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ABSTRACT

This paper also appears on pages 817-822 of the Proceedings of the Eighth Annual Conference 
of the Cognitive Science Society, Amherst, Massachusetts. August 1986.

We propose that three qualitatively different strategies help focus attention during problem 
solving. The first strategy is to apply operators that will lead to definite progress toward the goal. 
Attention will be focussed by this strategy as long as some operator in this class is applicable. 
When clear progress can not be achieved, the problem solver must decide how best to proceed. It 
then invokes the second strategy to select operators that preserve important characteristics of the 
current problem. These operators are likely to keep the problem solver from diverging sharply 
from the goal while possibly enabling the application of operators by the first strategy. When the 
problem solver can follow neither of the first two strategies, it invokes the third strategy of 
arbitrarily applying legal operators. We see the second strategy as an essential difference between 
novice and expert problem solvers. It is easy to recognize definite progress toward a goal and it is 
easy to recall which operators can be legally applied. Expertise involves knowing which 
characteristics of a situation should be preserved (or created) when no way to definitely progress 
toward the goal is known. This three-strategy theory has been implemented and tested in a 
system that performs mathematical calculations in the course of solving physics problems. We 
describe a number of mathematical calculation operators used under each strategy.
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A MODEL OF ATTENTION FOCUSSING 
DURING PROBLEM SOLVING

INTRODUCTION

A novice problem solver attacks a problem in one of two ways. He may immediately notice a

way to progress toward the solution. Alternatively, he may flounder around performing legal, but

aimless, operations in an attempt to transform the problem into a familiar form. An expert, on the

other hand, can perform in a qualitatively different manner. If the solution is not immediately

apparent, he can focus his efforts in a much more guided way. Instead of simply thrashing around.

he has an appreciation of what kinds of transformations are likely to change the current problem 

into a soluble problem.

Consider the problem of evaluating the expression

mass j velocity j + mass 2 velocity 2

when mass , and mass 2 are known but velocity , and 2 are not. This expression cannot be

evaluated directly. A valid approach might be to substitute equivalent expressions for the 

unknowns. A novice might perform the unappealing substitutions of figure 1. While these 

transformations are valid, they are unlikely to yield a solution. An expert will appreciate this, and 

be more likely to perform the pleasing problem transformations of figure 1. In this example, there 

is something about the parallel structure of the problem that makes a parallel substitution more 

appealing. Yet parallel substitutions are not always aesthetically appealing. For example, consider 

the substitutions of figure 2. In this example, parallel substitution using Newtons third law (every 

action has an equal and opposite reaction) misses a useful variable cancellation. If only one 

instantiation of this formula is used, the two forces can be eliminated from the calculation.



Paj;i‘ 2

mass, -  position, + mass 
dt mass, -  position, + mass, -  position, 

dt at Ldt

mass, j  position, + mass2 / acceleration2 dt

Unappealing Substitutions

mass, Jacceleration, dt + mass2 J1 acceleration2 dt

Pleasing Substitutions

Figure 1. Sample Mathematical Substitutions

We propose three qualitatively different strategies for human problem solving. Attention is 

selectively focussed according to one of these strategies. Strategy 1 is hill climbing. Attention is 

focussed on this strategy as long as some operator moves the problem solver closer to its goal. 

Occasionally the problem solver will reach a local maximum; there will be no way to move closer 

to the goal. At these times, the problem solver must diverge from his goal, in the hopes of 

transforming the current situation into one where hill climbing can occur. We propose there are 

two qualitatively different ways by which a problem solver re-focusses his attention during this 

divergent phase. A novice problem solver merely selects an arbitrary legal operator. This can lead 

to aimless floundering, due to the large number of possible combinations of operator sequences. An 

expert can often wisely choose how to transform the current situation. Characteristics that are

if force ! 2 dt +  /  force 21 dt

/ ( - force2 , )dt +  / ( - force,  2 )dt

Figure 2. Inappropriate Parallel Substitutions

A Model o f A tten tion  Focussing During Problem Solving
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believed to be of general or domain-specific problem-solving importance (e.g., symmetry) are to be 

maintained or introduced, introduction of troublesome characteristics is to be avoided. Such 

motivated diversions compose strategy 2. However, when an expert exhausts his expertise he also 

resorts to any legal operator. This unmotivated application of operators is termed strategy 3.

AN APPLICATION OF THE MODEL IN MATHEMATICAL CALCULATION

Our three-strategy theory has been implemented and tested in a system called Physics 101 

[Shavlik85]. This system performs mathematical calculations in the course of solving physics

problems. We have identified a number of mathematical calculation operators used by the three 

strategies.

Our model is a state-space model. The problem solver is provided an initial state and a goal 

description. The role of the problem solver is to successively apply legal transformations to the 

current state until a state satisfying the goal description is reached. This process in the example 

domain of mathematical calculation is illustrated is figure 3. Notice that more than one substitution 

is allowed during the transformation from one state to the next.

C alculation 1 I 1 I Substitutions

Expression 1

Expression N -l

C alculation  N

Final Expression

Figure 3. The Structure of a Calculation Sequence

A Model o f A tten tion  Focussing During Problem  Solv ing
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Strategy 1 - Definite Progress.

In our Physics 101 system, often the goal is to produce an expression that only contains 

variables whose values are known. (Once in this state, the expression can easily be evaluated.) The 

hill-climbing measure is the number of variables in the expression whose value is not known 

(these variables will be called unknowns from now on).

Physics 101 contains two basic techniques for reducing the number of unknowns. One, 

unknowns can be replaced using known formulae if these formulae introduce known-valued terms 

or lead to the cancellation of unknowns. An example of this technique is shown in figure 4 

(discussed below). Two, values of variables can used if doing so eliminates unknowns. If our 

current expression is A * B * C . and A 's value is zero, both B and C can be cancelled by replacing 

A with its numerical value. Similarly, given the expression A * B * C - B * C .  where A equals 

one. a numerical replacement can lead to a reduction in unknowns.

A problem-solving operator applied by strategy 1 is illustrated in figure 4. The goal is to 

evaluate the top expression, but the values of the two inter-object forces ( force 12 and force 2 l) 

are not known. A "substitute-to-cancel-unknowns" operator can detect that the two inter-object

Consider the Expression

/fo r c e ,  2 dt -i- /  force2>1 dt

Choose a Variable-Cancelling Substitution 

/ (  - force 2 , )dt + f lo ra e  2 1  dt

Bring Cancellers Together

/ (  - force2 i 1  -i- force 2 , ) dt

Cancel Variables

f  O kg m /  s2 dt

Figure 4. Example of an Operator Applied by Strategy 1

A M odel o f A tten tion  Focussing During Problem  Solv in g
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forces cancel due to Newtons third law. This operator is a complex operator. We allow operators 

to comprise a sequence of problem-solving steps that achieve some goal. (Operators comprising 

other operators have variously been called macro-operators [Fikes72], frames [Minsky75], scripts 

[Schank77], and schemata [Chafe75].) These "super” operators possess the desirable property that 

once one is selected, several problem-solving steps can be carried out without the need for 

intervening search. The substitute-to-cancel-unknowns" operator first applies Newton's third law 

to replace one of the inter-object forces. It then brings these potential cancelling terms into a 

position where cancellation can take place. This requires that the two integrals be combined. 

Finally, the two troublesome variables can be eliminated.

Bundy's meta-level solution methods [BundySl] follow strategy 1. He considers solving

complicated equations containing a single unknown variable (there may be multiple occurrences of

the unknown, however). His attraction, collection, and isolation methods always bring one closer to

the goal of having the only occurrence of the unknown isolated on the left-hand side of an 

equation.

Strategy 2 - Motivated Diversions.

There are several techniques used in Physics 101 that follow the second strategy. The major 

ones are presented below, in the order they are used by the system.

(1) Elimination of variables whose values are known. Even when is not possible to reduce the 

number of unknowns in an expression, it is a good idea to cancel terms, even those whose 

values are known. Eliminating these terms may allow productive cancellations that had been 

prevented by the presence of known-valued terms. For example, suppose we have the 

following formulae, and the values of A and C are known.

A = B /  C and B = — D

If our current expression is A * C + D .we cannot reduce the number of unknowns. 

However if we use the first of the above formulae, we can cancel some terms, while

A M odel o f  A tten tion  Focussing During Problem S olving
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momentarily increasing the number of unknowns. Fortunately, in the next step both of the 

unknowns can be cancelled.

(2) Elimination of integrals and derivatives. Performing calculus is harder that performing 

algebra. When it is not possible to eliminate terms, it is often a good idea to eliminate 

calculus structure. An example where Physics 101 removes calculus from an expression is 

shown in figure 5. Here the program detects that it can eliminate the derivative because it 

knows the derivatives of all the terms being differentiated. Applying this operator adds four 

steps to the calculation sequence. After this operator is applied, direct progress toward the 

goal state can be made. For instance, object I s mass times its acceleration equals the net force 

on it (by Newton's second law). Hence, two variables can be replaced by one. (Continued 

calculation leads to this expression becoming zero, a consequence of the principle of 

conservation of energy.)

(3) Preservation of expression type. Assume we have the following two equations.

( i )  A = (D * E ) (ii ) A = (F + G )

If our current expression is A * B * C . equation (i) would be preferred as this would 

maintain the property that the expression is a product of terms. Conversely, given 

A + B + C . the second equation is preferred, because now the expression continues to be a

dt ^ 1 /i>') mass 1 velocity, 2  + mass, g position, )

separateCaicuius = “  CO /2 ) mass, velocity, 2  ) + £  (mass, g position, >

constantsOutofcaicuius = ( 1 mass , £  velocity, 2  + mass, g ^  posjtiori
dt dt 1

Solvecaicuius = ( 1 / 2 ) * 2  mass, velocity, ±1 velocity, + mass, g -i!
dt 1 -dt

p o s i t i o n  ,

Substcaicuius _  (1 / 2 )  * 2  m a s s ,  v e l o c i t y ,  a c c e l e r a t i o n ,  +  m a s s ,  g  v e l o c i t y ,

Figure 5. An Application of the Substitute-Calculus Operator

A M odel o f  A tten tion  Focussing During Problem Solving
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sum of terms. There is a strong reason for preserving expression type, one involving more 

than aesthetics. In the first example we can produce

D * E * B * C or (F + G ) * B * C .

In the result on the left, all the terms are equally accessible. Future substitutions involving 

B . for example, can cancel D or E.  (Recall that cancellation of variables is the mechanism 

that leads to the goal state.) The right-hand result requires that a replacement for B cancel F 

and G together.

(4) Preservation of structural symmetry. When similar additive or multiplicative structure is 

present, the same general rule should be used repeatedly whenever possible. For example, 

given the following expression, substitutions involving all three of the A ’s or all three of the 

B ’s would be favored.

A ^ !  + A 2B 2 + A 3B 3

This accounts for the unpleasing quality of the first transformations of figure 1. It would be 

better to replace both of the velocities either by the derivatives of position or by the integrals 

of acceleration. Mixing the two does not seem right.

The mathematical problem-solving methods learned by Silver’s LP program [Silver84] follow 

strategy 2. LP acquires information that constrains the choice of applicable operators. The learned 

operators are not guaranteed to bring the problem solver closer to a final solution.

Strategy 3 - Floundering Around.

In Physics 101 strategy 3 looks for the first legal substitution and applies it. Only one 

substitution is made, in order to minimize this undirected perturbation of the calculation.

The LEX system of Mitchell [Mitchell83b] acquires heuristics that estimate when it is wise to 

apply an integration operator. It learns how operators previously used only under strategy 3 can 

be applied by strategy 2. The later LEX2 system [Mitchell83a] learns under what conditions a

A M odel o f  A tten tion  Focussing During Problem Solv in g
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specific integration operator will lead to a solution. This can be viewed as learning how to apply, 

under strategy 1. an operator previously used only under strategy 3.

CONCLUSION

We propose that three qualitatively different strategies help focus attention during problem 

o ing. The first strategy is to apply operators that will lead to definite progress toward the goal, 

ttention will be focussed by this strategy as long as some operator in this class is applicable. 

When clear progress can not be achieved, the problem solver must decide how best to proceed. It 

then invokes the second strategy to select operators that preserve important characteristics of the 

current problem. These operators are likely to keep the problem solver from diverging sharply 

from the goal while possibly enabling the application of operators by the first strategy. When the 

problem solver can follow neither of the first two strategies, it arbitrarily applies operators. This 

three-strategy theory has been implemented and tested in a system that performs mathematical 

calculations in the course of solving physics problems. We have identified a number of 

mathematical calculation operators used by the three strategies.

When several operators are seen as being equally viable, a problem solver must choose which 

to apply. Under strategy 3 the choice is made arbitrarily. In the other two cases, the choice is 

made by using the second strategy. For example, if there are a number of ways to cancel two 

unknowns, a way that preserves the symmetry of the situation is preferred.

These three strategies can be viewed in terms of simulated annealing problem-solving models 

[Hinton84, Kirkpatrick83]. Progress using strategy 1 involves the movement toward a solution 

space minima. Strategy 2 is analogous to slightly increasing the system "temperature" when stuck 

at a local minima that is not a goal state. Here it is hoped that the problem solver does not drift 

too far in the problem space. Strategy 3 potentially involves much greater increases in system 

temperature, and, hence, much greater jumps in the problem space.

We see the second strategy as an essential difference between novice and expert problem 

solvers [Chi81, Chi82. Larkin80]. It is easy to recognize definite progress toward a goal and it is

A Model o f A tten tion  Focussing During Problem Solving
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easy to recall which operators can be legally applied. ' Expertise involves knowing which

characteristics of a situation should be preserved (or created) when no way to definitely progress 

toward the goal is known.

A M odel o f  A tten tion  Focussing During Problem Solv in g
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