COORDINATED SCIENCE LABORATORY College of Engineering
Applied Computation Theory

COMPACT
 REPRESENTATION OF THE SEPARATING k-SETS OF A GRAPH

Arkady Kanevsky

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We present an $O(n)$ space representation for the separating k-sets of an undirected k-connected graph G for fixed k, where n is the cardinality of the vertex set of G. Namely, the total space used by the representation is $O\left(k^{2} n\right)$. We also improve the upper bound on the number of separating k -sets of G to $\mathrm{O}\left(2^{\mathrm{k}} \frac{\mathrm{n}^{2}}{\mathrm{k}}\right)$, which has a matching lower bound.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
\boxed{X} UNCLASSIFIED/UNLIMITED \square SAME AS RPT. \square DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Compact Representation of the Separating k-sets of a Graph

Arkady Kanevsky

Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801

January 1988

Abstract

We present an $O(n)$ space representation for the separating k-sets of an undirected k-connected graph G for fixed k, where n is the cardinality of the vertex set of G. Namely, the total space used by the representation is $O\left(k^{2} n\right)$. We also improve the upper bound on the number of separating k-sets of G to $O\left(2^{k} \frac{n^{2}}{k}\right)$, which has a matching lower bound.

1. Introduction

Connectivity is an important graph property and there has been a considerable amount of work on algorithms for determining connectivity of graphs [BeX,Ev2,EvTa,Ga,GiSo,LiLoWi]. An undirected graph $G=(V, E)$ is k connected if for any subset V^{\prime} of $k-1$ vertices of G the subgraph induced by $V-V^{\prime}$ is connected [Ev]. A subset V^{\prime} of k vertices is a separating k-set for G if the subgraph induced by $V-V^{\prime}$ is not connected. For $k=1$ the set V^{\prime} becomes a single vertex which is called an articulation point, and for $k=2,3$ the set V^{\prime} is called a separating pair and a separating triplet, respectively. Efficient algorithms are available for finding all separating k-sets in k connected undirected graphs for $k \leq 3$ [$\mathrm{Ta}, \mathrm{HoTa}, \mathrm{MiRa}, \mathrm{KaRa}]$.

In [KaRa2,Ka] we addressed the question of the maximum number of separating pairs, triplets and k-sets in biconnected, triconnected and k-connected undirected graphs, respectively?

An undirected graph G on n vertices has a trivial upper bound of $\left[\begin{array}{l}n \\ k\end{array}\right]$ on the number of separating k -
sets, $k \geq 1$. The graph that achieves this bound for all k is a graph on n vertices without any edges. For $k=1$ the maximum number of articulation points in a connected graph is $(n-2)$ and a graph that achieves it is a path on n vertices. For $k=2$ the maximum number of separating pairs in an undirected biconnected graph is $\frac{n(n-3)}{2}$ and a graph that achieves it is a cycle on n vertices [KaRa2]. Further, we observed that there is an $O(n)$ representation for the separating pairs in any biconnected graph (although the number of such pairs could be $\Theta\left(n^{2}\right)$) [KaRa2]. For $k=3$ the maximum number of separating triplets in a triconnected graph is $\frac{(n-1)(n-4)}{2}$ and we presented a graph, namely the wheel [Tu], that achieves it [KaRa2]. The number of separating k-sets in a k-connected graph is $O\left(3^{k} n^{2}\right)$ and we show that the bound is tight up to the constant [Ka]. The lower bound on the number of separating k-sets in a k-connected undirected graph is $\Omega\left(2^{k} \frac{n^{2}}{k^{2}}\right)$.

In this paper we present a linear representation of separating k-sets in k-connected undirected graphs. For $k=2$ representation is different from the one presented in [KaRa2]. We also give the alternative prove of the upper bound on the number of separating k-sets, which match the previous upper bounds for $k=2$ and $k=3$, and improves the upper bound for general k to $O\left(2^{k} \frac{n^{2}}{k}\right)$. We will first present representation for $k=2$ and $k=3$ and then generalized the technique for general k.

2. Graph-theoretic definitions

An undirected graph $G=(V, E)$ consists of a vertex set V and an edge set E containing unordered pairs of distinct elements from V. A path P in G is a sequence of vertices $\left\langle v_{0}, \cdots, v_{k}\right\rangle$ such that $\left(v_{i-1}, v_{i}\right) \in E, i=1, \cdots, k$. The path P contains the vertices v_{0}, \cdots, v_{k} and the edges $\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)$ and has endpoints v_{0}, v_{k}, and internal vertices v_{1}, \cdots, v_{k-1}.

We will sometimes specify a graph G structurally without explicitly defining its vertex and edge sets. In such cases, $V(G)$ will denote the vertex set of G and $E(G)$ will denote the edge set of G. Also, if $V^{\prime} \subseteq V$ and $v \in V$ we will use the notation $V^{\prime} \cup v$ to represent $V^{\prime} \cup\{v\}$.

An undirected graph $G=(V, E)$ is connected if there exists a path between every pair of vertices in V. For a graph G that is not connected, a connected component of G is an induced subgraph of G which is maximally connected.

A vertex $v \in V$ is an articulation point of a connected undirected graph $G=(V, E)$ if the subgraph induced by $V-\{v\}$ is not connected. G is biconnected if it contains no articulation point.

Let $G=(V, E)$ be a biconnected undirected graph. A pair of vertices $v_{1}, v_{2} \in V$ is a separating pair for G if the induced subgraph on $V-\left\{v_{1}, \nu_{2}\right\}$ is not connected. G is triconnected if it contains no separating pair.

A triplet ($\nu_{1}, \nu_{2}, \nu_{3}$) of distinct vertices in V is a separating triplet of a triconnected graph if the subgraph induced by $V-\left\{\nu_{1}, \nu_{2}, \nu_{3}\right\}$ is not connected. G is four-connected if it contains no separating triplets.

Let $G=(V, E)$ be an undirected graph and let $V^{\prime} \subseteq V$. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G if $E^{\prime} \subseteq E \cap\left\{\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V^{\prime}\right\}$. The subgraph of G induced by V^{\prime} is the graph $G^{\prime \prime}=\left(V^{\prime}, E^{\prime \prime}\right)$ where $E^{\prime \prime}=E \cap$ $\left\{\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V^{\prime}\right\}$.

3. Representation for $k=2$

Let $G=(V, E)$ be an undirected biconnected graph with n vertices and m edges. We denote with $g(n)$ the upper bound on the size of a compact representation of separating pairs of a graph on n vertices. Let $\left\{v_{1}, v_{2}\right\}$ be a separating pair that divides G into nonempty G_{1} and G_{2}. Let $\left\{w_{1}, w_{2}\right.$ \} be a "cross" separating pair with $w_{1} \in G_{1}$ and $w_{2} \in G_{2}$. It divides G_{1} into G_{1}^{\prime} and $G^{\prime \prime}$, and divides G_{2} into G_{2}^{\prime} and $G^{\prime \prime}$ (see Figure 1).

Figure 1.
Representation for $\mathrm{k}=2$.
Consider a maximal set of vertices u in G_{2} such that $\left\{w_{1}, u\right\}$ is a cross separating pair and, analogously, consider a
maximal set of vertices x in G_{1} such that $\left\{x, w_{2}\right\}$ is a cross separating pair. The set of u 's is the set of articulation points in G_{2}. Moreover, the set of u 's along with the subgraphs of G_{2} between them is a path from v_{1} to v_{2}. Analogously, the set x 's is a set of articulation points of G_{1} with additional condition that the x 's along with the subgraphs of G_{1} between them is a path from v_{1} to v_{2}. Number the vertices v_{1}, u 's, v_{2}, and x 's by y_{1}, y_{2} and so on going clockwise along the paths. We denote by G_{i} the subgraph of G between y_{i} and y_{i+1}. Note that some G_{i} can be empty (consists of a single edge). Thus, the graph G becomes a cycle with vertices y^{\prime} 's and G_{i} 's alternating on it. Every pair of vertices y 's give a separating pair of G unless they are adjacent and the subgraph between them is empty. Hence, we can represent all of them by the following structure:

1) the cycle: the set of vertices y 's
2) a vertex for every G_{i} with a flag to specify if G_{i} is empty. Edges between G_{i} and y_{i}, y_{i+1}.

Note that when there are no cross separating pairs then we get a trivial cycle with two vertices v_{1} and v_{2} and two edges connecting them. Since the sets x 's and u 's are maximal all other separating pairs are inside $G_{i} \cup y_{i} \cup y_{i+1}$. Note that G_{i} can be the union of disconnected components, but each of them is connected to y_{i} and y_{i+1}. Let the cardinality of set of vertices y 's be l. Based upon the above observations we get the following recurrence relation

$$
g(n) \leq \sum_{i=1}^{l} g\left(n_{i}+2\right)+4 l
$$

where $g\left(n_{i}+2\right)$ represent the upper bound for all separating pairs inside $G_{i} \cup y_{i} \cup y_{i+1}$. The cardinality of $G_{i}=n_{i}$, and $\sum_{i=1}^{l}\left(n_{i}+1\right)=n$. Any $g(n)$ that satisfy the recurrence will be an upper bound on the size of representation of separating pairs of G. Clearly, linear $g(n)$ is one of them (see Appendix).

4. Representation for $k=3$

The wheel $W_{n}[\mathrm{Tu}]$ is C_{n-1} together with a vertex v and an edge between v and every vertex on C_{n-1}. It is easy to see that W_{n} is triconnected and has $\frac{(n-1)(n-4)}{2}$ separating triplets.

Assume there exists a separating triplet $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G, which separates G into nonempty G_{1} and G_{2} (see Figure 2).

Lemma 1: Only one of these three vertices has type 3 separating triplets $\left\{w_{1}, v_{i}, w_{2}\right\}$ such that $w_{1} \in G_{1}$ and $w_{2} \in G_{2}$ [KaRa2].

Figure 2.
Separating G into G_{1} and G_{2} by separating triplet $\left\{v_{1}, \nu_{2}, v_{3}\right\}$
Proof: Assume there is separating triplet $\left\{w_{1}, v_{2}, w_{2}\right\}$ of the third type in G, where $w_{1} \in G_{1}$ and $w_{2} \in G_{2}$. It separates G_{1} into K_{1} and K_{2}, and separates G_{2} into K_{3} and K_{4}. Vertices v_{1} and v_{3} must belong to the different components with respect to separating triplet $\left\{\dot{w}_{1}, v_{2}, w_{2}\right\}$, otherwise either $\left\{w_{1}, v_{2}\right\}$ is a separating pair, or $\left\{w_{2}, v_{2}\right\}$ is a separating pair, or both.

Claim 1 Vertex v_{2} has a direct edge to every nonempty subgraph $K_{1}, K_{2}, K_{3}, K_{4}$.
W.L.O.G. assume that K_{1} is not empty and $\forall x \in K_{1},\left(x, v_{2}\right) \notin E$. Then $\left\{v_{1}, w_{1}\right\}$ is a separating pair of G, which separates K_{1} from the rest of the graph.

Now, we will prove that there are no separating triplets of the third type which use v_{1} or v_{3}. We will prove this by contradiction. W.L.O.G. assume there is a separating triplet $\left\{u_{1}, v_{1}, u_{2}\right\}$, where $u_{1} \in G_{1}$ and $u_{2} \in G_{2}\left(u_{1}\right.$ may be equal to w_{1} and u_{2} may be equal to w_{2}).

Case 1: $u_{1} \in K_{2}$, if K_{2} is not empty (see Figure 3).
By Claim 1 for v_{1} and the existence of separating triplet $\left\{u_{1}, v_{1}, u_{2}\right\}, K_{1}, w_{1}, K_{2}-u_{1}$ belong to the same connected component with respect to separating triplet $\left\{u_{1}, v_{1}, u_{2}\right\}$. If v_{2} belongs to the same component then $\left\{v_{1}, u_{1}\right\}$ is a separating pair which separates $K_{3} \cup w_{2} \cup K_{4} \cup \nu_{3}$ from the rest of the graph. If v_{2} does not belong to the same component then $\left\{v_{1}, u_{1}\right\}$ is a separating pair which separates $K_{1} \cup w_{1} \cup K_{2}-u_{1}$ from the rest of the graph.

Analogously, $u_{2} \notin K_{4}$.
Case 2: $u_{1}=w_{1}$.

Figure 3.
Illustrating Case 1 in the proof of Lemma 1.
Since $\left\{u_{1}, \nu_{1}, u_{2}\right\}$ is a separating triplet then ν_{2} does not have any edges to K_{1} and hence, K_{1} is empty by Claim 1. But then $\left\{v_{1}, u_{2}\right\}$ is a separating pair, if $\left\{u_{1}, v_{1}, u_{2}\right\}$ is a separating triplet.

Analogously, $u_{2} \neq w_{2}$.
Case 3: $u_{1} \in K_{1}$ and $u_{2} \in K_{3}$.
If $\left\{u_{1}, v_{1}, u_{2}\right\}$ is a separating triplet then either $\left\{u_{1}, u_{2}\right\}$, or $\left\{u_{1}, v_{1}\right\}$, or $\left\{v_{1}, u_{2}\right\}$ is a separating pair.
That means that if there is a separating triplet of the third type which uses one of the $v_{i}, i=1,2,3$ then there are no separating triplets of the third type that use the other $v_{j}, j=1,2,3, j \neq i$.

Let $\left\{v_{1}, v_{0}, v_{2}\right\}$ be a separating triplet of a graph G on n vertices, and v_{0} be the only one of the three vertices of this separating triplet which might participate in a separating triplets of the third type with respect to $\left\{v_{1}, v_{0}, v_{2}\right\}$. Consider all separating triplets of the third type $\left\{w_{1}, v_{0}, w_{2}\right\}$ such that $w_{1} \in G_{1}$ and $w_{2} \in G_{2}$, together with $\left\{v_{1}, v_{0}, \nu_{2}\right\}$. All such separating triplets use ν_{0} as the "central" vertex. Rename the vertices w_{1} 's, w_{2} 's, v_{1} and v_{2} into $\left\{v_{1}, v_{2}, \cdots, v_{l}\right\}$ going clockwise, such that they form the wheel with ν_{0} in a center, where any two nonadjacent vertices form a separating triplet with v_{0}. The subgraphs between v_{i} and v_{i+1} are denoted with G_{i}, and some of them may be empty. Now, the graph G looks like a wheel with v_{0} in a center v_{i}, and $G_{i}(i=1, \cdots, l)$ on a cycle.

Every pair of vertices on the cycle of the wheel form a separating triplet with v_{0} unless they are adjacent (v_{i} and v_{i+1}) and the subgraph $\left(G_{i}\right)$ between them is empty. Hence, we can represent these separating triplets by the following structure:

1) the wheel: $\left\{v_{0}, v_{1}, \cdots, v_{k}\right\}$ with edges of G
2) a vertex for every G_{i} with a flag to specify if G_{i} is empty. The edges between G_{i} and v_{i}, v_{i+1} and between v_{0} and v_{i}, G_{i} with flags to specify if the edge is real.

Let us see where the rest of separating triplets of G lie.

Observation The remaining separating triplets belong to $G_{i} \cup v_{0} \cup v_{i} \cup v_{i+1} \cup$ the neighbor of v_{i} in G_{i-1} if such a neighbor is unique \cup the neighbor of v_{i+1} in G_{i+1} if such a neighbor is unique.

Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be a separating triplet with $w_{1} \in G_{1}$ and $w_{2}, w_{3} \in G_{2}$. The separating triplet $\left\{w_{1}, w_{2}, w_{3}\right\}$ separates G_{1} into L_{1} and L_{2}, and separates G_{2} into L_{3} and L_{4} (Figure 4).

Let us see how the original separating triplet $\left\{v_{1}, \nu_{2}, v_{3}\right\}$ is separated by the separating triplet $\left\{w_{1}, w_{2}, w_{3}\right\}$.
The vertices $\left\{\nu_{1}, \nu_{2}, \nu_{3}\right.$ cannot belong to the same connected component of G with respect to the separating triplet $\left\{w_{1}, w_{2}, w_{3}\right\}$, otherwise either w_{1} would be an articulation point, or $\left\{w_{2}, w_{3}\right\}$ would be a separating pair, or both. W.L.O.G. assume that v_{1} belongs to one connected component and v_{2}, v_{3} to the other.

Subgraph L_{1} must be empty, otherwise $\left\{w_{1}, v_{1}\right\}$ becomes a separating pair. Since the graph is triconnected, we have

Figure 4.
Illustrating the proof of the Observation.

1) $\left(w_{1}, v_{1}\right) \in E$,
2) $\exists x, y \in L_{3} \cup w_{2} \cup w_{3}:\left(x, v_{1}\right) \in E,\left(y, v_{1}\right) \in E$ and
3) $\forall z \in L_{2} \cup L_{4} \cup v_{2} \cup v_{3}:\left(z, v_{1}\right) \notin E$.

Hence, vertex w_{1} is the unique neighbor of vertex v_{1} in G_{1}. Moreover, if there are any separating triplets with one vertex in G_{1} and two in G_{2} which separate v_{1} from v_{0} and v_{2}, then w_{1} is one of the vertices of the triplet.

A separating triplet cannot have all its three vertices in three different G_{i} 's otherwise two of these vertices would form a separating pair. From the proof of the Lemma 1 and the fact that the set $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is maximal, we know that if there is a separating triplet which involves a vertex from G_{i}, then the other two vertices belong to $\left\{v_{i}\right\} \cup\left\{v_{i+1}\right\} \cup\left\{v_{0}\right\} \cup G_{i}$ and the neighbor of v_{i} in G_{i-1}, if such a neighbor is unique, and symmetrically a 'unique' neighbor of v_{i+1} in G_{i+2}. This proves the Observation.

Let $g(n)$ be the size of a compact representation of the separating triplets in a graph on n vertices, and let the number of vertices in G_{i} be n_{i}. Then $\sum_{i=1}^{k}\left(n_{i}+1\right)+1=n$, and we can write the following recurrence relation

$$
g(n)=\sum_{i=1}^{l} g\left(n_{i}+5\right)+(6 l+1)
$$

where $(6 l+1)$ stands for the space used to store the wheel information including multiple edges. The solution to this recurrence is clearly linear (see Appendix). This proves that there is a succinct $O(n)$ size representation of the separating triplets.

5. Representation for general \boldsymbol{k}

Let $G=(V, E)$ be an undirected k-connected graph with n vertices and m edges. We denote with $g(n)$ and $f(n)$ the upper bounds on the size of representation and the number of separating k-sets for k-connected graph on n vertices. Let $V^{\prime}=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be a separating k-set, whose removal separates G into nonempty G_{1} and G_{2} (see Figure 5). A separating k-set $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ of G is a cross separating k-set with respect to V^{\prime} if $\exists i, j: w_{i} \in G_{1}$ and $w_{j} \in G_{2}$. Let the cardinalities of G_{1} and G_{2} be l and $n-l-k$, respectively. Let the upper bound on the size of the representation of the cross separating k-sets be $h(l, n-l)$, and the maximum number of cross separating k-sets be $r(l, n-l)$. Then any $g(n)$ and $f(n)$ that satisfy the recurrences

Figure 5.
Dividing G into G_{1} and G_{2} by separating k-set $\left\{v_{1}, \cdots, v_{k}\right\}$

$$
\begin{gathered}
g(n)=[g(l+k)+g(n-l)+h(l, n-l)] \\
f(n)=[f(l+k)+f(n-l)+r(l, n-l)+1]
\end{gathered}
$$

are upper bounds on the size of representation and the number of separating k-sets in G. Now we will derive upper bounds for the functions h and r and tune up the recurrences.

Let $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ be a cross separating k-set with $\left\{w_{1}, \cdots, w_{s}\right\} \subset G_{1},\left\{w_{s+t+1}, \cdots, w_{k}\right\} \subset G_{2}$ and $\left\{w_{s+1}, \cdots, w_{s+\ell}\right\} \subset\left\{v_{1}, \cdots, v_{k}\right\}$. The separating k-set $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ separates G_{1} into G_{3} and G_{4}, separates G_{2} into G_{5} and G_{6}, and divides $\left\{v_{1}, \cdots, v_{k}\right\}$ into $\left\{v_{1}, \cdots, v_{r}\right\},\left\{v_{r+t+1}, \cdots, v_{k}\right\}$ and $v_{r+i}=w_{s+i}, i=1, \ldots, t$. (see Figure 6)

Case 1 None of $G_{i}, i=3,4,5,6$ are empty. (see Figure 6)

The sets $\left\{w_{1}, w_{2}, \cdots, w_{s+t}, v_{1}, \cdots, v_{r}\right\},\left\{w_{1}, w_{2}, \cdots, w_{s+t}, v_{r+t+1}, \cdots, v_{k}\right\},\left\{v_{1}, \cdots, v_{r+t}, w_{s+t+1}, \cdots, w_{k}\right\}$ and $\left\{v_{r+1}, \cdots, v_{k}, w_{s+t+1}, \cdots, w_{k}\right\}$ are separating sets of G that separate G_{3}, G_{4}, G_{5} and G_{6} respectively, so their cardinalities are greater than or equal to k. Then,

$$
\left\{\begin{array} { l }
{ s + t + r \geq k } \\
{ r + t + k - s - t \geq k } \\
{ s + t + k - r - t \geq k } \\
{ k - r + k - s - t \geq k }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ r + s + t \geq k } \\
{ r \geq s } \\
{ s \geq r } \\
{ k \geq r + s + t }
\end{array} \Rightarrow \left\{\begin{array}{l}
r=s \\
r+s+t=k
\end{array}\right.\right.\right.
$$

From now on we replace the subscript r by s. Let $A=\left\{v_{1}, \cdots, v_{s}\right\}, B=\left\{v_{s+t+1}, \cdots, v_{k}\right\}, C=$ $\left\{w_{1}, \cdots, w_{s}\right\}, \quad D=\left\{w_{s+t+1}, \cdots, w_{k}\right\}$, and $T=\left\{v_{s+1}, \cdots, v_{s+l}\right\}=\left\{w_{s+1}, \cdots w_{s+l}\right\}$. For Case 1 $|A|=|B|=|C|=|D|=\frac{k-t}{2}$.

Figure 6.
Dividing G into nonempty components by separating k-sets

$$
\left\{v_{1}, \cdots, v_{k}\right\} \text { and }\left\{w_{1}, \cdots, w_{k}\right\} .
$$

Claim $2 \forall i \quad i=s+1, \ldots, t \exists x_{j} \in G_{j}, j=3,4,5,6:\left(v_{i}, x_{j}\right) \in E$.
Proof: W.L.O.G. assume $\exists v_{i}: \forall x \in G_{3}:\left(x, v_{i}\right) \notin E$. Then $\left\{v_{1}, \cdots, v_{s+1}, w_{1}, \cdots, w_{s}\right\}-\left\{v_{i}\right\}$ is a separating (k-1)-set.

Claim 3 For every $x \in A$ there are $y \in G_{3}$ and $z \in G_{5}$, such that $(x, y) \in E$ and $(x, z) \in E$. Analogously, for every vertex x of B, C and D there are vertices y and z in appropriate neighboring $G_{i}, i=3,4,5,6$, which are adjacent to x. Proof: W.L.O.G. assume there is $x \in A$ such that for every $y \in G_{3}(x, y) \notin E$. Then $A \cup C \cup T-\{\mathrm{x}\}$ is a separating (k -1)-set.

Lemma 2 All cross separating k-sets containing $C \cup T$ and at least one fixed vertex of D can be represented in $O\left(\left(\frac{k-t}{2}\right)^{2}\right)$ space, and their number is $O\left(2^{\frac{k-t}{2}}\right)$.

Proof: Assume we have a separating k-set $\left\{w_{1}, \cdots, w_{s+t+a}, x_{s+t+a+1}, \cdots, x_{s+t+a+b}, y_{s+t+a+b+1}, \cdots, y_{k}\right\}$, where $x^{\prime} s \in G_{5}, y^{\prime} s \in G_{6}, a \geq 1$, and either b or $k-s-t-a-b$ is greater or equal to 1 (the new cross separating k-set is different from the old one) (see Figure 7).

Let $H=\left\{x_{s+t+a+1}, \cdots, x_{s+t+a+b}\right\}\left(x^{\prime} s\right)$ and $I=\left\{y_{s+t+a+b+1}, \cdots, y_{k}\right\}\left(y^{\prime} s\right)$, and let D be divided into $D^{\prime}=$ $\left\{w_{s+t+1}, \cdots, w_{s+t+a}\right\}, E$ which is in the same connected component as G_{3}, A, and part of G_{5}, and F which is in the

Figure 7.
Illustrating the proof of Lemma 2.
same connected component as G_{4}, B and part of G_{6}. Also let H divide G_{5} into G_{5}^{\prime} and $G^{\prime \prime}{ }_{5}$, and let I divide G_{6} into $G{ }_{6}^{\prime}$ and $G^{\prime \prime}{ }_{6}$ (see Figure 7).

Separating sets $T+D^{\prime \prime}+E+H$ and $T+D^{\prime}+F+I$ separate $G^{\prime \prime}$ and $G^{\prime \prime}{ }_{6}$, respectively. The cardinalities of these separating sets are less than k. Hence, $G^{\prime \prime}{ }_{5}$ and $G^{\prime \prime}{ }_{6}$ are empty. Moreover, since $C+T+D^{\prime}+H+F$ and $C+T+D^{\prime}+E+I$ are separating sets and $C+T+D$ and $C+T+D^{\prime}+H+I$ are separating k-sets, $|E|=|H|$, and $|I|=|F|$. Note that the argument still holds if either H or I are empty.

Next, we will show that if we replace part of E and/or part of F we will necessarily use only vertices of H and/or I for it, regardless of whether we replace part of D^{\prime} or not. In other words, H and I are unique for E and F. The proof is by contradiction.

Assume that there exist $I_{1}+H_{1} \neq I+H$, such that $C+T+D^{\prime}+H_{1}+I_{1}$ is a separating k-set. Let $H_{1} \subseteq G_{5}$ and $I_{1} \subseteq G_{6}$. Also, let $I_{1}+H_{1}$ divide E into E_{1} and E_{2}, and divide F into F_{1} and F_{2} (see Figure 8).

Let H_{1} be separated into two parts, H_{1}^{\prime} adjacent to E and $E^{\prime \prime}$ adjacent to F. By the above arguments H_{1}^{\prime} is adjacent to $E_{1}, H^{\prime \prime}$ is adjacent to F_{2}, and I_{1} is adjacent to $E_{2}+F_{1}$. Since all neighbors of E in G_{6} are also in I, and all neighbors of F in G_{5} are also in $H, H^{\prime \prime}{ }_{1} \subset H$ and I_{1} is divided into $I_{1}^{\prime}=I \cup I_{1}$ and $I^{\prime \prime}{ }_{1}=I_{1}-I_{1}^{\prime}$. Let $H^{\prime}=H-H^{\prime \prime}{ }_{1}$ and let $I^{\prime}=I-I_{1}^{\prime}$.

Figure 8.
Illustrating the uniqueness of a replacement for a part of cross separating k-set.
The separating set $T+D^{\prime}+H_{1}^{\prime}+H$ separates E_{1} from the rest of the graph and has cardinality is less than k. Hence, E_{1} is empty and we have $I=I_{1}^{\prime}, E=E_{2}$ and $H_{1}=H^{\prime \prime}{ }_{1}$. Analogously, the separating set $T+D^{\prime}+I_{1}+H$ separates F_{1} from the rest of the graph and has cardinality is less than k. Hence, F_{1} is empty and we have $F=F_{2}$, $E=E_{1}, H=H_{1}$ and $I=I_{1}$. This contradict the assumptions.

Note that the arguments still hold if either H or I are empty, or if we replace only parts of E and F. If part of D^{\prime} is replaced as well, then we will not replace it, so that we will look only at the replacements for E and F. Also, if there exists a separating k-set that replaces F by H, then there is no $I_{1} \subseteq G_{6}$ that replaces any part of F for any cross separating k-set described in Lemma 2.

Thus, any replacement of any part of F for any cross separating k-set specified by Lemma 2 lies in H. The set of vertices which is used for all possible replacement of any part of D for a cross separating k-sets specified by Lemma 2 will be called the fringe of D, where H is the fringe of F and I is the fringe of E. Note that there could be parts of D which do not have any replacements. The cardinality of the fringe of D is less than $\frac{k-t}{2}=|D|$. Hence, the representation of all cross separating k-sets with $C+T$ fixed along with at least one vertex from D takes $O\left(\left(\frac{k-t}{2}\right)^{2}\right)$ space, where $O\left(\left(\frac{k-t}{2}\right)^{2}\right)$ space is needed to specify all edges between D and its fringe. This proves the space complexity for the representation.

The number of different subsets of D is $2^{|D|}$. Since for every subset $E+F$ of D there is a unique replacement, (if it exists) that a separating k-set specified by Lemma 2, the number of separating k-sets with $C+T$ fixed along with at least one vertex from D is upper bounded by $O\left(2^{\frac{k-t}{2}}\right)$. This proves the second part of the Lemma.

Corollary All cross separating k-sets containing $T+D$ and at least one vertex from C can be represented in $O\left(\left(\frac{k-t}{2}\right)^{2}\right)$ space, and their number is $O\left(2^{\frac{k-t}{2}}\right)$.

Take the maximal set X of disjoint $C \in G_{1}$ such that $C_{i}+T+D$ is a separating k-set. Analogously, take the maximal set Y of disjoint $D \in G_{2}$ such that $C+T+D_{i}$ is a separating k-set. For T fixed, all cross separating k-sets are upper bounded by $O\left(2^{\frac{k-t}{2}}|X| 2^{\frac{k-t}{2}}|Y|\right)=O\left(2^{k-t}|X||Y|\right)$, and are represented in $O\left(\left(\frac{k-t}{2}\right)^{2}(|X|+|Y|)\right)$ space. Next we will see how many different T 's we need to consider.

Take the smallest $T=T_{1}$ such that a cross separating k-set will have nonempty $G_{i} \mathrm{i}=3,4,5,6$, if it exist. If there exist a separating k-set with different $T=T_{2}, T_{1} \neq T_{2}$, then it can be of four different types:

Type 1). $T_{2} \cap A \neq \varnothing$ and $T_{2} \cap B \neq \varnothing$,
Type 2). $\left[T_{2} \cap A=\varnothing\right.$ or $\left.T_{2} \cap B=\varnothing\right]$ and $T_{1} \cap T_{2} \neq \varnothing$,
Type 3). $\left[T_{2} \cap A=\varnothing\right.$ or $\left.T_{2} \cap B=\varnothing\right]$ and $T_{1} \cap T_{2}=\varnothing$,
Type 4). $T_{2} \cap A=\varnothing$ and $T_{2} \cap B=\varnothing$.
Let us first consider type 4 cross separating k-sets. Since T_{2} must lie completely inside T_{1} and T_{1} has the smallest cardinality, then $T_{2}=T_{1}$. Let the cardinality of X, the maximal disjoint set of C 's, be l_{1}, and let the cardinality of the maximal disjoint set Y be l_{2}, where $l_{1}+l_{2}=l$. Let us number A, the set X, B and the set Y. So A becomes A_{1}, the "nearest" D from Y becomes A_{2}, and so on going clockwise. The cardinality of this set is $l+2$. From the proof of the Lemma 2 we know that all cross separating k-sets of type 4 consist of three parts: T_{1}, C which is inside G_{1} and is inside some C 's from set X and its fringe, and D which is inside G_{2} and is inside some D 's from set Y and its fringe. Note that $T \cup$ any two $A_{i}, i=1, \cdots, l+2$ are also separating k-sets if the parts of the graph between them are nonempty. We can also replace parts of A_{i} by its fringe as long the above condition will be true. Let the part of the graph G between A_{i} and $A_{i+1}, i=1, \cdots, l+2$ be $G_{i}, i=1, \cdots, l+2(i$ in this case taken mod $l+2)$. Let G_{i} - the fringe of A_{i} in G_{i} - the fringe of A_{i+1} in G_{i} be $G_{i}{ }_{i}, i=1, \cdots, l+2$. The only case when $T \cup A_{i} \cup A_{j}$ (or
parts of the fringe of A_{i} and $\left.A_{i+1}\right) i<j$ is not a separating k-set when $i=j-1$ and $G^{\prime}{ }_{i}=\varnothing$.
Based upon above observations the structure (structure 1) which covers all cross separating k-sets of type 4 will be the following:

1) A_{i} with its fringes for all $i=1, \cdots, l+2$,
2) For every nonempty $G_{i}{ }_{i}, i=1, \cdots, l+2$ we fill all nonexistent edges of the complete graph on the neighbors of G_{i}^{\prime} as real edges. If $G_{i}^{\prime}, i=1, \cdots, l+2$ is empty for some i then we fill these edges as virtual edges. All of the edges of G between A_{i} and $G_{i+1}, i=1, \cdots, l+2$ are in the structure as real edges.

Let us see where the rest of the separating k-sets lie assuming there are no cross separating k-sets of type 1 and type 2. Note that we allow separating k-sets of type 3. Let us first the definition of the exceptional separating k-sets. The separating k-set is exceptional if it separates only part of A_{i} an nothing else for $i=1, \cdots, l+2$.

Lemma 3: All separating k-sets which are not covered by the structure 2 and not of type 1 and 2 and not exceptions are inside $G_{i} \cup A_{i}$ and its fringes inside $G_{i-1} \cup A_{i+1}$ and its fringes inside G_{i+1}.

Proof: Since there are no type 1 and type 2 and no exceptions in separating k-sets, no separating k-set is using T. There are also no cross separating k-set which are not covered by the structure 1 . Let us see what happens if a separating k-set crosses some $A_{i}, i=1, \cdots, l+2$ (see Figure 9).
W.L.O.G. let $E \cup F \cup H$ is this separating k-set, which crosses A_{i}, where $E \subset G_{5}, F \subset G_{6}$ and $I \subset A_{i}$. It divides A_{i} into $A_{i}, A^{\prime \prime}{ }_{i}$ and H. It also divides G_{5} into G_{i}^{\prime} and $G^{\prime \prime}$, and it divides G_{6} into G_{6}^{\prime} and $G^{\prime \prime}{ }_{6}$. Both $A^{\prime \prime}{ }_{i}$ and A_{i}^{\prime} are nonempty, otherwise the set Y is not maximal, or there is no cross separating k-sets. If $G{ }^{\prime \prime}{ }_{5}$ and $G{ }^{\prime \prime}{ }_{6}$ are nonempty then $E \cup H \cup A^{\prime \prime}{ }_{i}$ and $F \cup H \cup A^{\prime \prime}{ }_{6}$ are separating sets with cardinalities bigger or equal to k. But both of them can not have cardinality bigger or equal to k, hence, one of $G{ }^{\prime \prime}$ or $G{ }^{\prime \prime}{ }_{6}$ must be empty. W.L.O.G. let $G{ }_{6}$ be empty. Since $A_{l+1} \cup T \cup A_{i}$ and $A_{l+1} \cup T \cup A_{i}{ }_{i} \cup H \cup F$ are separating k-set and separating set, respectively, $|F| \geq\left|A{ }^{\prime \prime}\right|$. Since $E \cup H \cup A^{\prime \prime}{ }_{i}$ is a separating set, since both $G{ }^{\prime \prime} s$ and $G{ }_{6}$ can not be empty (exception), $\left|A^{\prime \prime}\right| \geq|F|$. Hence, $A{ }^{\prime \prime}{ }_{i}\left|=|F|\right.$, and F is part of the fringe of A_{i}.

Let us see if a cross separating k-set crosses two adjacent A_{i} 's. W.L.O.G. $E \cup H_{1} \cup F \cup I I_{2} \cup I$ is a separating k-set, which divides A_{i} into $A^{\prime}{ }_{i}, H_{1}$, and $A^{\prime \prime}{ }_{i}$, and divides A_{i+1} into $A^{\prime}{ }_{i+1}, H_{2}$, and $A^{\prime \prime}{ }_{i+1}$. It separates G_{i-1} into $G^{\prime}{ }_{i-1}$ and $G^{\prime \prime}{ }_{i-1}$, it separates G_{i} into G^{\prime} and $G^{\prime \prime}{ }_{i}$, it separates G_{i+1} into $G^{\prime}{ }_{i+1}$ and $G^{\prime \prime}{ }_{i+1}$. By the above argument,

Figure 9.
Illustrating the proof of Lemma 3.
$G{ }^{\prime \prime}{ }_{i-1}$ and $G{ }^{\prime \prime}{ }_{i+1}$ are empty, and E belongs to the fringe of A_{i}, and I belongs to the fringe of $A_{i=1}$. Note that we don't need to use the assumption that there are no exceptions. A cross separating k-set can not cross three adjacent A_{i} 's, since with respect to the middle A_{i} non of $G^{\prime \prime} 5$ and $G^{\prime \prime}{ }_{6}$ can not be empty. Hence, all other separating k-set, except exceptions, belong to $G_{i} \cup A_{i} \cup$ its fringes in $G_{i-1} \cup A_{i+1} \cup$ its fringes in G_{i+1}.

Let us now consider exceptions. W.L.O.G. let there exist an exceptional separating k-set, which separates part of A_{i}. In other words, there is a separating k-set which separates part of $A_{i}\left(A^{\prime}\right)$, such that all of the vertices not in $A_{i} \cup T$ are neighbors of $A^{\prime}{ }_{i}$. The number of the neighbors of A_{i}^{\prime} in $G_{i-1} \cup A_{i-1} \cup G_{i} \cup A_{i+1}$ is less than k. Consider the minimal set of subsets of A_{i} that covers all vertices of A_{i} which can be separated by some exceptional separating k-set. The number of subsets in this set is less than or equal to the cardinality of A_{i}, whence is at most $\frac{k-t}{2}$. The number of neighbors of A_{i} that are used for separating these subsets is less than or equal to k vertices per subsets, so their total is at most $\frac{k^{2}}{2}$. Note that $\frac{k^{2}}{2}-k$ such vertices can be inside either $G_{i-1} \cup A_{i-1}$ or $G_{i} \cup A_{i+1}$. Moreover, if $v \in A_{i}$ participates in some subset of A_{i}, that can be separated by an exceptional separating k-set, then v has less than k vertices in $G_{i-1} \cup A_{i-1} \cup G_{i} \cup A_{i+1}$. Hence, if we take the union of the following sets
1)

$$
G_{i} \cup A_{i} \cup A_{i+1}
$$

2) the neighbors of A_{i} in $G_{i-1} \cup A_{i-1}$, that are used for exceptional separating k-sets
3) the fringe of A_{i}
4) the neighbors of A_{i+1} in $G_{i+1} \cup A_{i+2}$, that are used for exceptional separating k-sets
5) the fringe of A_{i+1} for all i 's,
will contain all separating k-sets which are not covered by the structure.
The number of exceptional separating k-set for A_{i} is bounded by the number of different subsets of A_{i}. Hence, it is less than or equal to $2^{\frac{k-t}{2}}$. Thus, the number of exceptional separating k-sets is at most $(l+2) 2^{\frac{k-t}{2}}$.

Based upon this Lemma and the above observation about exceptions, and using structure 1, we can write the following recurrence, which is valid if there are no type 1 or type 2 separating k-sets:

$$
g(n)=\sum_{i=1}^{l+2} g\left(n_{i}+k(k-t)+t\right)+(l+2)\left(\frac{k-t}{2}\right) k+t,
$$

where every term inside the sum covers one of the G_{i} 's, and $(l+2)\left(\frac{k-t}{2}\right)+t$ is the upper bound on the size of the structure 1. Note that $\sum_{i=1}^{l+2} n_{i}+\frac{(l+2)(k-t)}{2}+t=n$. The solution to this recurrence is $O\left(k n+k^{3}\right)$ (see Appendix). Note that each $\left(n_{i}+k(k-t)+t\right)$ is less than n itself.

Analogously, the recurrence on the upper bound on the number of separating k-sets become

$$
f(n)=\sum_{i=1}^{l+2} f\left(n_{i}+k(k-t)+t\right)+2^{k-t} l \frac{l+2}{2}+2^{\frac{k-t}{2}}(l+2) .
$$

The solution to this recurrence is $O\left(2^{k} \frac{n^{2}}{k}\right)$. Note that all cross separating k-set of type 3 are covered by these recurrences.

Now we will look at type 1. Let $T_{2} \cap A=T^{\prime}{ }_{2}, T_{2} \cap B=T^{\prime \prime}{ }_{2}$, and $T_{1} \cap T_{2}=\bar{T}_{2}$. With respect to a new cross separating k-set which uses T_{2} some $G_{i} \mathrm{i}=3,4,5,6$ could be empty. Let us first look at a harder case when none of G_{i} $\mathrm{i}=3,4,5,6$ are empty with respect to a new cross separating k-set.

A new cross separating k-set must cross C and D of the old cross separating k-set which uses T_{1}, otherwise the Claim 2 with respect to the new cross separating k-set will be violated (see Figure 10).
Second, $\bar{T}_{2}=T_{1}$, otherwise Claim 2 will be contradicted for the old cross separating k-set.

Figure 10.
Illustrating the configuration between two cross separating k-sets which use different T 's.

Third, $C^{\prime}{ }_{1}+C^{\prime}{ }_{2}+H_{1}+T_{1}+T^{\prime \prime}{ }_{2}, C^{\prime \prime}{ }_{1}+C^{\prime \prime}{ }_{2}+H_{1}+T_{1}+T^{\prime}{ }_{2}, D^{\prime}{ }_{1}+D^{\prime}{ }_{2}+H_{2}+T_{1}+T^{\prime \prime}{ }_{2}$, and $D^{\prime \prime}{ }_{1}+D^{\prime \prime}{ }_{2}+H_{2}+T_{1}+T^{\prime \prime}{ }_{2}$ are separating sets with cardinalities less than k, which separate $G{ }^{\prime \prime} 4, G{ }_{3}, G{ }^{\prime \prime}{ }_{6}$, and $G{ }^{\prime \prime}$, respectively. Hence, $G{ }^{\prime \prime}{ }_{3}$, $G "_{4}, G{ }^{\prime \prime}$, and $G "_{6}$ are empty.

Fourth,

$$
C^{\prime}{ }_{1}+H_{1}+C^{\prime \prime}{ }_{2}+T_{2}+D^{\prime}{ }_{2}+H_{2}+D^{\prime \prime}{ }_{2}
$$

$$
C^{\prime}+H_{1}+C^{\prime \prime}{ }_{2}+T_{2}+D_{2}^{\prime}+H_{2}+D^{\prime \prime},
$$ $C^{\prime}{ }_{2}+H_{1}+C^{\prime \prime}{ }_{1}+T_{2}+D^{\prime}{ }_{2}+H_{2}+D^{\prime \prime}$, and $C^{\prime}{ }_{2}+H_{1}+T_{2}+D^{\prime}+H_{2}+D^{\prime \prime}{ }_{2}$ are separating sets. Hence, $\left|C^{\prime}{ }_{1}\right| \geq\left|C^{\prime}{ }_{2}\right|$, $\left|D^{\prime}\right| \geq\left|D^{\prime}{ }_{2}\right|, \quad\left|C^{\prime \prime}{ }_{1}\right| \geq\left|C^{\prime \prime}{ }_{2}\right|$, and $\left|D^{\prime \prime}{ }_{1}\right| \geq\left|D^{\prime \prime}{ }_{2}\right|$. Also, $C^{\prime}{ }_{1}+H_{1}+C^{\prime \prime}{ }_{2}+T^{\prime}{ }_{2}+T_{1}+D^{\prime}{ }_{1}+H_{2}+D^{\prime \prime}{ }_{1}$, $C^{\prime}{ }_{2}+T^{\prime \prime}{ }_{2}+H_{1}+C^{\prime \prime}{ }_{1}+T_{1}+D^{\prime}{ }_{1}+H_{2}+D^{\prime \prime}{ }_{1}$,

$C^{\prime}{ }_{1}+H_{1}+C^{\prime \prime}{ }_{1}+T_{1}+T^{\prime \prime}{ }_{2}+D^{\prime}{ }_{2}+H_{2}+D^{\prime \prime}{ }_{1}$, and $C^{\prime}{ }_{1}+H_{1}+C^{\prime \prime}{ }_{1}+T_{1}+T^{\prime}{ }_{2}+D^{\prime}{ }_{1}+H_{2}+D^{\prime \prime}{ }_{2}$ are separating sets. Hence,

$$
\left\{\begin{array}{l}
\left|C^{\prime}{ }_{2}\right|+\left|T^{\prime \prime}{ }_{2}\right| \geq\left|C^{\prime}{ }_{1}\right| \geq\left|C^{\prime}{ }_{2}\right|>0 \\
\left|C^{\prime}{ }_{2}\right|+\left|T_{2}^{\prime}\right| \geq\left|C^{\prime \prime}\right| \geq\left|C^{\prime}{ }_{2}\right|>0 \\
\left|D^{\prime}\right|+\left|T^{\prime \prime}{ }_{2}\right| \geq\left|D^{\prime}\right| \geq\left|D^{\prime}\right|>0 \\
\left|D_{2}^{\prime \prime}{ }_{2}\right|+\left|T_{2}^{\prime}\right| \geq\left|D^{\prime \prime}{ }_{1}\right| \geq\left|D^{\prime \prime}{ }_{2}\right|>0
\end{array}\right.
$$

Also since we are still in a Case 1 with respect to both old and new cross separating k-sets, we have the following equalities

$$
\left\{\begin{array}{l}
\left|T_{2}^{\prime}\right|=\left|T^{\prime \prime}{ }_{2}\right| \\
\left|A_{2}\right|=\left|B_{2}\right|=\left|D_{2}^{\prime}\right|+\left|H_{2}\right|+\left|D_{2}^{\prime \prime}\right|=\left|C_{2}^{\prime}\right|+\left|H_{1}\right|+\left|C^{\prime \prime}{ }_{2}\right|
\end{array}\right.
$$

Note that the set $T^{\prime}{ }_{2}$ has edges to the set $D^{\prime \prime}{ }_{1}$, the set $T^{\prime \prime}{ }_{2}$ has edges to the set $D^{\prime}{ }_{1}$, the set $T^{\prime \prime}{ }_{2}$ has edges to the set $C^{\prime}{ }_{1}$, and the set $T^{\prime}{ }_{2}$ has edges to the set $C^{\prime \prime}{ }_{1}$, because of the Claim 2 with respect to the new cross separating k-set. Hence, the maximal disjoint sets for C 's and $D^{\prime} s(X$ and Y) will have cardinalities equal to 1 .

Let us take a maximal T_{2}, and let us take the fringes of A_{2}, B_{2}, C and D (see Figure 11).
$C^{\prime}{ }_{1}$ does not have the fringe in G_{4}, otherwise part of $C^{\prime}{ }_{1}$ which has a fringe becomes a part of I_{1}^{\prime}. If $C^{\prime}{ }_{1}$ has the fringe in G_{3} then the part of $C^{\prime}{ }_{1}$ which has the fringe can be separated from the rest of the graph by a separating set $C^{\prime}{ }_{2}+T^{\prime \prime}{ }_{2}+T_{1}+$ the fringe of $C^{\prime}{ }_{1}$ in G_{3}, whose cardinality is less than k. Hence, $C^{\prime}{ }_{1}$ does not have the fringe. Analogously, $C^{\prime \prime}{ }_{1}, D_{1}^{\prime}$, and $D^{\prime \prime}$ do not have the fringes. Symmetrically, T_{2}^{\prime} and $T^{\prime \prime}{ }_{2}$ do not have the fringes.

Let \hat{T}_{2} be the union of vertices which are used for all possible T_{2} which create a cross separating k-sets with nonempty $G_{i} \mathrm{i}=3,4,5,6$. Let $\hat{D}^{\prime}{ }_{1}$ be the union of all possible $D^{\prime}{ }_{1}, \hat{D}^{\prime \prime}{ }_{1}$ be the union of all possible $D^{\prime \prime}, \hat{C}^{\prime}{ }_{1}$ be the union of all possible $C^{\prime}{ }_{1}, \hat{C}^{\prime \prime}{ }_{1}$ be the union of all possible $C^{\prime \prime}{ }_{1}, \hat{C}^{\prime}{ }_{2}$ be the union of all possible $C^{\prime}{ }_{2}, \hat{C}^{\prime \prime}{ }_{2}$ be the union of all possible $C^{\prime \prime}{ }_{2}, \hat{D}^{\prime}{ }_{2}$ be the union of all possible $D^{\prime}{ }_{2}$, and $\hat{D}^{\prime \prime}{ }_{2}$ be the union of all possible $D^{\prime \prime}{ }_{2}$. Let us show that all of these sets are disjoint.

Figure 11.
Illustrating the representation of separating k-sets of Case 1 if two or more different intersecting T 's exist.
(Structure 2).

Since all of them are symmetric we will prove it only for $\hat{C}^{\prime}{ }_{1}$ and $\hat{C}^{\prime}{ }_{1}$. Assume there are T_{3} and T_{4} such that $C^{\prime \prime}{ }_{1}$ for T_{3} is not disjoint from $C^{\prime}{ }_{1}$ for T_{4}. Then nonempty intersection of $C^{\prime \prime}{ }_{1}$ for T_{3} and C_{1}^{\prime} for T_{4} is separated from the rest of the graph by a separating set $C{ }^{\prime \prime}{ }_{2}$ for $T_{3} \cup T^{\prime}{ }_{3} \cup T_{1} \cup T^{\prime \prime}{ }_{4} \cup C^{\prime}{ }_{2}$ for T_{4}, whose cardinality is less than k. This contradiction proves the statement.

The cardinality of the union $\hat{D}^{\prime \prime}{ }_{2} \cup \hat{D}_{2}^{\prime} \cup I^{\prime \prime}{ }_{4} \cup I_{4}^{\prime}$ is less than $\frac{k-t}{2}$, and analogously, the cardinality of $\hat{C}^{\prime \prime}{ }_{2} \cup \hat{C}^{\prime}{ }_{2} \cup I^{\prime} \cup I^{\prime \prime}{ }_{2}$ is less than $\frac{k-t}{2}$. Let us call $\hat{C}^{\prime}{ }_{2}, \hat{C}^{\prime \prime}{ }_{2}, \hat{D}^{\prime}{ }_{2}$, and $\hat{D}^{\prime \prime}{ }_{2}$ the pseudofringe. Note that A and B might have fringes, but by the symmetry $\hat{T}_{2}-T_{1}$ does not have any fringes.

The structure which represent all separating k-sets for all possible T 's will the following (structure 2):

1) the original separating k-set with its fringes,
2) the cross separating k-set with minimum cardinality T_{1} with its fringes and pseudofringes,
3) for every nonempty $G_{i}^{\prime} \mathrm{i}=3,4,5,6$ we will fill all nonexistent edges of the complete graph on the neighbors of $G^{\prime}{ }_{i}$, if G_{i}^{\prime} is empty for any $\mathrm{i}=3,4,5,6$ we will fill these nonexistent edges of this complete graph by the virtual edges. (For $G^{\prime}{ }_{3}$ we fill the edges between the vertices of the fringe of A in $G_{3}, T_{1}, \hat{T}^{\prime}{ }_{2}$, part of A_{2} which does not have any fringes, $\hat{C}^{\prime}{ }_{1}, I_{1}^{\prime}, H_{1}, I^{\prime \prime}{ }_{2}$ and $\hat{C}^{\prime \prime}{ }_{2}$).

From the construction of the structure it is easy to see that this structure cavers all cross separating k-sets for all possible T 's, of type 1 . Let us see now where the rest of the separating k-sets lie, if we have separating k-sets of type 1.

If there exists T_{2} with at least one of the G_{i} empty $\mathrm{i}=3,4,5,6$, assuming it is not exception, such that there is another T_{2} with $T_{2} \cap T_{1}$ is nonempty along with nonempty $T_{2} \cap B$ and $T_{2} \cap A$, then all cross separating k-sets of this T_{2} are covered by the above structure. (They belong to the fringes of A and/or B in G_{1} or G_{2} and the rest belong to the original cross separating k-set with its fringes or pseudofringes). So all cross separating k-sets are covered by this structure, assuming there are no exceptions, hence, all separating k-sets are either inside $G_{1} \cup A \cup B \cup T_{1} \cup$ the fringes of A and B in G_{2}, or $G_{2} \cup A \cup B \cup T_{1} \cup$ the fringes of A and B in G_{1}, or cross separating k-sets covered by the structure. Since the structure is symmetric, we can look at the cross separating k-sets where the original separating k-set is $C \cup D \cup T_{1}$. Then the pseudofringes of C and D become the pseudofringes of A and B. With respect to this separation of G all separating k-sets are either inside $G_{3} \cup G_{5} \cup C \cup D \cup T_{1} \cup$ the fringe of C in G_{4} and the fringe of
D in G_{6}, or inside $G_{4} \cup G_{6} \cup C \cup D \cup T_{1} \cup$ the fringe of C in G_{3} and the fringe of D in G_{5}, or separating k-sets covered by the structure. But since in both cases they are the same separating k-sets, all separating k-sets are either inside $G_{3} \cup A \cup T_{1} \cup C \cup$ the fringe of C in $G_{4} \cup$ the fringe of A in G_{5}, or inside $G_{4} \cup B \cup C \cup T_{1} \cup$ the fringe of B in G_{6}, or inside $G_{5} \cup A \cup D \cup T_{1} \cup$ the fringe of A in $G_{3} \cup$ the fringe of D in G_{6}, or inside $G_{6} \cup B \cup D \cup T_{1} \cup$ the fringe of B in $G_{4} \cup$ the fringe of D in G_{5}, or the separating k-sets covered by the structure. To cover all exceptions we will do what we did for types 3 and 4 separating k-sets, we will add $k(k-t)$ neighbors of A, B, C and D to each of G_{3}, G_{4}, G_{5} and of G_{6} which can participate in exceptional separating k-sets. Hence, the size of representation is

$$
g(n)=\sum_{i=1}^{4} g\left(n_{i}+k(k-t)+t\right)+8 \frac{(k-t)}{2} k+t,
$$

where every term inside the sum covers one of $G_{i} \mathrm{i}=3,4,5,6$ along with its appropriate neighbors and fringes, and $8 \frac{(k-t)}{2} k+t$ is the upper bound on the size of the structure. Note that $\sum_{i=1}^{4} n_{i}+2 k-t=n$, hence the solution to the above recurrence is $O\left(n k+k^{3}\right)$ (see Appendix). The number of exceptional separating k-sets is upper bounded by $42^{\frac{k-t}{2}}$. The upper bound on the number of separating k-sets become

$$
f(n)=\sum_{i=1}^{4} f\left(n_{i}+k(k-t)+t\right)+\left(\begin{array}{l}
4 \\
2
\end{array}\right] \cdot 2^{k-t}+4 \cdot 2^{\frac{k-t}{2}} .
$$

The solution to it is $O\left(2^{k} n+2^{k} k^{2}\right)$ (see Appendix).
Let us now see what happens if we are in type 2 and no separating k-sets of type 1 exist. W.L.O.G. assume there is a separating k-set which uses $T_{2}=T^{\prime}{ }_{2} \cup \bar{T}_{2}$, where $T^{\prime} \in A$ and $\bar{T}_{2} \in T_{1}$, and no separating k-set of type 1 exist (see Figure 12).

If G_{i} 's $\mathrm{i}=3,4,5,6$ are nonempty with respect to a new cross separating k-set then we become in the Case 1 with respect to a new cross separating k-set, hence $\left|A_{2}\right|=|B|$ which is impossible. Hence, one of the $G_{i} \mathrm{i}=3,4,5,6$ with respect to a new cross separating k-set must be empty. W.L.O.G. let the empty G_{i} be either G_{3} or G_{4} with respect to the new cross separating k-set. If G_{4} is empty then G_{5} with respect to the new cross separating k-set must be empty, otherwise $T_{1} \cup T_{2}^{\prime} \cup A_{2} \cup D_{2}$ of the new cross separating k-set becomes a separating set with cardinality less than k. Hence, if G_{4} is empty then all cross separating k-set of type 2 belong to the original separating k-set with its fringes. Then all separating k-set are either inside $G_{1} \cup A \cup B \cup T_{1} \cup$ the fringe of A in $G_{5} \cup$ the fringe of B in G_{6}, or $G_{2} \cup A \cup B \cup T_{1} \cup$ the fringe of A in $G_{3} \cup$ the fringe of B in G_{4}, or they belong to the union of $A \cup B \cup T_{1} \cup$ the fringes of A and B. Note that the latter separating k-sets are covered by the structure 2 . We can write the recurrences

Figure 12.
Illustrating type 2 separating k-set when no type 1 separating k-set exist.
similar to the above ones except for the sum which will be up to 2 instead of up to 4 . The solution will be still of the same order. If G_{3} is empty then $\left|C_{2}\right| \geq\left|A_{2}\right|$, otherwise $C_{2} \cup T^{\prime} \cup T_{1} \cup B$ is a separating set with cardinality less than k. If D_{2} crosses D_{1} (see Figure 12) then $A_{2} \cup T^{\prime} \cup T_{\mathcal{V}} D_{2}$ is a separating set, so $\left|C_{2}\right|=\left|A_{2}\right|$. . $C \cup T_{1} \cup D_{1}^{\prime} \cup H \cup D^{\prime \prime}$ is a separating set, so $\left|D^{\prime \prime}{ }_{2}\right| \geq\left|D^{\prime \prime}{ }_{1}\right|$. Also $C_{2} \cup T_{2} \cup D_{2}^{\prime} \cup H \cup D^{\prime \prime}$ is a separating set, so $\left|D^{\prime \prime}{ }_{11} \geq\left|D^{\prime \prime}{ }_{2}\right|\right.$. Combining these two we get $| D^{\prime \prime}{ }_{1}\left|=\left|D^{\prime \prime}{ }_{2}\right|\right.$. Since, $C \cup T_{1} \cup T_{2} \cup D^{\prime} \cup H \cup D^{\prime \prime}{ }_{1}$ and $C_{2} \cup T^{\prime}{ }_{2} \cup T_{1} \cup D^{\prime} \cup H \cup D^{\prime \prime}{ }_{2}$ are separating sets, so $\left|T_{2}^{\prime} \cup D^{\prime}{ }_{2}\right| \geq\left|D^{\prime}{ }_{1}\right| \geq\left|D^{\prime}{ }_{2}\right|$. Since $T_{1} \cup D^{\prime \prime} \cup H \cup D^{\prime \prime}{ }_{2}$ separates $G{ }_{6}{ }_{6}$ from the rest of the graph, and since the cardinality of this separating set is less than $k, G{ }_{6}{ }_{6}$ is empty. Hence, $D{ }^{\prime \prime}$ belongs to the fringe of D in $G_{6} . \bar{T}_{2}=T_{1}$ in order for the Claim 2 with respect to the old cross separating k-set to be true. And since $\left|C_{2}\right|+\left|T_{2}^{\prime}\right|=|A|$ and since the cardinality of the new cross separating k set is $k,\left|D_{2}^{\prime}\right|=\left|D_{1}^{\prime}\right|$. So, all cross separating k-sets of this type belong to $G_{5} \cup A \cup D \cup T_{1} \cup$ the fringe of A in $G_{3} \cup$ the fringe of D in G_{6}, if there are no exceptional separating k-sets. Also in the maximal set of disjoint D 's (Y) all of D 's except D_{1} belong to G_{6}. If G_{5} with respect to the new cross separating k-set is nonempty, then by the above argument C_{2} will belong to the fringe of A. Hence, all cross separating k-sets belong to the set mentioned above, namely, $G_{4} \cup A \cup T \cup D_{1} \cup$ the fringe of A in $G_{1} \cup$ the fringes of D_{1} in G_{5}.

Let us take the maximal set of C 's and D 's (X and Y). We know that all cross separating k-sets of type 2 with nonempty G_{5} belong to $G_{5} \cup A \cup D \cup T_{1} \cup$ the fringe of A in $G_{3} \cup$ the fringe of D in G_{6}. Since we need to consider
all symmetric cases, and since we don't have any cross separating k-sets of type 1 , all cross separating k-sets of the type 2 belong to $G_{3} \cup A \cup C \cup T_{1} \cup$ the fringe of A in $G_{5} \cup$ the fringe of C in G_{4}, or $G_{4} \cup B \cup C \cup T_{1} \cup$ the fringe of B in $G_{6} \cup$ the fringe of C in G_{3}, or $G_{5} \cup A \cup D \cup T_{1} \cup$ the fringe of A in $G_{3} \cup$ the fringe of D in G_{6}, or $G_{6} \cup B \cup D \cup T_{1} \cup$ the fringe of B in $G_{4} \cup$ the fringe of D in G_{5}. Note that C 's and D 's are not the same in these sets. In case of $G_{3} C$ is "nearest" to A, in case of $G_{4} C$ is "nearest" to B, in case of $G_{5} D$ is "nearest" to A, and in case of $G_{6} D$ is "nearest" to B. Let us see where the rest of separating k-sets must lie. First, if there are no cross separating k-sets with G_{5} nonempty (or same other appropriate symmetric $G_{i} \mathrm{i}=3,4,5,6$) then it is still possible to have a cross separating k-sets.

All cross separating k-sets consist of three parts: part one is in G_{1}, part two is in G_{2} and part three is T_{1}. Part one belongs to some C from the set X or its fringe or the fringe of A in G_{3} or the fringe of B in G_{4}. Part two belongs to some D from the set Y or its fringe or the fringe of A in G_{5} or the fringe of B in G_{6}. That covers all cross separating k-sets which use T_{1}, otherwise either set X or set Y is not maximal. We don't have any cross separating k-sets of type 1 . All cross separating k-sets of type 2 with nonempty appropriate G_{i} with respect to them belong to the part of the graph between A and the nearest D in G_{2} along with A and its fringe and D and its fringe. Hence, all other separating k-sets belong to $G_{1} \cup A \cup B \cup T_{1}$ with its fringes, or $G_{2} \cup A \cup B \cup T_{1}$ with its fringes.

Hence, all cross separating k-sets of type 2 , except exceptions are covered by the structure 2 or inside the the subgraphs associated by $G_{1}, G_{l_{1}+1}, G_{l_{1}+2}$ and G_{l+2}. As for the exceptions the upper bounds we got for types 3 and 4 still hold, since no part of T_{1} can be separated by them (otherwise Claim 2 is contradicted). So, the recurrence which were written for the type 3 and 4 separating k-sets covers type 2 cross separating k-sets also, including exceptions. That conclude Case 1.

Case 2 For any separating k-set every cross separating k-set will have one of the $G_{i} \mathrm{i}=3,4,5,6$ empty. Not every vertex in both G_{1} and G_{2} can be used for cross separating k-sets.
W.L.O.G. let G_{3} will be empty (see Figure 13).

Since G_{4} is nonempty by assumption, and G_{5} is nonempty since there are no exception, $C \cup T \cup B$ and $A \cup T \cup D$ are separating sets. So their cardinalities are bigger or equal to k, hence, $|C|=|A|$ and $|B|=|D|$. So, C is part of the fringe of A in G_{1}. Since this true for every T, all cross separating k-sets belong to $G_{1} \cup A \cup T \cup B \cup$ the fringes of

Figure 13.
Illustrating Cases 2 and 3.
A and B in G_{2}, or $G_{2} \cup A \cup T \cup B \cup$ the fringes of A and B in G_{1}, except for exceptions. So all separating k-sets including the exceptions are either inside $G_{1} \cup A \cup B \cup T \cup$ appropriate at most k^{2} neighbors of $A \cup T \cup B$ in G_{2} or inside $G_{2} \cup A \cup B \cup T \cup$ appropriate at most k^{2} neighbors of $A \cup T \cup B$ in G_{1} which are used in exceptional separating k-sets. Hence,

$$
g(n)=g\left(n_{1}+k(k-1)\right)+g\left(n_{2}+k(k-1)\right)+4 k^{2},
$$

where n_{1} and n_{2} are the cardinalities of G_{1} and G_{2}. We still have that $n_{1}+n_{2}+k=n$, and the solution to this recurrence is $O\left(k^{2}+n\right)$ (see Appendix). Note that $n_{i}+k(k-1)<n$ for $i=1,2$.

For the upper bound on the number of separating k-sets we get the following equality

$$
f(n)=f\left(n_{1}+2 k\right)+f\left(n_{2}+2 k\right)+2^{k}
$$

where 2^{k} covers all exceptional separating k-sets. And its solution is clearly smaller than $O\left(2^{k} \frac{n^{2}}{k}\right)$ (see Appendix). That conclude Case 2.

Case 3 For every separating k-set all cross separating k-sets are lopsided (one of the $G_{i} \mathrm{i}=3,4,5,6$ will be empty). And either G_{1} or G_{2} are such that every vertex of them is used for some cross separating k-set.
W.L.O.G. let G_{3} be empty and the smallest G_{1} every vertex of G_{1} is used for some cross separating k-set (see Figure 13). There are two subcases: either G_{5} or G_{6} are empty, otherwise we will be in Case 2. Take C as large as
possible.

If G_{6} is empty then $A \cup B \cup C \cup D \cup T$ with all edges between them and filling real edges for nonempty G_{5} and G_{4} and virtual otherwise (analogous to the structure 1) will specify all cross separating k-sets. If G_{5} is empty then $C \cup T \cup D$ separate A from the rest of the graph. Hence, $C \cup T \cup D$ is an exceptional separating k-set. So the third structure will be the following:

1) $\quad A, B$ and T - the original separating k-set,
2) All the neighbors of $A \cup B \cup T$ that are used for a cross separating k-sets with edges between them and the original separating k-set.
since the remaining separating k-sets are inside $G_{2} \cup A \cup B \cup T$, we derive the following recurrence relation:

$$
g(n)=g(n-1)+k^{2}
$$

whose solution is $f(n)=O\left(k^{2} n\right)$. Analogously, we have the following recurrence relation for the upper bound on the number of separating k-sets

$$
f(n)=f(n-1)+2^{k}
$$

whose solution is $O\left(2^{k} n\right)$.

That conclude the proof of all cases. Our final result is that all separating k-sets have $O\left(k^{2} n\right)$ space representation, and their number is $O\left(2^{k} \frac{n^{2}}{k}\right)$.

REFERENCES

[BeX] M. Becker et al., "A probabilistic algorithm for vertex connectivity of graphs," Information Processing Letters, vol. 15, no. 3, 1982, pp. 135-136.
[Ev] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
[Ev2] S.Even, "An algorithm for determining whether the connectivity of a graph is at least k," SIAM J. on Computing, vol. 4, 1975, pp. 393-396.
[EvTa] S.Even,R.E.Tarjan, "Network flow and testing graph connectivity," SIAM J. on Computing, vol. 4, 1975, pp.507-518.
[Ga] Z.Galil, "Finding the vertex connectivity of graphs," SIAM J. on Computing, vol. 9, 1980, pp. 197-199.
[GiSo] M.Girkar,M.Sohoni, "On finding the vertex connectivity of graphs," Tech. Report ACT-77, Coordinated Science Laboratory, University of Illinois, Urbana, Il, May, 1987
[HoTa] J.E.Hopcroft,R.E.Tarjan, "Dividing a graph into triconnected components," SIAM J. on Compuling, vol. 2, 1973, pp. 135-158.
[Ka] A.Kanevsky, "On the number of minimum size separating vertex sets in a graph," Tech. Report ACT80, Coordinated Science Laboratory, University of Illinois, Urbana, IL, July, 1987.
[KaRa1] A.Kanevsky,V.Ramachandran, "Improved algorithms for graph four-connectivity," Proc. 28th IEEE ann. Symp. on Foundation of Computer Science, Oct, 1987, pp. 252-259.
[KaRa2] A.Kanevsky,V.Ramachandran, "A characterization of separating pairs and triplets in a graph," Tech. Report ACT-79, Coordinated Science Laboratory, University of Illinois, Urbana, IL, July, 1987.
[LiLoWi] N.Linial,L.Lovasz,A.Wigderson, "A physical interpretation of graph connectivity, and its algorithmic applications," Proc. 27th IEEE Ann. Symp. on Foundations of Comp. Sci., 1986, pp. 39-48.
[MiRa] G.L.Miller,V.Ramachandran, "A new graph triconnectivity algorithm and its parallelization," Proc. 19th ACM Ann. Symp. on Theory of Computing, New York, NY, May 1987, pp. 335-344.
[Ta] R.E.Tarjan, "Depth-first search and linear graph algorithms," SIAM J. on Computing, vol. 1, 1972, pp. 146-159.
[Tu] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.
[Wh] H. Whitney, "Non-separable and planar graphs," Trans. Amer. Math. Soc. 34, 1932, pp.339-362.

APPENDIX

$$
\begin{gathered}
\sum_{i=1}^{l}\left(n_{i}+1\right)=n \quad 2 \leq l \leq n \quad n_{i} \geq 0 \\
g(n) \leq \max _{l}\left(\sum_{i=1}^{l} g\left(n_{i}+2\right)+4 l\right)
\end{gathered}
$$

Let $g(n)=4 n-16$,

$$
\begin{aligned}
& g(n) \leq \max _{l}\left(\sum_{i=1}^{l} g\left(n_{i}+2\right)+4 l\right)=\max _{l}\left(\sum_{i=1}^{l}\left(4\left(n_{i}+2\right)-16\right)+4 l\right)= \\
& \max _{l}\left(4 \sum_{i=1}^{l}\left(n_{i}+1\right)+4 l-16 l+4 l\right)=\max _{l}(4 n-8 l) \leq 4 n-16 \\
& \sum_{i=1}^{l}\left(n_{i}+1\right)+1=n \quad 2 \leq l \leq n-1 \quad n_{i} \geq 0 \\
& g(n) \leq \max _{l}\left(\sum_{i}^{l} g\left(n_{i}+5\right)+6 l+1\right)
\end{aligned}
$$

Let $g(n)=6 n-55$,

$$
\begin{aligned}
& g(n) \leq \max _{l}\left(\sum_{i=1}^{l} g\left(n_{i}+5\right)+6 l+1\right)=\max _{l}\left(\sum_{i=1}^{l}\left(6\left(n_{i}-55\right)+6 l+1\right)=\right. \\
& \max _{l}\left(6\left(\sum_{i=1}^{l}\left(n_{i}+1\right)+1\right)-31 l+6 l+1\right)=\max _{l}(6 n-25 l-5) \leq 6 n-55
\end{aligned}
$$

$$
\sum_{i=1}^{l}\left(n_{i}+\frac{k-t}{2}\right)+t=n \quad 0 \leq t \leq k-2 \quad 2 \leq l \leq 2 \frac{n-t}{k-t} \quad n_{i} \geq 0
$$

$$
g(n) \leq \max _{l}\left(\sum_{i=1}^{l} g\left(n_{i}+(k-t) k+t\right)+l k \frac{(k-t)}{2}+t\right.
$$

Let $g(n)=2 n k-4 k^{3}+2 k^{2} t+\frac{1}{2} k^{2}-3 k t-t$,

$$
\begin{gathered}
g(n) \leq \max _{l}\left(\sum_{i=1}^{l} g\left(n_{i}+(k-t) k+t\right)+l k \frac{k-t}{2}+t\right) \leq \\
\max _{l}\left(\sum_{i=1}^{l} 2 k\left(n_{i}+k(k-t)+t\right)-4 k^{3} l+2 k^{2} t l+\frac{1}{2} k^{2} l-k t l-t l+l k \frac{k-t}{2}+t\right)=
\end{gathered}
$$

$$
\max _{l}\left(2 k\left(\sum_{i=1}^{l}\left(n_{i}+\frac{k-t}{2}\right)+t\right)-2 k l \frac{k-t}{2}-2 k t+2 k^{2} l(k-t)+2 k t l-4 k^{3} l+2 k^{2} t l+\frac{1}{2} k^{2} l-3 k t l-t l+l k \frac{k-t}{2}+t\right)=
$$

$$
\max _{l}\left(2 k n+2 k^{3}(l-2 l)+2 k^{2} t(-l+l)+k^{2}\left(\frac{1}{2} l+\frac{l}{2}-l\right)+k t\left(l-2+2 l-\frac{l}{2}-3 l\right)+t(-l+1)\right) \leq
$$

$$
2 k n-4 k^{3}-3 k t+t \leq 2 k n-4 k^{3}+2 k^{2} t+\frac{1}{2} k^{2}-3 k t-t
$$

Hence, $g(n)=O\left(n k+k^{3}\right)$.

$$
\begin{gathered}
\sum_{i=1}^{l}\left(n_{i}+\frac{k-t}{2}\right)+t=n \quad 2 \leq l \leq 2 \frac{k-t}{k-t} \quad 0 \leq t \leq n-2 \\
f(n) \leq \max _{l}\left(\sum_{i=1}^{l} f\left(n_{i}+k(k-t)+t\right)+2^{k-t} \frac{l(l-2)}{2}+2^{\frac{k-t}{2}} l\right)
\end{gathered}
$$

Let

$$
\begin{gathered}
f(n)=2^{k-t} n l-2^{k-t} k^{2} l+2^{k-t} k t l+\frac{1}{2} 2^{k-t} k l-\frac{3}{2} 2^{k-t} t l+2^{k-t} k t+\frac{1}{2} 2^{k-t} k-22^{k-t} k^{2}-2^{k-t} t-\frac{1}{2} 2^{k-t} l-22^{\frac{k-t}{2}}, \\
f(n) \leq \max _{l}\left(\sum_{i=1}^{l}\left(n_{i} k(k-t)+t\right) 2^{k-t} l-2^{k-t} k^{2} l^{2}+2^{k-t} k t l^{2}+\frac{1}{2} 2^{k-t} k l^{2}-\frac{3}{2} 2^{k-t} t l^{2}+2^{k-t} k t l+\right. \\
\left.\frac{1}{2} 2^{k-t} k l-22^{k-t} k^{2} l-2^{k-t} t l-\frac{1}{2} 2^{k-t} l^{2}-22^{\frac{k-t}{2}}+\frac{1}{2} 2^{k-t} l^{2}-\frac{1}{2} 2^{k-t} l+2^{\frac{k-t}{2}} l\right)=\max _{l}\left(2^{k-t} \ln -\right. \\
\frac{1}{2} 2^{k-t} k l^{2}+\frac{1}{2} 2^{k-t} t l^{2}-2^{k-t} t l+2^{k-t} k^{2} l^{2}-2^{k-t} k t l^{2}+2^{k-t} t l^{2}-2^{k-t} k^{2} l^{2}+2^{k-t} k t l^{2}+\frac{1}{2} 2^{k-t} k l^{2}- \\
\left.\frac{3}{2} 2^{k-t} t l^{2}+2^{k-t} k t l+\frac{1}{2} 2^{k-t} k l-22^{k-t} k^{2} l-2^{k-t} t l-\frac{1}{2} 2^{k-t} l^{2}-22^{\frac{k-t}{2}} l+\frac{1}{2} 2^{k-t} l^{2}-\frac{1}{2} 2^{k-t} l+2^{\frac{k-t}{2}} l\right)= \\
\max _{l}\left(2^{k-t} \ln -22^{k-t} k^{2} l+2^{k-t} k t l+\frac{1}{2} 2^{k-t} k l-22^{k-t} k l-22^{k-t} t l-\frac{1}{2} 2^{k-t} l-2^{\frac{k-t}{2}} l\right) \leq
\end{gathered}
$$

$$
\max _{l}\left(2^{k-t} \ln -2^{k-t} k^{2} l+2^{k-t} k t l+\frac{1}{2} 2^{k-t} k l-\frac{3}{2} 2^{k-t} t l+2^{k-t} k t+\frac{1}{2} 2^{k-t} k-22^{k-t} k^{2}-2^{k-t} t-\frac{1}{2} 2^{k-t} l-22^{\frac{k-t}{2}}\right)
$$

Hence, $f(n)=O\left(2^{k} \frac{n^{2}}{k}+2^{k} n k\right)$.

$$
\begin{gathered}
\sum_{i=1}^{4} n_{i}+2 k-t=n \quad 0 \leq t \leq k-2 \\
g(n) \leq \sum_{i=1}^{4} g\left(n_{i}+k(k-t)+t\right)+8 k \frac{k-t}{2}+t
\end{gathered}
$$

Let $g(n)=4 n k-\frac{16}{3} k^{3}+\frac{16}{3} k^{2} t+\frac{4}{3} k^{2}-\frac{16}{3} k t-\frac{1}{3} t$,

$$
\begin{gathered}
g(n) \leq \sum_{i=1}^{4} g\left(n_{i}+k(k-t)+t\right)+4(k-t) k+t \leq \\
\sum_{i=1}^{4}\left(4\left(n_{i}+k(k-t)+t\right) k-\frac{16}{3} k^{3}+\frac{16}{3} k^{2} t+\frac{4}{3} k^{2}-\frac{16}{3} k t-\frac{1}{3} t\right)+4(k-t) k+t= \\
4 k\left(\sum_{i=1}^{4} n_{i}+2 k-t\right)-8 k^{2}+4 k t+16 k^{3}-16 k^{2} t+16 k t-\frac{64}{3} k^{3}+\frac{64}{3} k^{2} t+\frac{16}{3} k^{2}-\frac{64}{3} k t-\frac{4}{3} t+4 k^{2}-4 k t+t= \\
4 k n+k^{3}\left(16-\frac{64}{3}\right)+k^{2} t\left(\frac{64}{3}-16\right)+k^{2}\left(\frac{16}{3}-8+4\right)+k t\left(4+16-\frac{64}{3}-4\right)+t\left(1-\frac{4}{3}\right)= \\
4 k n-\frac{16}{3} k^{3}+\frac{16}{3} k^{2} t+\frac{4}{3} k^{2}-\frac{16}{3} k t-\frac{1}{3} t
\end{gathered}
$$

Hence, $g(n)=O\left(n k+k^{3}\right)$.

$$
\begin{gathered}
\sum_{i=1}^{4}\left(n_{i}+\frac{k-t}{2}\right)+t=n \quad 0 \leq t \leq n-2 \\
f(n) \leq \sum_{i=1}^{4} f\left(n_{i}+k(k-t)+t\right)+62^{k-t}+42^{\frac{k-t}{2}}
\end{gathered}
$$

Let $f(n)=2^{k-t} n-\frac{4}{3} 2^{k-t} k^{2}+\frac{4}{3} 2^{k-t} k t-\frac{5}{3} 2^{k-t} t+\frac{2}{3} 2^{k-t} k-22^{k-t}-\frac{4}{3} 2^{\frac{k-t}{2}}$,

$$
\begin{gathered}
f(n) \leq \sum_{i=1}^{4} f\left(n_{i}+k(k-t)+t\right)+62^{k-t}+42^{\frac{k-t}{2}} \leq \sum_{i=1}^{4}\left(2^{k-t}\left(n_{i}+k(k-t)+t\right)-\frac{4}{3} 2^{k-t} k^{2}+\frac{4}{3} 2^{k-t} k t-\right. \\
\left.\frac{5}{3} 2^{k-t} t+\frac{2}{3} 2^{k-t} k-22^{k-t}-\frac{4}{3} 2^{\frac{k-t}{2}}\right)+62^{k-t}+42^{\frac{k-t}{2}}=2^{k-t} n-2^{k-t} k+22^{k-t} t-2^{k-t} t+ \\
42^{k-t} k^{2}-42^{k-t} k t+42^{k-t} t-\frac{16}{3} 2^{k-t} k^{2}+\frac{16}{3} 2^{k-t} k t-\frac{20}{3} 2^{k-t} t+\frac{8}{3} 2^{k-t}-\frac{16}{3} 2^{\frac{k-t}{2}}+62^{k-t}+42^{\frac{k-t}{2}}= \\
2^{k-t} n-\frac{4}{3} 2^{k-t} k^{2}+\frac{4}{3} 2^{k-t} k t-\frac{5}{3} 2^{k-t} t+\frac{2}{3} 2^{k-t} k-22^{k-t}-\frac{4}{3} 2^{\frac{k-t}{2}}
\end{gathered}
$$

$$
\begin{gathered}
n_{1}+n_{2}+k=n \quad n_{1}, n_{2} \geq 0 \\
g(n) \leq g\left(n_{1}+k(k-1)\right)+g\left(n_{2}+k(k-1)\right)+4 k^{2}
\end{gathered}
$$

Let $g(n)=n-6 k^{2}+3 k$,

$$
g(n) \leq n_{1}+k^{2}-k-6 k^{2}+3 k+n_{2}+k^{2}-k-6 k^{2}+3 k+4 k^{2}=n-6 k^{2}+3 k
$$

$$
\begin{aligned}
& n_{1}+n_{2}+k=n \quad n_{1}, n_{2} \geq 0 \\
& f(n) \leq f\left(n_{1}+2 k\right)+f\left(n_{2}+2 k\right)+2^{k} \\
& \text { Let } f(n)=2^{k} n-32^{k} k-2^{k}, \\
& f(n) \leq 2^{k} n_{1}+2 k 2^{k}-32^{k} k-2^{k}+2^{k} n_{2}+2 k 2^{k}-32^{k} k-2^{k}+2^{k}=2^{k} n-32^{k} k-2^{k}
\end{aligned}
$$

