
ACT-36 NOVEMBER, 1982

5  » COORDINATED SCIENCE LABORATORY

APPLIED COMPUTATION THEORY GROUP

BOOLEAN EXPRESSIONS 
OF RECTILINEAR POLYGONS 
WITH VLSI APPLICATIONS
MICHELE PRACCHI

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

REPORT R-978 U1LU-ENG 82-2244

UNIVERSITY OF ILLINOIS -  URBANA, ILLINOIS



______UNCLASSIFIED ________________
S E C U R I T Y  C L A S S IF IC A T IO N  O F  T H IS  P A G E  fHTiw Pat«  Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM
1. R E P O R T  N U M B E R 2. G O V T  A C C E S S IO N  NO. 3. R E C I P I E N T ' S  C A T A L O G  N U M B E R

4. T I T L E  (and Subtitle) S. T Y P E  O F  R E P O R T  & P E R IO D  C O V E R E D

BOOLEAN EXPRESSIONS OF RECTILINEAR POLYGONS WITH Technical Report
VLSI APPLICATIONS 6. P E R F O R M IN G  ORG. R E P O R T  N U M B E R

R-978 UILU-ENG 82-2^44 (ACT-3' >
7. a u t h o r ^»; 

Michele Pracchi

a. C O N T R A C T  O R  G R A N T  N U M B ER /sJ

NSF ECS 81-06939; 
N00014-79-C-0424

9. P E R F O R M IN G  O R G A N IZ A T IO N  N A M E  A N O  A D D R E S S

Coordinated Science Laboratory 
University of Illinois at Urbana-Champaign 
Urbana, IL 61801

10. P R O G R A M  E L E M E N T .  P R O J E C T ,  T A S K  
A R E A  6 W ORK U N IT  N U M B E R S

It .  C O N T R O L L IN G  O F F I C E  N A M E  A N D  A O O R E S S

Joint Services Electronics Program

12. R E P O R T  D A T E

November 1982
13. N U M B E R  O F  P A G E S

50
14. M O N IT O R IN G  A G E N C Y  N A M E  è A D O R E S S f / l  different from Controlling Office) 15. S E C U R I T Y  C L A S S ,  (of this report)

UNCLASSIFIED
15«. D E C L A S S IF IC A T IO N / D O W N G R A D IN G

s c h e d u l e

16. D I S T R IB U T IO N  S T A T E M E N T  (of this Report)

Approved for public release; distribution unlimited

17. D I S T R IB U T IO N  S T A T E M E N T  (of the abatract entered in B lo ck  20, if different from Report)

18. S U P P L E M E N T A R Y  N O T E S

19. K E Y  WORDS (Continue on reverse aide if necessary and identity by block number)

VLSI design rule checking, VLSI masks, boolean operations on masks, 
plane sweep techniques

20. A B S T R A C T  (Continue on reverse side if necessary and Identify by block number)
This work is devoted to the analysis of some aspects of the problem of mask 

verification in the design of integrated circuits. Boolean operations on masks - 
union, intersection, complement - are the fundamental steps in the development 
of these verification strategies. We first consider the problem of union and 
intersection of two masks in a rectilinear environment. The input masks are 
described by means of polygonal circuits. The output mask is the result of 
the boolean operation and it is always described by means of polygonal circuits. 
We present a plane sweep technique algorithm that solves this problem in time

DD , ;j""n 1473 UNCLASSIFIED
S E C U R I T Y  C L A S S IF IC A T IO N  O r  TH IS  P A G E  (When Data Entered)



_______ UNCLASSIFIED_________________
S E C U R I T Y  CLASS« F IC A T lO N  O P  T H IS  P A G E  (Whin Dmtm E n tm rm d )___________________________________________________________

0(NlogN+k) and using memory 0(N+k), where N is the total number of edges that 
define the polygonal circuits of the two input masks and k is the number of 
intersection points.

The natural generalization of the problem is the construction of the plane 
regions that verify a boolean expression, whose variables are a set of masks.
Ws first present an algorithm that has 0(NhlogN+k') running time and uses memory 
CKNlogh+k'h+k'), where N is the total number of edges that define the polygonal 
circuits of all the masks, h the size of the boolean expression and k ’ is the 
number of intersection points that are vertices of the polygonal circuits of 
the output mask.

S E C U R IT Y  C L A S S IF IC A T IO N  O F  T H IS  P A G E f W w i  Dmtm Entmrmd)



BOOLEAN EXPRESSIONS OF RECTILINEAR POLYGONS WITH VLSI APPLICATIONS

Michele Pracchi

ABSTRACT

This work is devoted to the analysis of some aspects of the problem of 

mask verification in the design of integrated circuits. Boolean operations 

on masks - union, intersection, complement - are the fundamental steps in the 

development of these verification strategies. We first consider the problem 

of union and intersection of two masks in a rectilinear environment. The input 

masks are described by means of polygonal circuits. The output mask is the 

result of the boolean operation and it is always described by means of polygonal 

circuits. We present a plane sweep technique algorithm that solves this problem 

in time 0(NlogN+k) and using memory 0(N+k), where N is the total number of edges 

that define the polygonal circuits of the two input masks and k is the number of 

intersection points.

The natural generalization of the problem is the construction of the plane 

regions that verify a boolean expression, whose variables are a set of masks.

We first present an algorithm that has 0(NlogN+kT) running time and uses memory 

0 (Nlogh+k'h+k'), where N is the total number of edges that define the polygonal 

circuits of all the masks, h the size of the boolean expression and k ’ is the 

number of intersection points that are vertices of the polygonal circuits of 

the output mask.



1

1. INTRODUCTION

The development of computer aids for the design of integrated circuits 

is the object of increasing interest, [1],[2],[3],[4],[5], as the problem of 

the efficient design of Very Large Scale Integrated (VLSI) circuits cannot be 

solved without the introduction of new and more sophisticated software and 

hardware tools.

One of the aspects that have to be investigated is mask verification.

Masks are used in the production of integrated circuits and, when they are 

manually or semiautomatically drawn, a check is essential for the verification 

of their compliance with the design rules.

This work is devoted to the analysis of some aspects of the problem of 

mask verification. Boolean operations on masks — union, intersection, 

complement - are the fundamental steps in the development of these verification 

strategies.

We first consider the problem of union and intersection of two masks in 

a rectilinear environment. The input masks are described by means of polygonal 

circuits. The output mask is the result of the boolean operation and it is 

always described by means of polygonal circuits. We present a plane sweep 

technique algorithm that solves this problem in time 0(NlogN+k) and 

using memory 0(N+k), where N is the total number of edges that define the 

polygonal circuits of the two input masks and k is the number of points in 

which the polygonal circuits of the two input masks intersect. Since N is 

the size of the input and the k intersection points are endpoints of the 

polygonal circuits of the output mask, their determination and report are 

essential for the solution of the stated problem. This algorithm has an



2

optimal worst case running time. The recently proposed algorithm by Yap [1] 

solves the same problem using time 0((N+k)logN) and memory 0(N+k). We note 

that the time performance is not optimal: the number of intersection points 

k is multiplied by logN. Chapter 2 is devoted to the description of this 

topic.

The report of the plane regions that verify a boolean expression, whose 

variables are a set of masks, is the problem solved in Chapter 3. We remain 

in a rectilinear environment and the input masks are described by means of 

polygonal circuits. We note now that the boolean expression is an additional 

input to our problem. We will account for this when evaluating the performance 

of the algorithms by introducing a new parameter h, defined as the number of 

variables and connectives in the expression. We first present an algorithm 

that has 0(NhlogN+k) running time and uses memory 0((N+k)logh), where N is 

the total number of edges that define the polygonal circuits of all the masks, 

h the size of the boolean expression,and k the total number of intersection 

points in which the polygonal circuits of the input masks intersect. N and h 

are the parameters that describe the size of the input. However, not all of 

the k intersection points are necessary for the description of the output 

mask. Let us call k' the number of intersection points that are endpoints of 

the polygonal circuits of the output mask: k' is less than or equal to k.

The second algorithm presented in Chapter 2 has a time and space performance 

depending on k' instead of k. It runs in time 0(NhlogN+kf) and uses space 

0(Nlogh+kMh+k’), where k" is the smaller of the numbers of the horizontal 

and vertical edges that define the k* intersection points. To the best of 

our knowledge, this problem has not hitherto been considered in the

literature.



3

2. ALGORITHMS FOR CONSTRUCTING THE INTERSECTION AND THE UNION OF MASKS

The first algorithm we shall present solves the following problem: two 

masks A and B are given. Every mask is a set of polygonal circuits subject 

to the following rules:

Rule a : every edge of the polygons is either vertical or horizontal

(orthogonal geometry);

Rule b : the interiors of the polygons of a mask do not overlap ;

Rule c: we assume a counterclockwise orientation for the polygons, i.e.,

each polygon lies to the left side of any of its boundary edges.

We want to have a description of the mask that results from the application of 

the boolean connective AND or of the connective OR to the two masks A and B. 

This mask will always be described by means of polygonal circuits subject to 

the rules previously stated. For the AND connective it is possible that the 

output is the empty polygon. We will first describe the (A AND B) boolean 

operation.

2.1 Mask Intersection

The construction of the (A AND B) output masks consists of finding the 

endpoints of the edges of the polygons of that mask and of assigning to each 

of these edges its orientation. We will first consider the problem of 

determining the endpoints of the edges.

The endpoints belong to two disjoint classes:

1. The class of inclusion endpoints: these are the endpoints of the 

edges of the polygons of mask A that belong to the interior of a 

polygon of mask B and the endpoints of the edges of the 

polygons of B that belong to the interior of a polygon of A.

2. The class of intersection endpoints: these endpoints result from the

intersections of edges of the two masks.



4

We shall consider separately the computation of these two classes.

1* Inclusion endpoints. The inclusion in B of an endpoint P of A 

can be determined if we consider the configuration of mask B at the x-value 

of P. Let ORIENTATION(P,B) be the orientation of the horizontal edge of 

mask B whose intercept with a vertical line through P is immediately above P. 

We have the following theorem:

Theorem: An endpoint P of mask A is enclosed in a polygon of mask B if

ORIENTATION(P,B) is right-to-left.

Proof: (by contradiction) Let us consider a vertical line v through P.

Line v intersects h, the horizontal edge of B immediately above P, in point Q 

(see Figure 2.1). Edge h is oriented right-to-left, so that the region 

immediately below h is a region of mask B. Assuming, for a contradiction, 

that P does not belong to a region of mask B, the Jordan Curve Theorem requires 

v to intersect an edge of mask B whose ordinate is between the one of P and 

the one of Q. That is against the hypothesis. Thus, P lies in a region 

of B. □

i

I

Figure 2.1. Situation where P is enclosed in a polygon of B.



5

We will use this result in the algorithm that will construct the mask 

(A AND B).

2. Intersection endpoints. The problem of finding all intersection pairs 

in a set of horizontal and vertical line segments has been solved by Bentley- 

Ottmann [6] in optimal time and space. Thus, we will use their technique to 

determine and report the intersection endpoints.

The detection and report of the endpoints of the output mask are just the 

first steps in the construction of the polygonal circuits of that mask. Every 

endpoint defines an incoming and an outgoing edge of the output mask and the 

concatenations of these points and edges define the polygonal circuits bounding 

the planar regions that satisfy the boolean intersection operation. In the 

case of inclusion endpoints, the incoming and outgoing edges of the output 

mask are already defined, as there is just one incoming and one outgoing edge. 

The intersection endpoints require more care. In fact we have two incoming 

and two outgoing edges and we need to know which incoming and which outgoing 

edge will define the polygonal circuits of the output mask. An intersection 

endpoint has an incoming and an outgoing edge of the output mask. The selection 

of the appropriate edges depends on the boolean connective we consider. For 

every possible intersection configuration we can select the appropriate edges. 

That is shown in Figure 2.2: any intersection endpoint is determined by an 

edge of mask A and an edge of mask B. These edges have an orientation and 

the regions belonging to either a mask are specified by these orientations, 

according to the specification of Rule c given at the beginning of this 

chapter. From that information we can determine the incoming and outgoing



/ 6

edges of the output masks. Figure 2.2 shows just some of the intersection 

endpoint configurations and the corresponding endpoint of the output mask 

for boolean intersection. The appendix is devoted to the complete description 

of all configurations for union and for intersection.

The determination of the endpoints of the output mask and of their 

incoming and outgoing edges is the information we need. In fact we can 

concatenate these endpoints and have a complete description of the intersection 

regions.

Description of the intersection point

A n B

Description of the output mask

Figure 2.2. Detection of the edges of the intersection mask. (’’Always turn 
left"). Mask A is illustrated , mask B ^  .



7

Section 2.2 is devoted to the presentation of an algorithm, based on the

results of this section, for the construction of the intersection mask.

2.2 Algorithm MASK INTERSECTION

We present a plane sweep algorithm that, by sweeping the plane

unidirectionally, determines the boundaries of the polygons of the output

mask. The input data consists of two cyclic lists of points: V = (x ,v )
i i i

i = 1,...,N , and W = (x ,y ), j = 1,...,N ; we also let N = N. + N_. The A J J J & A B
V fs are the endpoints of the edges of the polygons of mask A, the W fs

j
the ones of mask B. The record pertaining to an endpoint has attached 

the information concerning its incoming and outgoing edges. The desired result 

is a list of all regions that verify the boolean intersection operation, 

where each region is given by a cyclic list of its vertices. The orientation 

of the boundaries is in accordance with Rule c.

The dynamic aspects of the algorithm are described by means of the cross 

section, which is a vertical line in the plane at abscissa x, along with the 

sequence of the polygons’edges it cuts, ordered from bottom to top.

Data structures maintained by the algorithm. Algorithm MASK INTERSECTION 

uses four data structures. Two of these, the x—structure and the y—structure, 

are common to all plane-sweep algorithms. As the line that sweeps the plane 

advances in the direction of the x-axis, the x-structure represents a queue of 

tasks to be accomplished. The y-structure represents the state of the current 

cross section. The third data—structure, the i—structure, is specific to 

our needs. It represents the intersection endpoints. The fourth data-structure, 

the s-structure, represents the polygonal circuits of mask (A AND B). We shall 

next illustrate these data structures in detail.



8

The x-structure X contains the x-coordinates of the vertical edges of 

the input polygons. Every entry describes one of the configuration types shown 

in Figure 2.3. Every edge of X has a pointer to its record in the s-structure. 

The x-structure can be implemented as a sorted linear list. Sorting the elements 

of X and storing them in increasing order takes time O(NlogN).

Figure 2.3. The four possible configurations for an assigned value of x.

The y-structure Y contains the description of the current cross section. 

Y has an entry for each horizontal edge intersected by the sweep line. These 

entries are sorted according to increasing y-coordinates. Y is what is 

conventionally called a dictionary and must support operations INSERT,

DELETE, PREDECESSOR, SUCCESSOR within time bound O(loga) when it contains 

a entries. This result can be achieved if we use a height-balanced tree.

The i-structure I provides the information about the intersection points 

and their incoming and outgoing edges. It is initialized to be empty and 

terminates empty. Data structure I is a linear list. Every record of the 

list represents an intersection point P and has a pointer IEDGE(P) to the



9

record of the s-structure that represents the outgoing edge. The i-structure 

is shown in Figure 2.4. It supports the following operations: 14= P, which 

adds record P to the tail of list I; P<il, which extracts record P from the 

head of list I; IDELETE(P) deletes record P from list I, anywhere in the list.

(tail) IN
OUT (head)

Figure 2.4. The i-structure I.

The s-structure S provides the information about the polygonal circuits

of masks A and B. Referring to Figure 2.5, a cyclic list (primary structure)

is used to represent each polygonal circuit. Each record of the list

represents an edge of the polygonal circuit, points to the following edge,

SSUCCESSOR(e), with respect to the orientation of the polygon, and to a

list L (secondary structure) of pointers to the records of I representing

the intersection points lying on that edge. L is a queue if the orientation

of the edge is left-to-right or bottom-to-top, otherwise it is a stack.

The s-structure is illustrated in Figure 2.5. S supports the following

operations: L P, P<Ji L , and SSUCCESSOR(e) . L -4= P adds a record
en en en



10

to the list L of edge e in a fixed position (called tail): this record is 
n

a pointer to the record of I that represents point P. L extracts
en

the record from the head of L if L is a queue; from the taile en n
otherwise.

SSUCCESSOR

Figure 2.5. The s-structure.

The output mask. The polygons of the output mask will be described 

by means of the o-structure. The o-structure 0 contains the polygonal circuits 

of mask (A AND B). A cyclic list is used to represent each polygonal circuit. 

Every record of the list represents an endpoint of the polygonal circuit.

0 supports the following operation: P , which adds point P to list 0.

Description of Algorithm MASK INTERSECTION. The algorithm that sweeps 

the plane and forms the intersection regions has the following structure 

(operator * is the list concatenation operator):



11

Procedure MASK INTERSECTION

begin X N/2 abscissae of the vertical edges sorted by x-coordinates;

S polygonal circuits of masks A and B;

I INTERSECTION(X,Sj ;

0 BOUNDARIES(S,I) ;

O' «- INCLUSION(X,S) ;

0 -e 0 * O'

end.

We shall now present the three procedures INTERSECTION(X,S), 

BOUNDARIES(S,I) and INCLUSION(X,S). Procedure INTERSECTION(X,S) finds the 

intersection points and inserts them into I.

Procedure INTERSECTION(X,S) 

begin I <j>; Y <j>; 

while X ^ (j) do begin

x -t- MIN (X) ;

I' *- TRANSITION(x,Y,S) ;

U I  * I'

end

return I 

end.

Procedure TRANSITION(x,Y,S) is the advancing mechanism of the algorithm.

The orthogonal geometry allows just one of four possible configuration types 

to occur for each value of x in the x-structure. These are illustrated in 

Figure 2.3. Thus there are four cases for TRANSITION^, Y,S) :



12

INSERT(a) 
INSERT(b) 
INTERSECT(c,Y)
DELETE(a) 
INSERT(b) 
INTERSECT(c,Y)
INSERT(a) 
DELETE(b) 
INTERSECT(c,Y)

DELETE(a) 
DELETE(b) 
INTERSECT(c,Y)

INSERT and DELETE are operations on Y. Procedure INTERSECT(c,Y) finds all the 

intersection points on a vertical edge c and inserts them into a queue If. The 

intersection point P is the input of Procedure CROSSING(P). This procedure 

determines in constant time the incoming edge u and the outgoing edge v of 

P in mask (A AND B). The case analysis is described in the appendix.

Procedure INTERSECT(c,Y) 
begin

i’ <f>;
T ordinate of top endpoint (c) ;

B ordinate of bottom endpoint (c) ;

S SUCCESSOR(B) (/the least y-value greater than the y-value of B in Y/)
If S t T then

foreach horizontal edge h between B and T do 
begin

P «- intersection point of c and h;

(u,v) +■ CROSSING(P); (/u and v are the two output edges meeting at P/) 
Ir<=:P;
I EDGE (P) v ;
L<= P u

end;
return I*

Case 1

Case 2

Case 3

Case 4

end.



13

Procedure INTERSECTION(X,S) has an 0(NlogN+k) running time, where k is the 

number of intersections. It has an 0(N+k) memory use.

Procedure BOUNDARIES(S,I) builds the polygonal circuits of the output 

mask. Its inputs are S and I, and its output is 0.

Procedure BOUNDARIES(S,I) 

begin

o «- ♦;
while I ^ <|> d£ begin

P«£=I; (/a new region of masks (A AND B) is defined/) 

while P ^ A do 

begin

0<£=P; (/insertion into the output list 0 of an 
intersection point/) 

e •«* IEDGE(P) ;

while L = <j> do

begin

E other endpoint of e

end.

0<=E; (/insertion into the output list 0 
of an endpoint/)

e +  SSUCCESSOR(e)
end

P<= L ; (/an intersection point lies on e/) e
IDELETE(P)

end

end

Procedure BOUNDARIES builds the polygonal circuits of the output mask. 

These circuits contain intersection points and, possibly, endpoints of masks 

A and B. We start the description of each polygonal circuit from the 

intersection point extracted from the front of the i-structure. We march 

along its output edge and, if an intersection point lies on it, we insert the 

intersection point into the o-structure and delete it from the i-structure.



14

Otherwise we simply insert the appropriate endpoint of the edge into the 

o-structure. In either case we reach a new edge; the process is repeated 

for this edge, and terminates when we reach the starting intersection point 

and we do not find it in I. If I is not empty, some other polygonal circuits 

of the output mask have to be generated and the procedure is continued. 

Procedure BOUNDARIES(S,I) constructs the polygonal circuits of the output 

mask marching along their edges. These are 0(N+k) and so the procedure runs 

in time 0(N+k). The memory use is the one required for the S and I 

structures and so it is 0(N+k).

Procedure INCLUSION(X,S) performs the recognition of the polygons of 

mask A enclosed in polygons of mask B and of the polygons of mask B 

enclosed in polygons of mask A. The endpoints of the edges of the enclosed 

polygons are inserted into 0. After the execution of INTERSECTION(X,S) 

we know the set A' of polygons of mask A that do not intersect polygons of 

mask B. We shall use a new sequence X' of abscissae, defined as follows: X' 

contains the x-coordinates of all vertical edges of the polygons of B and 

the x-coordinate of one vertical edge for every polygon of A ’, sorted by 

x-coordinates. Every entry corresponds to one of the configuration types 

shown in Figure 2.3.

Procedure INCLUSION(X,S) 

begin

X 1 abscissae of the vertical edges of the polygons of B and of one 

vertical edge of every polygon of A' sorted by x-coordinates;

O ’ <- <j>;
Y
while X' ^ <j> do



15

begin

x +  MIN(X’) ;

If c is an edge of mask B then INSERT and/or DELETE a and b from Y
else T ordinate of top endpoint(c) ;

ORIENTATION(T,B) +■ orientation of the horizontal edge in Y
with ordinate equal to SUCCESSOR(T);

If ORIENTATION(T,B) = right-to-left then

O'-̂ r endpoints of the boundary of the polygon of T
end;

return O' 
end.

The inclusion of polygons of B in polygons of A is recognized by the same 

method.

Procedure INCLUSION(X,S) inserts into and/or deletes from the Y-structure 

the horizontal edges of mask B, and checks the orientation of the SUCCESSOR 

in Y of one horizontal edge for each polygon of mask A. The Y-structure 

is implemented as a height-balanced tree with a maximum of N entries; 

operations INSERT, DELETE and SUCCESSOR require each time O(logN). Thus, 

the performance time is O(NlogN). The input and output data use memory 0(N).

This is the memory use of the Y-structure, too. Thus, the memory use is 0(N). 

Thus, we finally have:

Theorem: Algorithm MASK INTERSECTION runs in time O(NlogN-fk) using memory

0(N+k), where k is the number of intersection points.

2.3 Mask Union

The (A OR B) boolean operation requires the detection of the endpoints of 

the edges of the (A OR B) mask and the orientation of these edges. The endpoints 

belong to two disjoint classes:



16

(1) The class of nonenclosed endpoints: these are the endpoints of the 

edges of the polygons of mask A that are not enclosed in a polygon of 

mask B and the endpoints of the edges of the polygons of mask B

that are not enclosed in a polygon of mask A. Their determination 

is an immediate consequence of the result of Section 2.1.

(2) The class of intersection endpoints: this class is the same class 

described in Section 2.1.

The edge orientation problem has already been solved in the appendix. Thus, an 

algorithm similar to Algorithm MASK INTERSECTION can solve the mask Union problem 

in time 0(NlogN+k) using space 0(N+k).

2.4 Further Results

The boolean union and intersection operations can be performed on both 

masks A and B and on their complements A and B or any combination of them.

We note that the complement of a mask corresponds to reversing the orientations 

of all the edges of that mask. (Convention for complemented masks: all regions 

are bounded; the boundary of the chip is the most external boundary of all 

masks.) Once this operation has been performed, Algorithms MASK INTERSECTION 

or MASK UNION can be applied to the masks without any change. Thus, even the 

boolean operations A AND B, A AND B, A AND B, or the equivalents with the OR 

boolean connective can be performed in time 0(NlogN+k) using space 0(N+k).

2.5 An Example

This section illustrates the activities performed by Algorithm MASK 

INTERSECTION. The algorithm runs on the example of Figure 2.6.

Without loss of generality, all abscissae and ordinates are assumed to 

be integers. (In the general case an O(NlogN) sorting and ranking achieves 

this result.)



17

A
...

( §

(x,

k
h

1

B p * 
2 r

'f

e

, n 

d

r P3
1p 1 

pi
' m i

c

-----»----

.P A

v w

1 2  3 4 5 6 7 8 9 10 11 12

Figure 2.6. Input masks.

We begin by considering the contents of the data structures before the 

execution of Algorithm MASK INTERSECTION. The x-structure contains the 

abscissae of the vertical edges of masks A and B and specifies the mask and 

the type of configuration of each entry (the four types are shown in 

Figure 2.3). Each record consists of three fields: the first contains the

abscissa of the vertical edge, the second the mask, and the third the type of

configuration of the entry.

X: |1, A, 1 H  2, B, 1 H 3 ,  A, 3 H  4, B, 2 H~5, B, 1~H 6, A. 4|->

+1 7, B, 4 H  8, A, T H  9, B, ~T~H 10, A, 3 H~TTT B, 4 M  12, A, 4| .

Each record of the s-structure consists of two fields: the first contains the

name of the edge, the second a pointer to the list of pointers to the 

intersection points lying on that edge. This list is initially empty.



18

S: fH3-* |»| gTMMHi><j>HTT£HkT̂  ̂
f^I^p3^5I5^EIS^rW T^| {^[u7?H^7#|w7^TTi-[

Execution of Procedure INTERSECTION(X,S)
Operations on X Operations on Y Operations on S Operations
x +■ 1,A, 1 INSERT (a) 

INSERT (c) 
INTERSECT (b)

none none

x 2,B, 1 INSERT (g) 
INSERT (i) 
INTERSECT (h)

pi 1*=P1 
IEDGE(P )

x 3,A, 3 DELETE (c) 
INSERT (e) 
INTERSECT (d)

none none

x «- 4,B, 2 DELETE (g) 
INSERT (m) 
INTERSECT (n)

Le«= P2 1 < = ? 2

iedge(p 2)
x 5,B, 3 DELETE (m) 

INSERT (k) 
INTERSECT U)

L^ P3 K = p3
IEDGE(P3)

x 6,A, 4 DELETE (c) 
DELETE (a) 
INTERSECT (f)

Lf ^ P4 I<= p,4
IEDGE(P ) 4

x •*• 7,B, 4 DELETE (i) 
DELETE (k) 
INTERSECT (j)

none none

x ■«- 8,A, 1 INSERT (o) 
INSERT (q) 
INTERSECT (p)

none none

x «- 9,B, 1 INSERT (u) 
INSERT (w) 
INTERSECT (v)

none none

x 10,A, 3 DELETE (q) 
INSERT (s) 
INTERSECT (r)

none none

x +  11,B, 4 DELETE (w) 
DELETE (u) 
INTERSECT (z)

none none

x *«- 12,A, 4 DELETE (s) 
DELETE (o) 
INTERSECT (t)

none none

on I

c

■*■ n

-f- e

«- k



19

Execution of Procedure

Operations on I 

I; c +  IEDGE(P )

P2<=r I; n ^ IEDGE(P2)

P3<= I; c IEDGE(P3)

P.<= I; k IEDGE(P. ) 4 4

BOUNDARIES(S,I)

Operations on S Operations on 0

C final endpoint of c 

D final endpoint of d 

P2 intersection point on e

o<= p x
o<=. C 

0<=D

'* T  e
N final endpoint of n 

G final endpoint of g 

P^ intersection point on g

o < = p 2
0<=N

0<=G

E final endpoint of e 
P^ intersection point on f

° < = P3
0<£=E

K final endpoint of k 

P3 intersection point on l

0<=z P4
0<=K



20

Execution of Procedure INCLUSION(X,S)

X 1: 1,A, 1 3,A, 3 -> 6,A, 4 h- 8,A, 1 + 9,B, 1 •+ 10,A, 3 b  12,A, 4

Operations on X' Operations on Y Operations on 0

x 1 ,A, 1 INSERT(a) 
INSERT(c)

none

x +  3,A, 3 DELETE(c) 
INSERT(e)

none

x 6,A, 4 DELETE(c) 
DELETE(a)

none

x 8,A, 1 INSERT(o) 
INSERT(q)

none

x 9,B, 1 ORIENTATION(T,A) insert the endpoints 
of the polygon of 
x in 0.

x «- 10,A, 3 DELETE(q) 
INSERT(s)

none

x +• 12,A, 2 DELETE(s) 
DELETE(o)

none

The polygon circuits of the output mask are shown in Figure 2.7. 

Polygonal circuits 1 and 2 are the output of Procedure BOUNDARIES(S,I); 

polygonal circuit 3 is the output of Procedure INCLUSION(X,S).



Figure 2.7. The output mask



22

3. ALGORITHMS FOR THE VERIFICATION OF A BOOLEAN EXPRESSION 

OF MASK VARIABLES.

This chapter presents the solution of a generalization of the problem 

stated in Chapter 1. Instead of two masks A and B, we consider n planar 

masks A^, A^j. ^ jA^. Every mask is a set of polygonal circuits subject to 

the three rules stated at the beginning of Chapter 2. We want to determine 

the regions of the plane that verify a boolean expression whose variables 

are masks A^,A2»...,An and whose operators are the standard AND, OR and NOT 

connectives. Without loss of generality, we may assume that all complements 

be placed directly on the variables, since repeated application of 

DeMorgan's rule can transform an AND-OR-NOT expression into one in this 

form without changing its length. Variables may appear more than once in 

the boolean expression. Figure 3.1 illustrates an example. The region 

that verifies the boolean expression is marked.

Figure 3.1. Verification of a boolean expression.

The boolean expression is an additional input to our problem. We will call

h its size: h is the number of variables and of AND and OR connectives in

the expression. The performance of the procedure will depend both on N

and on h; N = N^-N^*. . .N^ t̂ e Sum t*ie e<̂ §es of the polygon of the

masks A-, A0, . .. ,A .1 2  n



23

3.1 A Straightforward but Inefficient Solution

For a given boolean expression E, T(E) denotes the computation tree of E. 

The leaves of T(E) are the variables of E; each internal vertex is associated 

with one of the boolean connectives AND and OR. We note that algorithms 

MASK INTERSECTION or MASK UNION developed in the preceding chapter can be 

applied to some of the subtrees of T(E). These are the terminal subtrees: 

subtrees of T(E) with three vertices, whose leaves are leaves of T(E).

Figure 3.2 illustrates an example.

Algorithm Mask INTERSECTION 
or Algorithm Mask UNION, as 
appropriate, are applied to

Figure 3.2. Boolean expression tree.

Once we have applied Algorithm MASK INTERSECTION or Algorithm MASK UNION 

to an appropriate terminal subtree, we substitute this terminal subtree 

with a new variable that represents the mask just obtained. In this 

manner we get a new expression E’. We use the same technique with 

T(E'). If this technique is applied, in the appropriate sequence, 

as many times as there are internal vertices of T(E), the last



24

application computes the function of the root of T(E) and we have obtained 

the mask that solves our problem. We shall now describe the algorithm 

BOOLEAN MASK 1, which carries out this task.

Let us call MASK UNION (leftson(V), rightson(V)), MASK INTERSECTION 

(lef t*son(V) , rightson(V)) the mask derived from the application of 

Algorithms MASK UNION, MASK INTERSECTION, respectively, to the terminal 

subtree rooted at V. CONN(V) is the boolean connective associated with 

vertex V. Algorithms BOOLEAN MASK 1 has the following pebble game [7] 

structure:

Procedure BOOLEAN MASK 1 

begin

V •*- root of T(E) ;

while T(E) has more than one vertex do 

begin

If leftson (V) = leaf then 

If rightson (V) = leaf then

If CONN(V) = AND then V +  MASK INTERSECTION (leftson(V), rightson(V)) 

else V •*- MASK UNION (leftson(V) , rightson(V) ) ;

V •** father (V) 

else V rightson (V) 

else V leftson(V) 

end

end .



25

lft—1Algorithms MASK UNION and MASK INTERSECTION are executed — times;

indeed this is the number of internal vertices of T(E), i.e., the number

of boolean connectives of E. Using the result obtained in Section 2.2 of

the preceding chapter, if N^ and ^  are the numbers of edges of the polygons

of masks A^ and respectively, Algorithm MASK INTERSECTION or Algorithm

MASK UNION works in time 0((N^ + N2)log(N^ + N^) + k^) us*nS space

0(N̂  + N2 + k^), where k ^  is the number of points in which the polygons

of A^ and A^ intersect. The number of edges of mask A^» the mask that

results from combining masks A^ and A2» is 0(N^ + ^  + k^)* Generally,

when processing an internal vertex V of T(E), its left and right sons

represent masks obtained from successive applications of Algorithm MASK

INTERSECTION and/or Algorithm MASK UNION. The number of edges of these

masks is always less than or equal to 0(N+k), where k is the total number of

points in which the polygons of the n masks A_,A_,...,A intersect. Thus,1 2  n
the time used in the construction of the polygons whose interiors verify the 

boolean expression is 0(N+k)h log N). The memory use is 0((N+k)log h).

In fact a pebble game on a binary tree of h vertices needs at most ^log^h^+l 

pebbles [7] and each vertex of T(E) uses memory bounded by 0(N+k).

Algorithm BOOLEAN MASK 1 has time and space performances depending on 

N, h, and k; k, the number of intersection points, is the size of the output 

of the algorithm. It is possible, however, that just a small subset of the k 

intersection points be necessary for the description of the regions that 

verify the boolean expression. Let us call k f the number of the intersection 

points in the output mask (final intersection points). Obviously, we have 

0 k ’ <_ k. Figure 3.3 illustrates an example and the region where a 

boolean expression E is verified. We note that k > k'.



26

A A ((BVD) A C) 

k = 16 

k' = 4

Figure 3.3. The number of intersection points k (solid and hollow in the 
figure) is greater than the number of final intersection 
points k 1 (solid in the figure).

It is therefore highly desirable to seek an algorithm whose time and space 

performances depend on N, h, and on k', rather than on k. This is the subject 

of Section 3.2.

3.2. Outline of Algorithm BOOLEAN MASK 2

We present a plane-sweep algorithm that, by sweeping the plane 

unidirectionally, determines the boundaries of the polygons of the output 

mask.

The input data are: a sequence of N points, , (i=l,__,N.),...,

, (j=l,...,N ), and a boolean expression E of size h. The V ^ ' s  are 
3 n  i

the endpoints of the edges of the polygons of mask A_,...,A . Every
I n

endpoint is associated with the data concerning its incoming and outgoing 

edges.



27

The desired result is a description of all regions that verify the 

boolean expression, where each region is given by a cyclic list of its 

vertices. This objective is achieved once we have found the endpoints 

of the edges of the polygons of the output mask and defined their incoming 

and outgoing edges in the output mask. In fact we can later concatenate 

these endpoints by means of an algorithm similar to Procedure BOUNDARIES 

described in the preceding chapter.

Data Structures maintained by the algorithm. The algorithm we are 

about to describe is called BOOLEAN MASK 2 and uses four data structures. 

These data structures are very similar to the ones presented in Section 2.2 

of the preceding chapter. Two of these, the x-structure and the y-structure, 

are common to all plane sweep algorithms. As the line that sweeps the 

plane advances in the direction of the x-axis, the x-structure represents 

a queue of tasks to be accomplished. The y-structure represents the 

state of the current cross section.

The third data structure, the i-structure, is specific to our needs.

It stores only the k T final intersection points and those endpoints of the 

original input polygons that lie in a region where the boolean expression 

is true.

The fourth data structure, the s-structure, represents the polygonal 

circuits of the input masks. The algorithm uses also the computation 

tree T(E) of the boolean expression E.



28 *

The x-structure X contains the x-coordinates of the vertical edges of 

the input polygons. Every entry describes one of the four configuration 

types shown in Figure 3.4. Every edge of X has a pointer to its record in 

the s-structure. The x-structure can be implemented as a sorted linear 

list. Sorting the elements of X and storing them in increasing order takes 

time O(NlogN).

Figure 3.4. The four possible configuration types for a given value 
x € X.

The y-structure Y contains the description of the current cross 

section. Y has an entry for each horizontal edge intersected by the 

sweep line. These entries are sorted according to increasing y-coordinates. 

Y must support operations INSERT and DELETE. This structure is the crucial 

component of the algorithm. In the next section we shall describe a 

particular implementation of Y, which allows the identification of the 

final intersection points during the execution of operations INSERT and 

DELETE.

The i-structure I provides the information about the intersection 

points and their incoming and outgoing edges, and the endpoints of the 

input polygons that lie in a region where the boolean expression is true.



29

It is initialized to be empty and terminates empty. Data structure I is

a linear list. Every record of the queue represents an endpoint P of the

output mask and has a pointer, IEDGE(P), to the record of the s-structure

that represents the outgoing edge in the output mask. I supports the

following operations: I<=P adds point P to list I; P<=I extracts point

P from list I; IDELETE(P) deletes record P from I.

The s-structure S provides the information about the polygonal

circuits of the input masks. A cyclic list is used to represent each

polygonal circuit. Each record of the list represents an edge of the

polygonal circuit, points to the following edge, SUCCESSOR(e), with

respect to the orientation of the polygon, and to a list of pointers

to the records of I representing the final intersection points lying on

edge e. The s-structure is shown in Figure 3.5. S supports the following

operations: L <= P, P<=L , SUCCESSOR(e). L < =  P adds a record to the list en en en

L of edge e in a fixed position (called tail); this record is a pointer 
n

to the record of I that represents point P. P<=L extracts the record
en

from the head of L , if L is a queue; from the tail otherwise.
en en

SUCCESSOR

Figure 3.5. The s-structure.



30

The output mask. The output mask will be described by the o-structure. The 

o-strueture 0 contains the polygonal circuits of the output mask. A cyclic 

list is used to represent each polygonal circuit. Each record of the list 

represents an endpoint of the polygonal circuit. Structure 0 supports the 

following operation in constant time: 0<= P adds point P to list 0.

3.3 Operations on the Y-Strueture.

Every entry of X describes one of the configuration types of Figure 3.4. 

We have to insert into and/or delete from Y (as appropriate) the ordinates 

of the horizontal edges a and b, and check whether the vertical edge c 

contains any endpoint of the output mask (final endpoints), determined by 

its intersections with the horizontal edges whose ordinates are between the 

ones of a and b. The technique we are about to describe will find and 

report the final endpoints, without processing the other intersections 

determined by c.

The Y-structure is implemented as a height balanced tree. The vertices 

of this tree will be called nodes, in order to differentiate them from the 

vertices of T(E), tree of the boolean expression E, already called vertices. 

Every node P of this tree contains two records: the first record,

Y[P], contains the value of the ordinate of the horizontal edge represented 

by P; the second record, MASK[P], contains the name of the mask of that edge.

The insertion into and/or deletion from Y of the horizontal edges a and 

b defines two insertion/deletion paths in Y. Figure 3.6 illustrates an 

example of these paths.



31

Figure 3.6. Insertion paths of a and b into Y. (a) planar
configuration; (b) Y-structure. The paths are shown 
in heavy lines.

We note that some of the horizontal edges that intersect vertical edge c 

are represented by nodes of Y that belong to the insertion/deletion paths. 

In the example of Figure 3.6 these are the horizontal edges with ordinates 

5, 7, and 9. The other horizontal edges that intersect vertical edge c are 

represented by nodes of Y that do not lie on the insertion/deletion paths. 

That is the case of the horizontal edges with ordinates 6 and 8 in 

Figure 3.6.

We present an algorithm that, by means of a First Sweep of the plane 

1. reports the final endpoints determined by the intersection of the 

vertical edge c with the horizontal edges whose nodes lie on the 

insertion/deletion paths;



32

2. decides if the vertical edge c contains final endpoints determined 

by its intersections with the horizontal edges whose nodes do not 

lie on the insertion/deletion paths.

The information derived from point 2 will be used later during a 

Second Sweep of the plane (to be described in Section 3.5) for the report 

of those final endpoints.

3.4 First sweep

We note that the nodes of Y that represent the horizontal edges a and b 

in Y may appear one in the left and one in the right subtree of the root *
or both in the same subtree. An example of these two cases is illustrated 

in Figure 3.7.

Figure 3.7. Disposition of the nodes of the horizontal edges a and b in Y.

The insertion/deletion paths have one or more nodes in common. These 

are the nodes of the path from the root to the first common ancestor of 

nodes a and b. The first common ancestor u of nodes a and b is the only node 

of this path that represents a horizontal edge intersected by c. The other 

nodes representing horizontal edges intersected by c are: the nodes that lie 

together with their leftson on the path from u to a, and the nodes of the 

right subtrees of these nodes; the nodes that lie together with their rightson 

on the path from u to b and the nodes of the left subtrees of these nodes.



33

Figure 3.8 illustrates an example: the nodes representing horizontal edges

lying on the insertion/deletion paths and intersected by vertical edge c 

are shown solid.

Figure 3.8. Insertion/deletion paths of the horizontal edges a and b. The
nodes belonging to these paths and representing horizontal edges 
intersected by the vertical edge c are marked.

The first problem we want to solve is the recognition of final endpoints 

among the intersection points determined by the vertical edge c and the 

horizontal edges just described. We recall that an intersection point is 

a final endpoint if it verifies the boolean expression E. The masks that 

enclose the intersection point are the variables of E that are set to 1 in 

T(E). The other variables are set to 0. If this assignment of variables 

verifies E, we have found a final endpoint. The masks that enclose an 

intersection point can be determined if we know the number of horizontal 

edges of each mask that lie below the intersection point. When an odd

number of horizontal edges of mask A. lies below the intersection point



34

at its abscissa, that intersection point is enclosed by . In fact,

the regions of A. are bounded (recall our convention for complemented masks),

and so any vertical line Z cuts an even number of horizontal edges of A^.

As the interiors of the polygons of A_. do not overlap, we have a segment of

A between the first and second intersections of the horizontal edges of 
3

A_. with £,, and, generally, between the intersections of an odd and an even 

numbered horizontal edge of A_. with Z (we start from the bottom). Figure 3.9 

illustrates an example.

Figure 3.9.

Thus, the information that we need is the parity of the number of horizontal 

edges of each mask lying below an intersection point. This information can 

be derived from the Y-structure if we attach a linear list, the Lower Mask 

List, LM(P) , to each of its nodes P. Each record of this list is a 

pointer to a leaf of T(E), the tree of the boolean expression E. There 

is a pointer to each variable of E (i.e*, a mask) that has an odd number of 

horizontal edges in the left subtree of that node. As the maximum number



35

of different variables in the boolean expression E is — , this is also 

the maximum number of records of each Lower Mask List. The records of 

the LM-list are ordered according to a depth-first-search-visit of T(E). 

If a variable appears more than once in E, pointers exist only to its 

first appearance. Figure 3.10 illustrates an example of the LM lists. 

Whenever an intersection point (defined by the vertical edge c and a

I
Cross Section

LM-lists

Figure 3.10. Illustration of the LM lists.

horizontal edge whose corresponding node P in Y lies on the insertion/ 

deletion paths) has to be checked for the masks enclosing it, we make use 

of the LM-lists. We note that LM(P) is not always sufficient for our 

needs. That is shown in Figure 3.11. In fact LMCP^ does not describe 

all the horizontal edges that lie below the intersection point defined by



36

Figure 3.11. The horizontal edges below depend on LM(P^) and LMCP^).

the vertical edge c and the horizontal edge represented by P^. We note 

that we need to compute a symmetric difference (in the set-theoretic 

sense) of the LM-lists of nodes P^ and P^ (i.e., we merge the two lists 

with the added condition that, any time the same record appears in both 

lists, that record is deleted). This corresponds to the use of the LM-list 

as the rank field in Knuth's [8] rank tree.

Once the masks that enclose an intersection point are known, we can check 

the verification of the boolean expression E. This process requires time 

proportional to the length h of E. The update of the LM-lists is performed 

during the traversal of the nodes of the insertion/deletion paths. We insert 

into or delete from the LM-lists of these nodes the pointer to the variable of



37

T(E) that represents the mask inserted/deleted. It requires time proportional 

to the length of the LM-list of each node. The maximum number of nodes 

traversed during an insertion/deletion process is O(logN), when Y has 

0(N) entries. Thus, the recognition of the final endpoints determined by 

the vertical edge c and the horizontal edges whose representatives lie on 

the insertion/deletion paths, and the update of the LM lists of the nodes 

on the insertion/deletion paths, are performed in time 0(h log N).

Every final endpoint has an incoming and outgoing edge in the output 

mask. Figure 3.12 illustrates two possible configurations. Case (a) 

corresponds to the intersection of the regions determined by the two input

Figure 3.12. Final intersection points.

edges, case (b) to their union. We will call a final endpoint of the first 

kind a left-turn endpoint, while the second is a right-turn endpoint. For 

every final endpoint we have to determine if it is a left- or right-turn 

endpoint. We note that a left-turn endpoint corresponds to a situation where 

the masks bounded by the two input edges have to be simultaneously present in 

order to verify the boolean expression. Instead, a right-turn endpoint corre­

sponds to a situation where the presence of any of the two masks bounded by the



38

input edges is sufficient to the verification of the boolean expression. 

Thus, if the LM-lists lead to the recognition of a final endpoint, we can 

determine if that point is a left- or right-turn endpoint. We check the 

verification of the boolean expression when we assume that the mask that is 

bounded by one of the two input edges is set to 0 in T(E). If E is still 

verified, we have a right-turn endpoint, otherwise a left one. This check 

is performed once for each final endpoint and does not change the time 

performance previously stated.

The second problem we have to solve is the recognition of final end­

points among the intersection points determined by the vertical edge c and 

the horizontal edges that do not lie on the insertion/deletion paths.

These horizontal edges are represented by the nodes of some subtrees of Y. 

These are the right subtrees of the nodes that, together with their leftson, 

lie along the path from the leftson of the first common ancestor of nodes 

a and b to node a, and the left subtrees of the nodes that, together with 

their rightson, lie along the path from the right son of the first common 

ancestor of nodes a and b to node b. Figure 3.13 illustrates an example.

Figure 3.13. Subtrees of the horizontal edges intersected by c.



We wish to avoid visiting these subtrees, or we would process all the 

intersection points and not only the final ones. We note that every 

subtree determines a vertical span s. This is a vertical segment whose

39

endpoints have the abscissa of the vertical edge c and the ordinates of the 

horizontal edges represented by the leftmost and rightmost leaves of the 

subtree. Figure 3.14 illustrates an example.

Y-structure

Figure 3.14. The vertical span of a subtree.

Each point of the vertical span verifies a set of subexpressions of E.

If we keep a representation of these variables and subexpressions at the 

root of every subtree (as a list attached to the root node), we know the sub­

expressions which are verified somewhere in its span without visiting its 

subtree. This information can be provided by the Left and Right Subtree 

Mask Lists that we attach to each node of Y. LSM(P) and RSM(P) denote

the Left and Right Subtree Mask lists of node P, respectively. The LSM(P)



40

and RSM(P) lists are linear lists. Each record is a pointer to a vertex of 

T(E) representing a boolean subexpression verified at at least one interval 

(a segment) contained in the vertical span of the left or right subtree of 

P, and whose ancestors in T(E) are not pointed to from any other record of 

LSM(P) or RSM(P). The maximum number of records of LSM or RSM is » 

which corresponds to the worst case configuration of T(E) illustrated in 

Figure 3.15.

T (E )

Figure 3.15. Worst case memory requirement for RSM or LSM.

In addition, the vertical span of P may be enclosed by one or more masks, 

as it is shown in the example of Figure 3.16. It is important to recognize 

such situations as they can modify each subexpression verified by the subtree 

considered. The masks that enclose the vertical span of P are identified if 

we consider the list of the masks that enclose P (the root of the subtree that 

represents the vertical span). This list, which is derived from the LM-list 

of P and the LM-lists of the ancestors of P (as described above), is a 

collection of pointers to the leaves of T(E). Some of these leaves may be 

pointed to also from the LSM or RSM lists of P, and others have their



41

16 . 
15 . 
14 . 
13 . 
12 .
11 • 

10 •

Figure 3.16. The span associated with the left subtree of node 15 is 
enclosed in mask C.

ancestors in T(E) already pointed to from the LSM or RSM lists: these must not 

be considered. The remaining ones point to masks that completely enclose 

the vertical span. Figure 3.17 illustrates an example: (i) the vertical 

span represented by the left subtree of node 15 verifies the subexpression

Figure 3.17. Utilization of the LM and LMS lists.



42

A A B; (ii) mask D encloses the span. The first item is obtained by means 

of the LSM-list of node 15, the second is derived from the LM-lists of node 

15 and of its ancestor, node 10. The vertices of T(E) pointed from these 

lists are set to 1 and their verification leads to the verification of 

the boolean expression E.

Once we know the variables and subexpressions verified in the vertical 

span and the masks that totally enclose it, the check for the verification 

of the boolean expression requires time proportional to its length, i.e.,

0(h). Thus, at each node P of the insertion/deletion paths we check, by 

means of its LM-list and the ones of its ancestors, if it represents a 

horizontal edge that intersects c in a final endpoint, and we check if the 

appropriate subtree of P, whose nodes represent horizontal edges intersected 

by c, has final endpoints in its vertical span. This final check is performed 

by means of the LSM- or RSM-list of node P and the list of the masks that 

enclose P. Edge c is marked at this stage when this situation occurs.

The report and insertion into the I-list of the final endpoints, determined 

by the intersection of c with the horizontal edges represented by the nodes 

lying on the insertion/deletion paths, and the recognition of the existence 

of final endpoints determined by c in the vertical spans, represented by the 

subtrees of nodes of the insertion/deletion paths, are completed in time 

0(h log N).

3.5 Second Sweep

This portion of the algorithm performs a second sweep of the plane.

The role of axes x and y is interchanged. U and W are the equivalents of



43

X and Y. The four possible configurations for each entry of U consist of 

two vertical edges and a horizontal one. The vertical edges are inserted 

into W and intersected by the horizontal ones. The only difference between the 

First Sweep and the Second Sweep is that the abscissae of the vertical edges 

marked during the execution of Firstsweep are stored in the LSM and RSM 

lists with the pointers to the subexpression of T(E) they verify. Thus, 

any time a final intersection point is determined by a horizontal edge and 

a vertical edge belonging to a subtree not traversed in the insertion/ 

deletion process, we know the edges that define that final endpoint.

The running time is equal to the one of First Sweep plus the time 

required for the report of the final intersections determined by vertical 

edges represented by nodes not in the insertion/deletion paths. Thus, an 

upper bound to the running time is 0(N h logN + k ’), where k* is the number 

of final endpoints. The increase in space use is described in the next 

section.

3.6 Memory use of the Y-Structure

The memory use of the y-structure depends on the number of records 

stored in the lists attached to each node of Y. We already know that

list LM may have a maximum of records, and lists LSM and RSM may have

each, at most.

We claim that list LSM (or RSM) may reach the condition of maximum

memory occupancy only if it pertains to a node P of Y, which has a left or
Tl 1 ]*) «■ *|

right subtree with at least — nodes. In fact the existence of —

records in the LSM or RSM list requires the verification of h-1 vertices

of T(E) as in the example of Figure 3.15. The vertices are verified only



44

if the nodes in the left or right subtree of P represent (field MASK[P] 

of the node) the masks corresponding to these vertices.

A node P of Y whose three lists are in their maximum memory occupancy 

configuration is called a saturated node. Since to have (h-l)/2 nodes in 

the subtree rooted at P is a necessary condition for P to be saturated, 

an upper bound to the number of saturated nodes is obtained by assuming 

as saturated each node whose subtree contains (h-l)/2 nodes. We now 

calculate this number. The saturated node subtree is conventionally a 

subtree of Y rooted at the root of Y and such that each of its leaves has 

at least (h-l)/2 nodes in its subtree. Let m be the number of leaves of 

the saturated node subtree, q is the number of nodes of Y. We have:

and

q = 2m - 1 + m(~~)

m = 2 , 1 ’ir.~ h+3 (3.1)

The maximum number of nodes of the saturated subtree is derived from (3.1)

when we consider Y at its maximum size, i.e., q = N. We have 2m-l = 4 N+l
h+3 - 1.

Each of these nodes uses 0(h) memory locations. The total memory use of the 

saturated subtree is 0(N).

The non-saturated subtrees are the subtrees of Y rooted at a leaf of 

the saturated node subtree. Each of these subtrees has a maximum of h-1 

nodes. Expression (3.1) is the number of non-saturated subtrees in Y.

The height of a non-saturated subtree is at most 1.44 log2(h-l) (it is a 

height balanced tree). The conditions of maximum memory occupancy 

correspond to the case of no repetition of the same mask among the nodes 

of a nonsaturated subtree. In fact, in case of no repetition the pointer 

to the variable of T(E) specified by the record MASK[P] of each node of the



45

subtree appears in all the lists of the ancestors of that node in the 

nonsaturated subtree. Each node has at most 1.44 log^Ch-l) ancestors in 

the nonsaturated subtree, and so an upper bound to the memory use of each 

nonsaturated subtree is 0(h log h). If we multiply this result by (3.1) 

we have the total memory use*of the nonsaturated subtrees: 0(N log h).

The names of the kM vertical edges marked during the execution of First 

Sweep (k" <_ N/2) have to be stored in the LSM and RSM lists of the W-structure 

during the execution of Second Sweep. They need to be stored once for each 

vertex of T(E) they verify. In fact, we store the pointers and all the 

names of the corresponding vertical edges containing final intersection 

points in the appropriate RSM-lists of the ancestors of the leftmost leaf 

of W and in the appropriate LSM-lists of the ancestors of the rightmost 

leaf of W. Thus, when we traverse one of these nodes we have a complete 

description of its right or left subtree, respectively. When we 

traverse one of these subtrees, we just need to store the changes in the 

boolean subexpression verified by each of the k" vertical edges possibly 

represented in that subtree, as it is shown in the example of Figure 3.18.

Any of the k" vertical edges can verify no more than h subexpressions 

(i.e., the nodes of T(E)) and so each of them occupies memory 0(h).

Thus, the total memory use for storing the k" vertical edges marked in 

First Sweep is 0(h k") .

The total memory use of Algorithm BOOLEAN MASK 2 is the sum of 

the memory use of the y-structure, 0(N log h + k" h), and of the endpoints 

of the output mask, k ’. Thus, we have 0(N log h + k"h + k') total memory

use.



46

io !■
9 . 
8 .
7 
6
5 
4 
3 . 
2 . 
1

Span associated with P
— ----------------H

D

1 .i*
2 3 4 5 6 7 8 9 10

W-structure

Figure 3.18. Example of memorization of one of the k" 
vertical edges.

3.7 Final remarks.

Procedures First Sweep and Second Sweep recognize the endpoints of 

the output mask and their incoming and outgoing edges. Algorithm BOUNDARIES, 

described in Section 2.2 of the preceding chapter, uses these endpoints and 

outputs the polygonal circuit of the output mask in time 0(N + k ’), 

using memory 0(N + k ?). Thus, we finally have:

Theorem: Algorithm BOOLEAN MASK 2 runs in time 0(N h logN + k') using

memory 0(N log h + kMh + k ’).



47

APPENDIX - CASE ANALYSIS OF THE INTERSECTION POINT.

This appendix is devoted to the complete listing of all the configurations 

of the intersection and union of two masks whose polygons intersect in a point P. 

The intersection point P, along with the two masks that define it, is illustrated 

in the first column of Table A.l. The second column illustrates the incoming 

and putgoing edges of P in the intersection mask, the third one the incoming and 

outgoing edges of P in the union mask.

Table A.l. Description of the intersection and union masks.

Description of the 
intersection point

Description of 
mask intersection

Description of 
mask union



48

Table A.l (continued)

Description of the Description of Description of
intersection point mask intersection mask union

P



49

Table A.l (continued)

Description of the Description of Description of
intersection point mask intersection mask union

I

I



50

REFERENCES

1. C. K. Yap, "Fast algorithms for boolean operations on rectilinear 
regions," Courant Institute, February, 1982.

2. U. Lauther, "An O(NlogN) algorithm for boolean mask operations,"
Proc. 18th DA-Conf., Nashville, 1981.

3. H. S. Baird, "Design of a family of algorithms for large scale 
integrated circuit mask artwork analysis," M.S. Thesis, Dept, of Compute 
Science, Rutgers University, May 1976.

4. P. Losleben, K. Thompson, "Topological analysis for VLSI circuits,"
Proc. 16th DA-Conf., San Diego, 1979.

5. U. Lauther, "Simple but fast algorithms for connectivity extraction
and comparison in cell based VLSI designs," Proc. ECCTD 80, Warsaw, 1980

6. J. L. Bentley and T. Ottmann, "Algorithms for reporting and counting 
geometric intersections," IEEE Trans. Comput., vol. C-28, pp. 643-647, 
Sept. 1979.

7. W. J. Paul, R. E. Tarjan and J. R. Celoni, "Space bounds for a game on 
graphs," Eighth Annual Symp. on Theory of Computing, Hershey, PA,
pp. 149-160, May 1976.

8. D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, 
1973.


