper bound for all separating pairs inside GtuyjU yl+1. The cardinality o f Gt- = nt, 

1
and £ («,-  +  1) =  n. Any gin) that satisfy the recurrence will be an upper bound on the size o f representation o f

i=i

separating pairs o f G. Clearly, linear g (n) is one o f them (see Appendix).

4. Representation for k=3

The wheel Wn [Tu] is C„_i together with a vertex v and an edge between v and every vertex on C „_ j. It is 

easy to see that Wn is triconnected and has separating triplets.

Assume there exists a separating triplet {v i , v 2,v3} in G, which separates G into nonempty G t and G 2 (see 

Figure 2).

Lemma 1: Only one o f these three vertices has type 3 separating triplets {w 1 ,vi ,w 2} such that h^ g G ! and w 2e G 2 

[KaRa2].
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Figure 2.
Separating G into G x and G2 by separating triplet { v x ,v2,v3}

Proof: Assume there is separating triplet {w 1,v2,w 2} o f the third type in G, where wx e G x and w 2 e G 2. It 

separates G x into K x and K2, and separates G 2 into K3 and K4. Vertices vx and v 3 must belong to the different 

components with respect to separating triplet {w 1 ,v2,w 2}, otherwise either {w 1 ,v2} is a separating pair, or {w 2,v2} 

is a separating pair, or both.

Claim 1 Vertex v 2 has a direct edge to every nonempty subgraph K x,K2,K 3,AT4.

W.L.O.G. assume that K x is not empty and Vjc&KX, (x,v 2)g £. Then is a separating pair o f G,

which separates K x from the rest o f the graph.

[

Now, we will prove that there are no separating triplets o f the third type which use Vj or v 3. W e will prove 

this by contradiction. W.L.O.G. assume there is a separating triplet {ux,vx,u2}, where ux e G x and u2 eG 2 (ux 

may be equal to w j and u2 may be equal to w 2).

Case 1: ux e K2, if K 2 is not empty (see Figure 3).

By Claim 1 for vx and the existence o f separating triplet [ultvl ,u2], K x, wx, K2-  u{ belong to the same 

connected component with respect to separating triplet { m1 ,v 1 ,m2}. I f  v 2 belongs to the same component then 

[v\,ux} is a separating pair which separates Ar3u w 2uAr4u v 3 from the rest o f the graph. I f  v 2 does not belong to 

the same component then (v ! ,ux} is a separating pair which separates K x\j w xkjK2 -  ux from the rest o f the graph.

Analogously, u2£K4.

Case 2 : ux ~wx.
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Illustrating Case 1 in the proof o f Lemma 1.

Since { m1 ,v 1 ,m2} is a separating triplet then v 2 does not have any edges to K x and hence, K x is empty by 

Claim 1. But then {v j ,u2} is a separating pair, i f  [ui,vi,u2] is a separating triplet.

Analogously, u2 *w2.

Case 3: ux e K 1 and u2 e K2.

I f  { « i ,v 1 ,m2} is a separating triplet then either {ux,u2}, or {u\,v{ }, or { v x, « 2} is a separating pair.

That means that if there is a separating triplet o f the third type which uses one o f the vf,¿=1,2,3 then there are 

no separating triplets o f the third type that use the other vy j= I ,2 ,3 ,  j* i.

[

Let { v j ,v 0,v2) be a separating triplet o f a graph G on n vertices, and v 0 be the only one o f the three vertices 

o f this separating triplet which might participate in a separating triplets o f the third type with respect to { v ltv0,v2}. 

Consider all separating triplets o f the third type {w 1,v0,w 2} such that and w2g G2, together with

{v i ,v 0,v2}. A ll such separating triplets use v 0 as the "central" vertex. Rename the vertices w j ’ s, w 2 ’ s, vx and v2 

into { v ltv 2, • ’ • ,v/} going clockwise, such that they form the wheel with v0 in a center, where any two nonadjacent 

vertices form a separating triplet with v 0. The subgraphs between v, and vt+1 are denoted with G,, and some o f 

them may be empty. Now, the graph G looks like a wheel with v0 in a center vt-, and Gt ( i= l ,  • • •,/) on a cycle.

Every pair o f vertices on the cycle o f the wheel form a separating triplet with v 0 unless they are adjacent (vt- 

and vi+1) and the subgraph (G ,) between them is empty. Hence, we can represent these separating triplets by the 

following structure:



7

1 ) the wheel: { vq.V! , • • • ,v*} with edges o f G

2) a vertex for every G, with a flag to specify if G, is empty. The edges between G, and v,, vl+1 and between v0 

and v,-, G, with flags to specify if  the edge is real.

Let us see where the rest o f separating triplets o f G lie.

Observation The remaining separating triplets belong to Gi'uv0'uvi'<jvi+l'u the neighbor o f v, in G,_! if such a 

neighbor is unique u  the neighbor o f vi+1 in Gt +1 i f  such a neighbor is unique.

Let { w 1 ,W2,h'3} be a separating triplet with w ^ G i  and w 2,w 3g G 2. The separating triplet {w 1 ,w 2,w 3} separates 

G i into L ! and L 2, and separates G 2 into L 3 and L 4 (Figure 4).

Let us see how the original separating triplet { v x ,v 2,v3} is separated by the separating triplet {w , ,w 2,w 3}.

The vertices { v ! , v 2,v 3 cannot belong to the same connected component o f G with respect to the separating 

triplet {w 1 ,w 2,w 3} ,  otherwise either wx would be an articulation point, or {w 2,w 3} would be a separating pair, or 

both. W .L.O.G. assume that V! belongs to one connected component and v 2,v 3 to the other.

Subgraph L { must be empty, otherwise {w ^ V i}  becomes a separating pair. Since the graph is triconnccted, 

we have

Figure 4.
Illustrating the proof o f the Observation.
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1) (w i.v O e E ,

2) 3 x,yeL-i vw 2'<JW3: (x,Vi)eE, (y,v1)G£and

3) V zgL 2u L4u v 2u v 3: ( z , v i ) e E .

Hence, vertex w j is the unique neighbor o f vertex in G j. Moreover, i f  there are any separating triplets 

with one vertex in G { and two in G 2 which separate from v 0 and v2, then w j is one o f the vertices o f the 

triplet.

A  separating triplet cannot have all its three vertices in three different Gt’ s otherwise two o f these vertices 

would form a separating pair. From the proof o f the Lemma 1 and the fact that the set { vx ,v2, • • • ,v*} is maximal, 

we know that if  there is a separating triplet which involves a vertex from G,, then the other two vertices belong to 

{v t}u { v l+1 } u { v 0}u G I- and the neighbor o f v, in G ,.!, if such a neighbor is unique, and symmetrically a ’ unique’ 

neighbor o f v1+1 in Gl+2. This proves the Observation.

□

Let g (n) be the size o f a compact representation o f the separating triplets in a graph on n vertices, and let the

k
number o f vertices in Gt- be nt. Then £(/z, + 1 ) +  1 =  n, and we can write the following recurrence relation

i=i

* 0 i ) » Z * ( *  + 5) +  <6/ +  1 ),
¿=i

where (6/ + 1) stands for the space used to store the wheel information including multiple edges. The solution to 

this recurrence is clearly linear (see Appendix). This proves that there is a succinct O (n) size representation o f the 

separating triplets.

5. Representation for general k

Let G=(V,E) be an undirected ¿-connected graph with n vertices and m edges. W e denote with g(n) and 

f  (n) the upper bounds on the size o f representation and the number o f separating k-sets for ¿-connected graph on n 

vertices. Let V '=  { v 1 ,v2, • • • ,vk) be a separating ¿-set, whose removal separates G into nonempty G i and G 2 (sec 

Figure 5). A  separating ¿-set {w j ,w 2, • • • .w*} o f G is a cross separating ¿-set with respect to V ' if 3 i j : w(g G i 

and WyG G 2. Let the cardinalities o f and G 2 be / and n -l-k , respectively. Let the upper bound on the size o f 

the representation o f the cross separating ¿-sets be h(l,n -l), and the maximum number o f cross separating ¿-sets be 

r ( l,n -/). Then any g (n) and /  (n) that satisfy the recurrences
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Figure 5.
Dividing G into G x and G 2 by separating k-set { v t , 

g (n )=  g (/+/:) + g (n -/ ) + / i ( / , / i , 

/ ( * ) = [ / ( / + * )  + / ( « - / )  + r(/,n-/) +  l] ,

.Vik)

are upper bounds on the size o f representation and the number o f separating ¿-sets in G. Now we will derive upper 

bounds for the functions h and r and tune up the recurrences.

Let [wx,w2, • • • ,wk] be a cross separating ¿-set with {w lt • • • ,vv,} <zGx, {w i+i+1, • • • ,w*} c G 2 and 

{vvj+i, • • • c  { v 2, .v*}. The separating ¿-set {w 1 ,w 2, • • • .w*} separates G x into G 3 and G 4, separates

G 2 into G 5 and G 6, and divides { v lt • • • ,v*} into [vx, • • • ,vr},  {v r+t+1, • • • ,v*} and vr+l = ws+i, i =  1 ,...,/. (sec 

Figure 6)

Case 1 None o f G,-, i =  3,4,5,6 are empty, (see Figure 6)

The sets [wu w2, • • • tw ,.*,v l f - • • ,vr }, [wx,w2, • • • ,wJ+f,vr+f+1, • • • ,v* }, {v ^  • • • ,vr+„w J+i+1, • • • ,wk) and 

{v r+1, • • • ,v*,wi+f+1, • • • ,w*} are separating sets o f G that separate G 3, G 4, G 5 and G 6 respectively, so their cardi

nalities are greater than or equal to ¿. Then,

r
s + 1 +  r >k 
r + t + k - s - t > k  

" s + t + k - r - 1 >k 
k - r + k - s - t > k

From now on we replace the subscript r by s. Let A = B=  {v i+i+l, • • • ,v* }, C =

{w 1 , * * * ,w , } ,  D =  [ws+l+{, • • • ,wk], and T=  {v ,+1, • • • ,vi+t) = {w i+1, • • • ws+l). For Case 1

\A I =  IB I = 1C I = \D I =  — .2

r + s + 1 > k 
r >s 
s > r
k > r + s + t
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•  v
T  k

Figure 6.
Dividing G into nonempty components by separating ¿-sets 

{v ! ,  >v*} and [wx, ••• ,wk}.

Claim 2 V  z z =  5+ 1 ,...,/ 3 Gy, j  =  3,4,5,6: (Vi,xf)eE.

Proof: W.L.O.G. assume 3v;: V .te G 3: (x,v,)€£ . Then { v lt • • • ,vi+ i,W !, • • • .w ,} -  { vt} is a separating (k-l)-set.

C

Claim 3 For every xeA  there are y e  G 3 and ze G 5, such that (x,y)eE and (jc,z)e£. Analogously, for every ver

tex x o f B, C and D there are vertices y and z in appropriate neighboring G ,, i =3,4,5,6, which are adjacent to x. 

Proof: W.L.O.G. assume there is xeA  such that for every ye G 3 (x,y)eE. Then Au C u 7 - { x } is a separating (k- 

l)-set.

C

Lemma 2 A ll cross separating ¿-sets containing C u T  and at least one fixed vertex o f D can be represented in

k t kt0  ( (——  )2) space, and their number is 0  (2 2 ).

Proof: Assume we have a separating ¿-set {w lf • • • ,wf+<^ ,j:J+<+a+1, • • • ,xs+t+a+b,ys+l+a+b+l, • • • ,y*}, where 

x'seG5, yseG6, a > 1, and either b or k -s -t -a -b  is greater or equal to 1 (the new cross separating ¿-set is dif

ferent from the old one) (see Figure 7).

Let // = [xs+t+a+u • • • ,xs+t+a+b) (x’s) and / = {ys+t+a+b+u *•*,> ’* } (y*s), and let D be divided into D ' = 

{wJ+t+1, • • • ,ws+t+a},E  which is in the same connected component as G 3, A, and part o f G 5, and F which is in the
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Figure 7.
Illustrating the proof o f Lemma 2.

same connected component as G 4, B and part o f G 6. Also let H divide G5 into G '5 and G " 5, and let / divide G 6 

into G '6 and G " 6 (see Figure 7).

Separating sets T +D '+E+H and T +D '+F+I separate G "5 and G " 6, respectively. The cardinalities o f these 

separating sets are less than ¿. Hence, G "5 and G " 6 are empty. Moreover, since C+T+D'+H+F and 

C +T +D '+E +/ are separating sets and C +7  +D and C +T+D '+// +/ are separating ¿-sets, I £  I = I // I , and 

1/ I = IF I . Note that the argument still holds if either // or / are empty.

Next, we will show that i f  we replace part o f E and/or part o f F we will necessarily use only vertices o f IJ 

and/or / for it, regardless o f whether we replace part o f D ' or not. In other words, II  and I are unique for £ and F. 

The proof is by contradiction.

Assume that there exist I i+ H { *I+H,  such that C+T+D'+Hj+Zj is a separating ¿-set. Let //^G s and 

I i q G6. Also, let I\+Hx divide £  into £ x and £ 2, and divide F into F x and F 2 (see Figure 8).

Let / / 1  be separated into two parts, H \ adjacent to £  and £  " x adjacent to £. By the above arguments II '1 is 

adjacent to E X,H'\  is adjacent to F 2, and I  \ is adjacent to £ 2+£ 1 . Since all neighbors o f £  in G 6 are also in /, and 

all neighbors o f £  in G 5 are also in H, H'\  c  H and l x is divided into l\  = I 'u I l and / "\ - I\ - I\ .  Let 

I I '  = I I - I I "  and let I '  =  I - I  \ .
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Figure 8.
Illustrating the uniqueness o f a replacement for a part o f cross separating ¿-set.

The separating set T+D '+// \ +11 separates E x from the rest o f the graph and has cardinality is less than k. 

Hence, E x is empty and we have I  - I ' x% E - E 2 and I I x = H " X. Analogously, the separating set T+D '+/X+I1 

separates F x from the rest o f the graph and has cardinality is less than k. Hence, F x is empty and we have F = F 2, 

E = E X, I I  = I I x andl  - I x. This contradict the assumptions.

Note that the arguments still hold if  either II  or / are empty, or if we replace only parts o f E and F. If  part o f 

D ' is replaced as well, then we will not replace it, so that we will look only at the replacements for E and F. Also, if 

there exists a separating ¿-set that replaces F  by H, then there is no I  x ç G 6 that replaces any part o f F for any cross 

separating ¿-set described in Lemma 2.

Thus, any replacement o f any part o f F for any cross separating ¿-set specified by Lemma 2 lies in II. The set 

o f vertices which is used for all possible replacement o f any part o f D for a cross separating ¿-sets specified by 

Lemma 2 will be called the fringe o f D, where H is the fringe o f F  and / is the fringe o f E. Note that there could be

k—t
parts o f D which do not have any replacements. The cardinality o f the fringe o f D is less than ■ =  ID I . Hence,

the representation o f all cross separating ¿-sets with C+T fixed along with at least one vertex from D takes 

0 ( { ^ ~ ) 2) space, where 0 )2) space is needed to specify all edges between D and its fringe. This proves the

space complexity for the representation.
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The number o f different subsets o f D is 2 IZ) 1. Since for every subset E+F o f D there is a unique replacement, 

(if it exists) that a separating ¿-set specified by Lemma 2, the number o f separating ¿-sets with C+T fixed along with

k-t
at least one vertex from D is upper bounded by O (2 2 ). This proves the second part o f the Lemma.

□

Corollary A ll cross separating ¿-sets containing T+D and at least one vertex from C can be represented in

i *-»rC_t "
0  ( ( - y - ) 2) space, and their number is 0  (2 2 ).

Take the maximal set X  o f disjoint C e G i such that C,+7 +D is a separating ¿-set. Analogously, take the max

imal set Y o f disjoint D e G 2 such that C +T +Dt is a separating ¿-set. For T fixed, all cross separating ¿-sets are

k-t k-t
upper bounded by 0(2 2 \X I 2 2 \Y\) = 0(2k~t IX I iy  I), and are represented in 0 ( ( A ^ ) 2 ( IX  I + IY I))

space. Next we will see how many different T s we need to consider.

Take the smallest T = TX such that a cross separating ¿-set will have nonempty Gt i=3,4,5,6, i f  it exist. If 

there exist a separating ¿-set with different T -  T2, T X±T2, then it can be o f four different types:

Type 1). T2n A *0  and T2nB*0,
* x

Type 2). T2nA=0 or T2nB=0 andTxr\T2*0 ,
- -
* *

Type 3). T2nA=0  or T2nB=0  and T xn T 2=0,

Type 4). T2nA=0 and T2nB=0.

Let us first consider type 4 cross separating ¿-sets. Since T2 must lie completely inside Tx and Tx has the 

smallest cardinality, then T2 = T X. Let the cardinality o f X, the maximal disjoint set o f C ’ s, be l x, and let the cardi

nality o f the maximal disjoint set Y be l2, where + 12 =  /. Let us number A, the set X, B and the set Y. So A 

becomes the "nearest" D from Y becomes A 2, and so on going clockwise. The cardinality o f this set is / + 2. 

From the proof o f the Lemma 2 we know that all cross separating ¿-sets o f type 4 consist o f three parts: 1\ , C which 

is inside G i and is inside some C ’s from setX and its fringe, and D which is inside G2 and is inside some D's from 

set Y and its fringe. Note that 7\j any two A t-,/=l, • • • ,/+2 are also separating ¿-sets if the parts o f the graph 

between them are nonempty. W e can also replace parts o f A, by its fringe as long the above condition will be true. 

Let the part o f the graph G between A,- and A f+1 ,/=1, • • • ,1+2 be G,-,/=l, • • • ,1+2 (i in this case taken mod 1+2). 

Let Gi -  the fringe o f A; in G; -  the fringe o f Ai+l in G, be G +2. The only case when TuA^uA^ (or
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parts o f the fringe o f A, and A ,+1 ) i < j  is not a separating ¿-set when i= j~  1 and G\ = 0.

Based upon above observations the structure (structure 1) which covers all cross separating ¿-sets o f type 4 

will be the following:

1 ) Ai with its fringes for all /=1, * - - ,1+2 ,

2) For every nonempty G '¡,i= l, •••,/+ 2 we fill all nonexistent edges o f the complete graph on the neighbors o f 

G 'i as real edges. I f  G '¿,¿=1, • • • ,1+2 is empty for some / then we fill these edges as virtual edges. A ll o f the 

edges o f G between A, and G,+i ,i= l, • • • ,1+2 are in the structure as real edges.

Let us see where the rest o f the separating ¿-sets lie assuming there are no cross separating ¿-sets o f type 1 

and type 2. Note that we allow separating ¿-sets o f type 3. Let us first the definition o f the exceptional 

separating ¿-sets. The separating ¿-set is exceptional if it separates only part o f A, an nothing else for 

i= l ,  • • • ,1+2 .

Lemma 3: A ll separating ¿-sets which are not covered by the structure 2 and not o f type 1 and 2 and not 

exceptions are inside G,uA,- and its fringes inside G,_! u A I+1 and its fringes inside G,+1.

Proof: Since there are no type 1 and type 2 and no exceptions in separating ¿-sets, no separating ¿-set is using T. 

There are also no cross separating ¿-set which are not covered by the structure 1. Let us see what happens if a 

separating ¿-set crosses some A ,,/=l, • • • ,1+2 (see Figure 9).

W.L.O.G. let £ u fu / /  is this separating ¿-set, which crosses A,, where F c G 5, F c G 6 and ZZczA,. It divides 

A, into A A "  and //. It also divides G 5 into G ', and G " ,  and it divides G 6 into G \ and G " 6. Both A ", and A ' 

are nonempty, otherwise the set Y is not maximal, or there is no cross separating ¿-sets. I f  G " 5 and G " 6 arc 

nonempty then FuZZuA ", and FuZZuA "6 are separating sets with cardinalities bigger or equal to ¿. But both o f 

them can not have cardinality bigger or equal to ¿, hence, one o f G "5 or G "6 must be empty. W.L.O.G. let G "6 be 

empty. Since A /+1u 7\jA, and A /+1u 7 u A 'u Z Z u F  are separating ¿-set and separating set, respectively, 

IF  I > IA " , I .  Since Fu Z Zu A ", is a separating set, since both G "5 and G "6 can not be empty (exception),

IA ", I > IF  I . Hence, A  "  I =  IF I , and F  is part o f the fringe o f A, .

Let us see if  a cross separating ¿-set crosses two adjacent A ,’s. W.L.O.G. FuZZj u F u ZZ2u Z is a separating 

¿-set, which divides A, into A Z Z {, and A " ,  and divides A ,+1 into A ',+1, ZZ2, and A " +1. It separates G,_{ into 

G a n d  G , it separates G; into G a n d  G "  , it separates G ,+1 into G '•+1 and G " , +1. By the above argument,
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o

Figure 9.
Illustrating the proof o f Lemma 3.

G " i—\ and G " i+x are empty, and E belongs to the fringe o f A,, and / belongs to the fringe o f A<=1. Note that we 

don’ t need to use the assumption that there are no exceptions. A  cross separating ¿-set can not cross three adjacent 

A t’ s, since with respect to the middle A, non o f G " 5 and G " 6 can not be empty. Hence, all other separating ¿-set, 

except exceptions, belong to G.-uA.-u its fringes in Gl-_1u A i+1u  its fringes in Gl+1.

□

Let us now consider exceptions. W.L.O.G. let there exist an exceptional separating ¿-set, which separates 

part o f A,-. In other words, there is a separating ¿-set which separates part o f A, (A '¡), such that all o f the vertices not 

in AiuT  are neighbors o f A T h e  number o f the neighbors o f A '• in G,_1u A I_1u G i u A ,+1 is less than ¿. Consider 

the minimal set o f subsets o f A, that covers all vertices o f A, which can be separated by some exceptional separating

¿-set. The number o f subsets in this set is less than or equal to the cardinality o f A,, whence is at most k -t 
2 '

The

number o f neighbors o f A, that are used for separating these subsets is less than or equal to ¿ vertices per subsets, so 

¿ 2 k2
their total is at most — . Note that —— ¿ such vertices can be inside either G ^ u A ,-^  or G ,uAt+1. Moreover, if

veA , participates in some subset o f Ah that can be separated by an exceptional separating ¿-set, then v has less than 

¿ vertices in G,_! u A ^ u G iU A ,^ . Hence, if  we take the union o f the following sets
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1) G;VAiVAi+1

2) the neighbors o f At- in G;_! u A ,_ !, that are used for exceptional separating ¿-sets

3) the fringe o f A,-

4) the neighbors o f Ai+1 in Gt+1 u A i+2, that are used for exceptional separating ¿-sets

5) the fringe o f A l+1 for all Ts,

will contain all separating ¿-sets which are not covered by the structure.

The number o f exceptional separating ¿-set for A, is bounded by the number o f different subsets o f A,.

k-t k-t
Hence, it is less than or equal to 2 2 . Thus, the number o f exceptional separating ¿-sets is at most (1+2)2 2 .

Based upon this Lemma and the above observation about exceptions, and using structure 1, we can write the 

following recurrence, which is valid i f  there are no type 1 or type 2 separating ¿-sets:

s («) = I s  («,+*(*-0+0 + (/+ 2X-* '
»=1

where every term inside the sum covers one o f the G ,’ s, and (/+2)(

2
k-t

-)k + t ,

) + / is the upper bound on the size o f the

1+2 (i+2)(k—t)
structure 1. Note that £ « , + “ ----------- -+ t  =  n. The solution to this recurrence is O (kn + ¿ 3) (see Appendix). Note

¿=i 2

that each (n,- + k(k-t)+t) is less than n itself.

Analogously, the recurrence on the upper bound on the number o f separating ¿-sets become

1+2
U
i=l

k-t
/ ( « )  =  £ / > , + * ( * - 0 + 0 + 2* - '/ - ^ .+  2 2

The solution to this recurrence is 0(2 k̂ ~ ). Note that all cross separating ¿-set o f type 3 are covered by these 

recurrences.

Now we will look at type 1. Let T2nA=T '2, T2nB =T"2t and T {n T z=T2. With respect to a new cross 

separating ¿-set which uses T2 some G, i=3,4,5,6 could be empty. Let us first look at a harder case when none o f Gt 

i=3,4,5,6 are empty with respect to a new cross separating ¿-set.

A  new cross separating ¿-set must cross C and D o f the old cross separating ¿-set which uses T x, otherwise 

the Claim 2 with respect to the new cross separating ¿-set will be violated (see Figure 10).

Second, T2=T x, otherwise Claim 2 will be contradicted for the old cross separating ¿-set.
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Figure 10.
Illustrating the configuration between two cross separating ¿-sets 

which use different T s.

Third, C i+C 2+ f f i+ T i+ 7' 2» C \+C 2^H i + F i +T’^» D 'i+ D '2+H2+T\+T"2t and D "\+D " 2+H2+T\+T"2 are 

separating sets with cardinalities less than k, which separate G "4 , G " 3,G  " 6, and G " 5, respectively. Hence, G " 3, 

G "4,G  " 5 ,  and G "6 are empty.

Fourth, C j+Z/i+C 2^T2+D 2+//2"̂ "̂  2» C 2 ^ 1  \+C"2+T2+D '2+H2+D '  j,

C \+II\+C'\ +T2+D 2+//2+ ^  " 2» C '2+ II1+T2+D \ +H2+D " 2 are separating sets. Hence, IC  ̂  I > IC '2 1,

\D\\> ID 2 I, IC  I >  IC  - 2 1, and Also, C\+H ̂  " 2+T'2+T X+D\+H 2+D " u

C '2+T ' 2+ II1+C "\+Ti+D '\+H2+D " 1, C '1+//1+C " i+ F  1 + T "2+D '2+II2+D , and

C '! +// j +C " 1+T1+T 2+D \+H2+D "2 are separating sets. Hence,

\c'21 + ir"2i > ic^ i > ic 2 1 >0
IC '  2 1 + IT’ 2 i ^  1 C'\ \ > IC "2\ > 0  

\D'2l + I T " 2 l > I D ' l l 2 l D 2\>0  

ID " 2 1 + \T'2\> I D "  I > I D " 2 I > 0

Also since we are still in a Case 1 with respect to both old and new cross separating ¿-sets, we have the following 

equalities
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Note that the set T '2 has edges to the set D , the set T " 2 has edges to the set D \ , the set T " 2 has edges to the set 

C ' i , and the set T '2 has edges to the set C , because o f the Claim 2 with respect to the new cross separating ¿-set. 

Hence, the maximal disjoint sets for C ’s and D ’ s (X and Y) will have cardinalities equal to 1.

Let us take a maximal T2, and let us take the fringes o f A 2, B 2, C and D (see Figure 11).

C \ does not have the fringe in G 4, otherwise part o f C \ which has a fringe becomes a part o f / \ . I f  C \ has 

the fringe in G 3 then the part o f C \ which has the fringe can be separated from the rest o f the graph by a separating

sctC'2+ T " 2+T !+  the fringe o f C\ in G 3, whose cardinality is less than k. Hence, C\ does not have the fringe.

Analogously, C , D \ , and D do not have the fringes. Symmetrically, T '2 and T "2 do not have the fringes.

Let T2 be the union o f vertices which are used for all possible T2 which create a cross separating ¿-sets with

A A A

nonempty G, i=3,4,5,6. Let D \ be the union o f all possible D \ ,D '\  be the union o f all possible D '\ ,C  \ be the

A A A

union o f all possible C\, C'\ be the union o f all possible C'\, C '2 be the union o f all possible C '2, C " 2 be the

A A
union o f all possible C " 2, D '2 be the union o f all possible D '2, and D "2 be the union o f all possible D " 2. Let us 

show that all o f these sets are disjoint.

Figure 11.
Illustrating the representation o f separating ¿-sets o f Case 1 

i f  two or more different intersecting T s exist. 
(Structure 2).
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Since all o f them are symmetric we will prove it only for C \ and C . Assume there are T 3 and T4 such that 

C " i  for r 3 is not disjoint from C\ for T 4. Then nonempty intersection o f C for T 3 and C \ for T4 is separated 

from the rest o f the graph by a separating set C " 2 for 7 3 u  T '3 u  T x u  7 "4 u  C '2 for T4, whose cardinality is less 

than k. This contradiction proves the statement.

The cardinality o f the union D " 2\jD '2kjI ' \ kjI \  is less than
k-t

2 ’
and analogously, the cardinality o f

A A j|r  ̂ A A A A

C "2u C  2u/ 'lU/ '2  is less than —— . Let us call C 2» C " 2» ^  2» £  "2 pseudofringe. Note that A and B

Ak
might have fringes , but by the symmetry T2- T x does not have any fringes.

The structure which represent all separating ¿-sets for all possible Vs will the following (structure 2):

1) the original separating ¿-set with its fringes,

2)  the cross separating ¿-set with minimum cardinality T ! with its fringes and pseudofringes,

3) for every nonempty G '  i=3,4,5,6 we will fill all nonexistent edges o f the complete graph on the neighbors o f 

G i f G '  is empty for any i=3,4,5,6 we will fill these nonexistent edges o f this complete graph by the virtual 

edges. (For G '3 we fill the edges between the vertices o f the fringe o f A in G 3, T lt T part o f A 2 which

A A
does not have any fringes, and C " 2).

From the construction o f the structure it is easy to see that this structure cavers all cross separating ¿-sets for 

all possible V s, o f type 1. Let us see now where the rest o f the separating ¿-sets lie, i f  we have separating ¿-sets o f 

type 1 .

I f  there exists 7% with at least one o f the G, empty i=3,4,5,6, assuming it is not exception, such that there is 

another T2 with T2n T x is nonempty along with nonempty T2nB and T2nA , then all cross separating ¿-sets o f this 

T2 are covered by the above structure. (They belong to the fringes o f A and/or B in G x or G 2 and the rest belong to 

the original cross separating ¿-set with its fringes or pseudofringes). So all cross separating ¿-sets are covered by 

this structure, assuming there are no exceptions, hence, all separating ¿-sets are either inside G ju A u f iu T jU  the 

fringes o f A and B in G2, or G2<jA^B ^T xkj the fringes o f A and B in G 1 , or cross separating ¿-sets covered by the 

structure. Since the structure is symmetric, we can look at the cross separating ¿-sets where the original separating 

¿-set is C u D u T x. Then the pseudofringes o f C and D become the pseudofringes o f A and B. With respect to this 

separation o f G all separating ¿-sets are either inside G 3u G 5u C u D u T 1u  the fringe o f C in G 4 and the fringe o f
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D in G 6, or inside G 4u G 6u C u D u r 1u  the fringe o f C in G 3 and the fringe o f D in G 5, or separating k-sets 

covered by the structure. But since in both cases they are the same separating ¿-sets, all separating ¿-sets are either 

inside G s u A u ^ u C u  the fringe o f C in G 4u  the fringe o f A in G 5, or inside G4v BkjCu T x'<j the fringe o f B in 

G 6, or inside G 5u A u D u r tu  the fringe o f A in G 3u  the fringe o f D in G 6, or inside G 6u 5 u D u 7 ’ 1u  the fringe 

o f B in G 4u  the fringe o f D in G 5, or the separating ¿-sets covered by the structure. To cover all exceptions we will 

do what we did for types 3 and 4 separating ¿-sets, we will add k(k-t)  neighbors o f A, B, C and D to each o f G 3, 

G 4, G 5 and o f G 6 which can participate in exceptional separating ¿-sets. Hence, the size o f representation is

8 ( * )  =  (*« + * ( ¿ - 0 + 0  +  S ^ — -k + t ,
«=i z

where every term inside the sum covers one o f G, i=3,4,5,6 along with its appropriate neighbors and fringes, and

(k -t) 4
8 + i is the upper bound on the size o f the structure. Note that ]£/i, +  2¿ -  t = n, hence the solution to the

z  i=i

above recurrence is 0(nk +k3) (see Appendix). The number o f exceptional separating ¿-sets is upper bounded by

k-t
4 2 2 . The upper bound on the number o f separating ¿-sets become

(rii +  ¿ (¿-- 0 + 0  +
i=i

k-t
•2k~‘ +  4*2 2

The solution to it is O (2kn +  2*^2) (see Appendix).

Let us now see what happens if  we are in type 2 and no separating ¿-sets o f type 1 exist. W.L.O.G. assume 

there is a separating ¿-set which uses 2^ 2, where T '2eA and T2e T x, and no separating ¿-set o f type 1 exist 

(see Figure 12).

I f  Gi s i=3,4,5,6 are nonempty with respect to a new cross separating ¿-set then we become in the Case 1 with 

respect to a new cross separaung ¿-set, hence IA 2 1 = IB I which is impossible. Hence, one o f the Gt i=3,4,5,6 with 

respect to a new cross separating ¿-set must be empty. W.L.O.G. let the empty Gx be either G 3 or G 4 with respect 

to the new cross separating ¿-set. I f  G 4 is empty then G 5 with respect to the new cross separating ¿-set must be 

empty, otherwise T x\j T'2kjA 2\jD 2 o f the new cross separating ¿-set becomes a separating set with cardinality less 

than k. Hence, if G 4 is empty then all cross separating ¿-set o f type 2 belong to the original separating ¿-set with its 

fringes. Then all separating ¿-set are either inside G iu A u f lu ^ u  the fringe o f A in G 5u  the fringe o f B in G 6, or 

G 2u A vj5 u T  ju  the fringe o f A in G 3u  the fringe o f B in G 4, or they belong to the union o f AkjBkjT the fringes 

o f A and B. Note that the latter separating ¿-sets are covered by the structure 2. We can write the recurrences
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Figure 12.
Illustrating type 2 separating ¿-set when no type 1 separating ¿-set exist.

similar to the above ones except for the sum which will be up to 2 instead o f up to 4. The solution will be still o f the 

same order. I f  G 3 is empty then IC2I ^ IA 2 1, otherwise C2u T 2u T x̂jB is a separating set with cardinality less 

than ¿. I f  D 2 crosses D x (see Figure 12) then A2kjT '2u TJD 2 is a separating set, so IC 2 1 = IA 2 1. 

CkjT xkjD \kjHkjD " 2 is a separating set, so \D"2 \ > \D'\\. Also C 2u T 2u D  '2u//uD " x is a separating set, so 

\D'\\ >.\D"2\. Combining these two we get \D"X\ = \D"2\. Since, C u ^ u T  2u D  2u//uD "  and 

C 2u T  2u T i u D '1 u //u D " 2 are separating sets, so IT  2uD  2 I > \D\ I > ID 2 I. Since "u Z / u D  " 2

separates G " 6 from the rest o f the graph, and since the cardinality o f this separating set is less than ¿, G " 6 is empty. 

Hence, D "2 belongs to the fringe o f D in G 6. T2 = T X in order for the Claim 2 with respect to the old cross 

separating ¿-set to be true. And since IC 2 l +  IT  2 I =  IA I and since the cardinality o f the new cross separating k- 

set is ¿, \D 2 1 = \D \ I . So, all cross separating ¿-sets o f this type belong to G s u A u D u ^ u  the fringe o f A in 

G 3u  the fringe o f D in G 6, if there are no exceptional separating ¿-sets. Also in the maximal set o f disjointD ’s (K) 

all o f D ’ s except D x belong to G 6. If G 5 with respect to the new cross separating ¿-set is nonempty, then by the 

above argument C 2 will belong to the fringe o f A. Hence, all cross separating ¿-sets belong to the set mentioned 

above, namely, G 4u A u T u D 1u  the fringe o f A in G jU  the fringes o f D x in G 5.

Let us take the maximal set o f C ’ s and D ’s (X and Y). We know that all cross separating ¿-sets o f type 2 with 

nonempty G 5 belong to G5(j Au D kjT xkj the fringe o f A in G 3u  the fringe o f D in G 6. Since we need to consider
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all symmetric cases, and since we don’t have any cross separating ¿-sets o f type 1 , all cross separating k-sets o f the 

type 2 belong to G s u A u C u ^ u  the fringe o f A in G 5U the fringe o f C in G 4, or G 4u 5 u C u 7 '1u  the fringe o f B 

in G 6u  the fringe o f C in G 3, or G s u A u D u T jU  the fringe o f A in G 3u  the fringe o f D in G 6, or 

G 6u £ u D'u T j u  the fringe o f B in G 4u  the fringe o f D in G 5. Note that C ’s and D ’s are not the same in these sets. 

In case o f G 3 C is "nearest" to A, in case o f G 4 C is "nearest" to B, in case o f G 5 D is "nearest” to A, and in case o f 

G 6 D is "nearest" to B. Let us see where the rest o f separating ¿-sets must lie. First, if  there are no cross separating 

¿-sets with G 5 nonempty (or same other appropriate symmetric G, i=3,4,5,6) then it is still possible to have a cross 

separating ¿-sets.

A ll cross separating ¿-sets consist o f three parts: part one is in G x, part two is in G 2 and part three is Tx. Part 

one belongs to some C from the set X or its fringe or the fringe o f A in G 3 or the fringe o f B in G 4. Part two 

belongs to some D from the set Y or its fringe or the fringe o f A in G 5 or the fringe o f B in G 6. That covers all cross 

separating ¿-sets which use T x, otherwise either set X or set Y is not maximal. W e don’ t have any cross separating 

¿-sets o f type 1. A ll cross separating ¿-sets o f type 2 with nonempty appropriate G, with respect to them belong to 

the part o f the graph between A and the nearest D in G 2 along with A and its fringe and D and its fringe. Hence, all 

other separating ¿-sets belong to G j u A u f i u ix with its fringes, or G 2u A u £ u T x with its fringes.

Hence, all cross separating ¿-sets o f type 2, except exceptions are covered by the structure 2 or inside the the 

subgraphs associated by G x, G ,1+1, G /l+2 and Gl+2. As for the exceptions the upper bounds we got for types 3 and 4 

still hold, since no part o f Tx can be separated by them (otherwise Claim 2 is contradicted). So, the recurrence 

which were written for the type 3 and 4 separating ¿-sets covers type 2 cross separating ¿-sets also, including excep

tions. That conclude Case 1.

□

Case 2 For any separating ¿-set every cross separating ¿-set will have one o f the G, i=3,4,5,6 empty. Not every ver

tex in both G x and G 2 can be used for cross separating ¿-sets.

W.L.O.G. let G 3 will be empty (see Figure 13).

Since G 4 is nonempty by assumption, and G 5 is nonempty since there are no exception, C'u TkjB and A kjTkjD are 

separating sets. So their cardinalities are bigger or equal to ¿, hence, 1C I = IA I and \B I = ID I. So, C is part o f 

the fringe o f A in G 1 . Since this true for every T, all cross separating ¿-sets belong to G x 'uAu TkjB'u  the fringes o f



Figure 13.
Illustrating Cases 2 and 3.

A and B in G2, or G 2u A u 7\j £ u  the fringes o f A and B in G x, except for exceptions. So all separating k-sets 

including the exceptions are either inside G iu A u B u T u  appropriate at most k2 neighbors o f AkjTkjB in G2 or 

inside G 2u A  appropriate at most/:2 neighbors o f AkjTkjB in G 1 which are used in exceptional separating

/r-sets. Hence,

g{n) = g(nx + k (k - 1)) + g(n2 +  ¿ ( ¿ - l ) )  + 4 k2,

where nx and n2 are the cardinalities o f G x and G 2. W e still have that nx + n2 + k = n, and the solution to this 

recurrence is 0 (k2 + n) (see Appendix). Note that n, +  k (/ :- !) < n for ¿=1,2.

For the upper bound on the number o f separating /:-sets we get the following equality

f ( n )  = f ( n x+ 2k ) + f ( n 2 + 2k) + 2k,

where 2* covers all exceptional separating k-sets. And its solution is clearly smaller than O ( 2 * ^ )  (see Appendix).

That conclude Case 2.

□

Case 3 For every separating k-set all cross separating k-sets are lopsided (one o f the Gj i=3,4,5,6 will be empty). 

And either G x or G 2 are such that every vertex o f them is used for some cross separating k-set.

W.L.O.G. let G 3 be empty and the smallest G 1 every vertex o f G x is used for some cross separating k-set (see 

Figure 13). There are two subcases: either G 5 or G 6 are empty, otherwise we will be in Case 2. Take C as large as
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possible.

I f  G 6 is empty then A u f iu C u D u f  with all edges between them and filling real edges for nonempty G 5 and 

G 4 and virtual otherwise (analogous to the structure 1) will specify all cross separating ¿-sets. I f  G 5 is empty then 

Ĉ jTkjD separate A from the rest o f the graph. Hence, CkjTkjD is an exceptional separating ¿-set. So the third 

structure will be the following:

1) A, B and T - the original separating ¿-set,

2) A ll the neighbors o f AuBuT  that are used for a cross separating ¿-sets with edges between them and the ori

ginal separating ¿-set.

since the remaining separating ¿-sets are inside G 2u A u £ ujT, we derive the following recurrence relation:

g(n) = g (n -l) + k2,
whose solution is f ( n )  = 0 (k 2n). Analogously, we have the following recurrence relation for the upper 

bound on the number o f separating ¿-sets

/ ( * ) = / ( « - 1 ) + 2*,

whose solution is O (2kn).

□

That conclude the proof o f all cases. Our final result is that all separating ¿-sets have 0 (k 2n) space represen-

n2
tation, and their number is 0  (2* — ).

¿
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APPE N D IX

i
£(/i,- + 1 )  =  n 2 < l < n  /i, > 0
«•=l

i
g (n ) < m ax (££  (n,- + 2) + 4/)

1 i=l

Let g (n) = 4/i -  16,

S (n ) < m a x (£ g  (« , + 2) + 4/) = max(£(4(/ij + 2) -  16) + 4/) = 
1 «=i 1 •=i

i
max(4^(/ii + 1) + 4/ -  16/ + 4/) =  max(4/i -  8/) < An -  16

1 *=i 1

i
^(/i,- +  1)  +  1 =  n 2 < / < n—\ rii > 0
»■=i

i
g (n) < m a x (^  (/i, + 5) + 61 +  1)

Let g (n) =  6/i -  55,

g (n) < m a x (£ g  (n, + 5) + 6/ + 1) = m ax (£  (6(/i, -  55) + 6/ + 1) =
1 i=1 1 i=l

l
max(6(^ (/ i, +  1) + 1) -  31/ + 6/ + 1) = max(6/i -  25/ -  5) < 6n -  55

1 ;=1 1

Yirii + + t = n 0 < t < k- 2  2 < / < 2 -?— - n, > 0
i=i 2 k ~ t

g (/i) < m a x (£ s  (nt + (/: -  0 *  +  0  +  lk~ -~ -  + t
1 i=i 1

Let g (n) =  2/ufc -  4k2 + 2 *2i + y  £ 2 -  3kt -  t,
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g (n) < m a x (£ g  (n¡ + (k -  t)k + t) + lk^— ^ + t )<  
»=1 1i

i i
max( £ 2 k(n¡ + k ( k - t )  + t )~  4k3l +  lk 2tl + ± k 2l -  ktl -  tl + I k +  t) =

¿=i

k^_t
2

max(2 k (¿ (n ¿  + + t ) -  2k l ^ -  - 2 kt + 2 k2l ( k - t )  + 2 ktl -4 k 3l + 2k2tl + \ k 2l -  3 ktl -  tl +  Ik^ - 1  + 1)
Zr Z¿ = 1

max(2*n +  2k3 (l -  21) + 2£2/(-/ + /) + * 2(^-/ +  ^  -  0  +  kt(l -  2 +  21 -  4 -  3/) +  *(-/ + 1 ) )  <
2 2

2kn-4k3 -  3kt + t<2kn -4k 3 + 2k2t + ^ k 2 - 3 k t - t

Hence, g (n) =  0 (nk + k3).

1 k - t

»=i z
2<l  <2 k - t

k - t
0 < t < n - 2

f  (n) < m a x (jy (/ i, +  /:(/:- r) +  /) +  2k~‘—- - ^  + 2  2 /)
J /Ti=i

Let

/ (n ) = 2*- ‘n/ -  2k~tk1l +  2*-'&/ + ^ 2*” '*/ -  + 2*- ‘Â:r +  -J-2**** -  2 2*“' ¿ 2 -  2*- 'f -  - 2k~'l -  2 2 2 ,

/  (n) <  max(J^(n¡k ( k - t )  + t)2k~‘l -  2k~tk1 l2 + 2^ ktl2 + ± 2k~‘kl2 -  - 2k- ltl2 + 2k~‘ktl + 
i t=1 2 2

1 1 — 1 1  —
- 2k-tk l - 2  2k- tk1 l - 2k- tt l - - l - 2k- tl2 - 2 2  2 +  -¿-2*"'/2 -  -¿-2*“ '/ + 2 2 /) = max(2* - 'ln -
2 2 2 2 i

j 2k~lkl2 + j 2k~‘tl2 -  2k~‘tl + 2k- ‘k2l2 -  2^  ktl2 +  2k~ltl2 -  2k~tk1 l2 +  2*"& /2 + j 2k~‘kl2 -

3 1 1 -LiL 1 i —■■■
j - 2k- ‘tl2 + 2k- ‘ktl + j - 2k~‘kl - 2 2 k~‘k2l - 2k~‘tl -  j 2k~'l2 - 2 2  2 l + j 2k~'l2 -  j 2k~‘l + 2 2 l) =

max(2*-'ln -  2 2k~‘k2l + 2k~tktl +  - 2k~‘kl -  2 2k~‘kl -  2 2k~ltl -  - 2k~‘l - 2  2 l )<  
i 2 2

k -t

max(2*-'ln -  2k' lk2l + 2k- ‘ktl + - 2k~‘kl -  - 2k~ltl +  2k-'kt +  - 2 k~‘k -  2 2k~‘k2 -  2k~‘t -  - 2k~‘l -  2 2 2 )
i 2 2 2 2

1 ^ - t  i k-t, 1 ok-tt
k -t

Hence, f  {n) = 0 { 2k~  + 2 knk).
k
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+ 2 k - 1 = n 0 < t <Jc- 2
i= 1

8 (n) ^  X# ('»« + k (k - 1) + 0  + 8k ^ —^  + 1
«=1 1

Let g (n) =  4nk -  -^-fc3 + ^ r * 2'  + T * 2 ~  “T ^  "  T '>

g(,n)<Ydg(ni + k{k - 1) + 1) + 4{k -  t)k + 1 <
¿=i

X(4(/ii + k ( k - t )  + t)k -  - y /:3 +  y - * 2/ + y £ 2 -  - y &  -  y O  + 4(X: -  O* + i =

4£(Xai* + 2& -  0 -  S k 2 +  Akt + 16k 2 -  16£2f + 16kt -  ~ k 3 + ^ - k 2t + 4r-k 2 -  -  -y  + 4£2 -  4kt + t
¿9\ 5 5 5 5 5

Akn +  £3(16 -  - y )  +  * 2/ (y -  -  16) + * 2( y -  -  8 +  4) + kt(4 +  16 -  ~  -  4) + /(I -  j )  =

4kn -  -^r-k2 + 4$-k2t + ^-k2 -  - ^-kt -  4-/

Hence, g(n ) =  0(nk + k2).

£ ( nt ■+— ^— ) + t = n 0 < t < n — 2
¿=i ^

k-t
f  (n) < Y J  (rii + k ( k - 1) + t) + 6 2k~‘ +  4 2  2

i=i

k-t
Let/ (n) = 2k~‘n -  y2*“ * 2 + j2*-*kt -  y2*~f/ + y2*~'£ -  2 2*~‘ -  y 2  2 ,

4 —  4 4  4
f { n )< Y J (n i  + k ( k - t )  + t) + 6 2k~l +  4 2 2 < £ (2 * - ‘ (n, +  *  (*  -  r) +  0  -  y 2*- '*2 + y 2* " '* ' ~

¿=i ¿=i 3 3

k-t k-t
y  2k~‘t + y  2k~‘k -  2 2k~l -  y 2 2 ) + 6 2*-' + 4 2 2 =  2*"'« -  2k~tk + 2 2k~‘t -  2k~‘t +

^ 2k~‘t +  1 -2* - * - i « 2-
3 3 3

'/ +  ~ 2*"*ik -  2 2*-' - 4 2
3 3

k-t

k-t
2



n\ + n2 + k = n n i, n2 > 0

S (n )<g (/Z i + £ (/ :-  l ) )  + g(/t2 +  £ (£ -  l ) )  +  4£ 2

Let g(n) = n -  6k2 +  3k,

g(n)<n\ + k2 -  k -  6k2 + 3k + n2 + k2 -  k -  6k2 +  3k + 4k2 =  n -  6£2 + 3k

n\+n2+k = n ni,n2 > 0

f  (n) < / ( « ! +  2k) + f (n 2 +  2k) +  2*

Let /  (n) = 2kn -  3 2kk -  2k,

f  (n)< 2kn\ + 2k2k- 3 2 kk - 2 k + 2kn2 + 2k2k- 3 2 kk - 2 k + 2k = 2kn - 3 2 kk - 2


