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Abstract

The experimental tunneling conductance of metal-Ge contacts is compared to 

the predictions of the one-electron Schottky-barrier model in which all parameters 

are determined from experiments other than tunneling. Agreement is found in the 

magnitude and the shape of conductance vs bias curves for vacuum-cleaved, Sb- 

doped Ge units. The qualitative features of the As-doped units are also in 

agreement, but a discrepancy in magnitude exists. Substantially larger conductance 

is found in air-cleaved junctions than in vacuum-cleaved junctions. Capacitance 

measurements reveal that the barrier height for air-cleaved junctions is 

V^=0.51V whereas V^=0.63V for vacuum-cleaved junctions. Pronounced step increases 

in the conductance due to phonon-assisted tunneling occur at eV = +hu) where 

hou is the energy of a Ge phonon at the Brillouin zone boundary along the <111> 

direction. Structure is clearly observed at all four phonon energies 

(TA,LA,LO,TO). The magnitude of the LA phonon-assisted tunneling is accounted 

for in a theoretical calculation based upon a mechanism suggested by Kleinman to 

explain similar phenomena in Ge p-n junctions. The strength of the TA and LO 

phonon-assisted tunneling also appear to be in reasonable agreement with 

qualitative considerations, but the observed TO phonon-assisted tunneling is 

stronger than expected.

I. Introduction

A calculation of the tunneling conductance as a function of bias voltage 

for a metal-semiconductor junction has been given by Conley, Duke, Mahan, and 

Tiemann (CDMT)^. This calculation was based upon the Schottky model with a 

parabolic potential for the barrier. Specular reflection at the metal-semiconductor
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interface was assumed. The mobile charge carriers of the highly doped, degenerate

n-type semiconductor electrode were taken to behave as a free-electron gas with

Fermi energy eĵ p (Fermi level e(jbp above conduction band edge) at T = 0°K and an

effective mass m*. The first comparison of experimental data to the CDMT
2calculation was given by Conley and Tiemann. They found favorable agreement 

(but with some discrepancies) for chemically prepared diodes made from degenerate

n-type Ge and either Au or In as the metal electrode. Subsequently, it was
3shown that the technique of evaporation of metal electrodes on vacuum-cleaved, 

Sb-doped Ge surfaces gave greatly improved agreement with theory. It was con

cluded that the absolute magnitude, as well as the shape of the experimental 

curve was adequately described by the one-electron theory of Schottky-barrier

tunneling with all parameters in the calculation determined from experiments
3other than tunneling. The agreement in As-doped Ge units, however, was not as 

good as in Sb-doped units.

The purpose of the first part of this paper is to discuss the comparison 

of Sb-doped units to theory with a more accurate measurement of the carrier 

density, to present data for As-doped units, and to describe the effects of air 

cleavage on both the tunneling conductance and the barrier heights (as determined 

from capacitance measurements).

In the second part of the paper, we discuss the step increases in the 

conductance due to strong phonon-assisted tunneling observed in both Sb-doped 

and As-doped metal-Ge junctions. This inelastic tunneling process involves the 

emission of Ge phonons of all four branches (transverse acoustic = TA, 

longitudinal acoustic = LA, longitudinal optic = LO, transverse optic = TO) at 

the Brillouin zone-bondary along the <111> axis. These are the same phonons
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as observed in Sb-doped Ge p-n junctions where the emission of zone-boundary 

phonons along the < 111> axis is required for momentum conservation in an indirect 

diode (in the absence of appreciable impurity scattering which obscures the 

phonon effects in As-doped Ge p-n junctions^). In the metal-semiconductor 

contact, we find that the same momentum conservation rule applies to electrons 

with small k^ in the metal. A calculation of the strength of the LA phonon- 

assisted tunneling in the metal-semiconductor contact based upon a modification 

of Kleinman's theory for indirect p-n junctions is described in sec. 4. As 

previously noted , the Kleinman mechanism is a two-step process of an electron 

first tunneling from the metal (in reverse bias) into an evanescent state associated 

with the electronic spectrum at in the Ge Brillouin zone, and then emitting 

a phonon and being scattered into a current-carrying state at L^.

IIo Experimental Technique

Contact preparation. Single crystal bars of n-type Ge doped to an
18 3impurity concentration of approximately 7x10 /cm with As or Sb were cut with 

the long axis in the <100> direction. The sample size was 10x4x2 mm. After 

being cut, the samples were etched in CP-4.

Ohmic contacts were attached to the bars by soldering copper wires with 

an In-Sn solder to them. Bars which had two such contacts were checked at 

4.2°K. The contacts were ohmic and exhibited a very low resistance.

Tunneling contacts were made by cleaving the bars in a vacuum of 1x10 

torr after scribing them in the middle with a diamond. A few seconds after 

cleavage, a stainless steel mask was brought close to the (100) cleavage plane. A 

shutter between the evaporation source and the sample was opened. 99.999% pure
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In or 99.997, pure Pb was evaporated from alumina coated wire baskets. The 

evaporation was started about one minute before cleavage such that the evapora

tion rate had stabilized at 50 £/sec at the time of cleavage. Dots of
2

2o5x10 cm and 5x10 cm area were evaporated to a thickness of -5000 £ as 

monitored by a quartz crystal deposition monitor.

Contacts to the In or Pb dots were made by pressing a freshly cut In wire 

tip into a dot located on a good cleavage area. Cold welding produced satis

factory electrical and mechanical contacts.^"

Low temperature measurements. Tunneling measurements were performed in a 

helium immersion dewar. Temperatures below 4.2°K were obtained by pumping on 

the liquid helium. The lowest temperature was 1.8°K. A calibrated Ge ther

mometer was used for temperature measurements. A Cartesian manostat inserted 

in the helium pump line kept the temperature constant to better than 1%.

The occurrence of tunneling was confirmed by the observation of the

superconducting energy gap in the contact metal below its critical temperature,
o o .i.e., 3.4 K for In and 7.2 K for Pb, respectively.

2 2Electronics. Conductance, dl/dV, and second derivative, d I/dV ,
7 8measurements were made according to standard techniques. ’ Fig. 1 shows

schematically the setup which is approximately the same as the one shown in

Fig. 6 of Reference 4. The dc source which could be swept electronically from

-6 V to +6 V was a transistorized power supply fed by two wet cells. The dc

source was shunted by a resistor R, of 2Q in series with a resistor R of
J dc s

IQ or 0.1Q. The ac modulation at a frequency f = 1000 cps was supplied by an 

audio generator. It was shunted by a variable resistor R < 1 kQ in seriesclC
with R . R, and R serve to decouple dc and ac sources from each other, s dc ac
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R determined the source resistance seen by the junction. Rg assured a constant
s
ac level for varying junction resistance as long as it was chosen much smaller 

than the junction resistance.
The dc and ac voltage developed across Rg was applied through a sampling 

resistor R to the tunneling junction. The ac current 1(f) and I(2f) at the 

frequencies f and 2f, respectively, flowing through R was converted into a 

voltage which was fed through a capacitor C into a transformer T. The voltage 

was amplified and detected by a lock-in detector.
According to Reference 4, the currents 1(f) and I(2f) are related to

2 2dl/dV and d I/dV as follows:

Vac + const d3I
dV3

ac ( 2 . 1)

I (2f) = (2 ) " 2 (1 + § * > ' 3
dV

2 d4I L
Vac + C °n S t ^7 Vac ( 2 . 2)

In this case, R is the value of the sampling resistor [R in Fig. 1] plus the

lead resistance, and V is the ac amplitude measured across R .ac
The values of R were chosen such that (dl/dV) R «  1. Vac was small 

enough that the contributions due to higher order terms were negligible. Con

sequently, dl/dV and d2I/dV2 were proportional to 1(f) and I(2f), respectively. 

Calibration of dl/dV was done by replacing the sample by a precision resistance

decade.
Barrier heights. The barrier height was determined by measuring junction 

capacitance C vs bias voltage V at 77°K with a Boonton 33A rf admittance bridge.
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The frequency was 1 MHz, the modulation amplitude was 5 mV. The capacitance C 

of a metal-degenerate semiconductor contact is given by

C = A e e n s D
8TT(eVb+3/5enF- eV)

(2.3)

with A = junction area, e = electron charge, eg = static dielectric constant

of the semiconductor, n^ = number of free carriers per unit volume, =

barrier height, (jl = Fermi degeneracy of the semiconductor, and V = applied r
bias. In this paper the sign convention for V is that V > 0 when the metal is

positive with respect to the n-type semiconductor which is opposite to the sign

convention in Reference 3.
2By plotting 1/C vs V, one obtains a straight line whose intersection with

the V-axis determines eV^ + 3/5 e|ip- For vacuum cleaved contacts, it was found

that = 0.63 + 0.03 V. was found to be independent of the contact metal

(In or Pb) and independent of the dopant of the semiconductor (Sb or As). For

air cleaved junctions, the value of V, was found to be 0.51 + 0.03 V. Withinb
experimental error, the junction capacitance values at fixed bias voltages

2agreed with eq. (2.3). Curves of 1/C vs. V were slightly concave but they 

could be closely approximated by straight lines. The largest uncertainty was 

in the determination of the junction area, this uncertainty amounting to about 

207». This was due to poorly defined edges of the evaporated dots caused by the 

separation of the evaporation mask from the sample during evaporation and by 

the finite size of the evaporation source.

Carrier concentrations. Carrier concentrations were determined by 

measuring Hall coefficients on clover-leaf samples 1/8 inch in diameter. The
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Hall samples were cut from the tunneling bars. Measurements were performed at 

room temperature and at 77°K and gave identical results within experimental 

error (~ 1%). Bulk resistivities were also obtained from these measurements.

Bulk resistivities and Hall coefficients agree well with the published data
r 0 . , 1 0  of Spitzer ejt. al.

Ill, Experimental results and comparison with theory

A. Conductance vs voltage curves

In Reference 2, differential resistance dV/dl vs V curves are displayed 

which show an order-of-magnitude agreement with the theory developed in 

Reference 1. The agreement in curve shape, absolute value, and position of the 

resistance maximum was considered to be satisfactory. The discrepancies ob

served were attributed to shortcomings in the theory such as the omission of 
2band tailing. Our results indicate that improved diode fabrication techniques 

give much better agreement between experiment and the theory of Reference 1, 

particularly for Sb-doped germanium. The agreement in the case of As-doped 

Ge, however, is not as good.

Results for Sb-doped germanium. In Fig. 2, conductance dl/dV vs voltage 

curves at T = 4.2°K are displayed for an indium contact on Sb-doped Ge 

[solid line]. This is one typical curve out of 12 curves of which the high and 

low extremes and the most commonly observed curves were displayed in Fig. 1 of 

Reference 3. The dashed curve in Fig. 2 is a theoretical calculation based on 

the CDMT theory."^ The following experimentally determined parameters were
18 3 (11)used in the calculation: carrier density n^ = (6.7 +0.1) x 10 /cm ,

barrier height V, = 0.63 + 0.03 V, and junction area A = (2.5 + 0.5) x 10-4
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cm^. The tunneling mass was assumed to be 0.12 mQ which is the value for the 

tunneling mass In the 100 direction. 1 ]jq.(7) of Ref. 1 «as used with corrections 

to the asymptotic expansions of the parabolic cylinder function^.
The agreement between theory and experiment in probably fortuitous considering 

the experimental uncertainties and the approximations made in the theory. However, 

the following appear to be approximations adequate for the description of the 

Sb-doped Ge units measured in this investigation. (1) The current transfer 

mechanism is that appropriate to electrons tunneling through an average electro-
18static potential which is parabolic, and, at least for doping levels nD W  x 10 

cm-3, fluctuations from this average barrier potential are not important. (2) 

Specular reflection occurs at the metal-semiconductor interface. (3) The energy

levels of the electrons in highly doped n-Ge contributing to the tunneling current
2 2

are given by where m* is the effective mass of the intrinsic conduction
c

band (or the appropriate generalization for ellipsoidal energy surfaces). This

last assumption implies that the Fermi level for n—Ge should be at ePj, —
2

-—  (37T2n M ) 2 ^3 above the conduction band edge in the absense of carrier 2m* Dd
freeze-out (m* is the density—of—states mass = 0.22m for n—Ge). The presence d u
of the sharp minimum in the experimental data at a bias equal to the calculated 

y (the sharpness of the minimum is due to the improved diode fabrication) is 

a direct confirmation of this idea. No evidence of a component in the 

conductance due to band tailing was found.

Results for As-doped germanium. Results for vacuum- and air-cleaved 

samples and a comparison with theory are displayed in Fig. 3. The curve for a 

vacuum-cleaved sample represents one typical curve out of a total of 10. The 

curve denoted "air cleaved" represents one out of two almost identical curves.
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The results shown in Fig. 3 for air- and vacuum-cleaved contacts were obtained 

from the same single-crystal bar.

The theoretical curves were calculated with the following measured
18 3parameters: carrier density n^ = (5.1 +0.1) x 10 /cm , barrier heights

V, = 0.63 + 0.03 V and 0.51 + 0.03 V for vacuum- and air-cleaved junctions, b
_4 2respectively. The junctions area was (2.5 + 0.5) x 10 cm . The value, 0.12 mQ, 

was used for the tunneling mass for the calculations.

At present it is not known why the agreement between experiment and theory 

in absolute value of the conductance vs voltage curves is not as good for 

vacuum-cleaved As-doped junctions as it is for Sb-doped ones. However, it 

should be pointed out that the qualitative features of the vacuum-cleaved 

As-doped Ge data are in good agreement with the theory, and considering the 

experimental uncertainties in the parameters and the scattering properties of 

As impurities^, the discrepancies in absolute value are not too surprising.

B. Phonon-assisted tunneling

In all junctions made with Sb- and As-doped Ge which were fabricated with

the vacuum-cleavage technique, strong, sharp, step increases in the conductance

vs bias curves were observed at bias voltages corresponding to the four zone-
4boundary phonon energies in the <111> direction. Air-cleaved junctions showed

the same type of structure, but very weakly. The chemically prepared units of

Reference 2 showed no such structure.
2 2In Fig. 4, dl/dV and d 1/dV vs bias curves are shown for an In contact

on vacuum cleaved As-doped Ge. The temperature was 2°K. Identical structure

with nearly the same strength was also found in Sb-doped units. The magnitude
~4of the conductance change at eV = + h was approximately 10 Q for both Sb
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and As-doped vacuum-cleaved units. As is shown in sec. 4, a conductance
6increase of this magnitude is expected for the Kleinman mechanism of LA 

phonon-assisted tunneling in metal-semiconductor contacts.

IV. LA Phonon-assisted tunneling in n-Ge

In this section we calculate the change A (4^) in the conductance atdV
eV = + hu)T . , where h(JD is the energy of the longitudinal acoustic phonon LA LA
(LA) of momentum c[ = — (1,1,1). These step increases at + hu) in the conductance 

are attributed to a mechanism suggested by Kleinman to explain similar effects 

in p-n tunnel junctions. For our calculation, there are two important dif

ferences between p-n junctions and metal-semiconductor junctions. (1) The 

electrostatic potential in a p-n junction can be treated as linear in the 

junction region, whereas in the metal-semiconductor contact, the electrostatic 

potential near the metal-semiconductor interface is parabolic to a good approxi

mation. (2) The basis functions in a p-n junction are just the complete set 

of Bloch states in a semiconductor. In the metal-semiconductor contact, we must 

mix metal and semiconductor basis functions, assuming some type of matching 

procedure at the interface of the metal and semiconductor.

In Fig. 5, we show a schematic drawing of the band structure of Ge. For

n-Ge at T = 0°K, the valence bands are filled and the L^ conduction band is
18 -3filled up to an energy ep. above E (for 7 x 10 cm donors in Ge, p< = 24mV) .F Lc r

The subsidary conduction band is empty. The selection rules for phonon
12emission are also shown in Fig. 5. The important transition for LA phonons 

is r 2 The observation of LA phonon emission in the tunneling conductance

of our n-Ge units is qualitatively explained as follows.
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Consider an applied bias such that electrons are injected from the metal 

electrode into the Ge electrode (V<0, i.e., metal negative relative to Ge).

Most of the current flows by the direct channel in which no phonon emission 

occurs (Fig» 6a). For tunneling into the (100) face, the four ellipsoids 

associated with the conduction band are equivalent, so only one is consi

dered. The metal Fermi surface is large enough to allow direct tunneling 

without violation of the kjj -conservation rule (specular reflection) . This 

type of tunneling is described by the CDMT theory.^

Another channel for tunneling is the phonon-assisted tunneling which is a 

two-step process. (Step 1) The first step is the injection of electrons from 

near the forward direction (kj£wO) on the metal Fermi surface into states associ

ated with the conduction band; for the bias voltages of interest, these states

are of an energy below the conduction band edge Epc> so these states are

decaying or evanescent states in the semiconductor (Fig. 6b). The important
£

point made by Kleinman is that this exponential tail extends well beyond the 

junction region into the semiconductor x > d (where d is the width of the space- 

change region) and is primarily of the symmetry. Hence, there is a rather 

large region for interaction with phonons. The tunneling channel for the 

electron is completed by the emission of a LA phonon of wavevector £ ~  ~ (1,1,1) 

allowing the electron to make a transition from the state of symmetry to a current- 

carrying state of symmetry L at k = — (1,1,1) (Step 2). A similar two-stepJL 3
process occurs when the Ge electrode is biased negative relative to the metal.

It is clear from the conservation of energy that the LA phonon assisted 

tunneling can only occur when eV>h(JUT or eV< - h(J0T A. For example, when elec- 

trons are injected from the metal into the Ge, the condition eV > hu)^ must
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hold if an electron is to emit a phonon of energy ho)^ and make a transition

to an unoccupied state above the Fermi level in the Ge electrode.

Let us now calculate quantitatively the change a (” ) in the conductance
6at eV = + hu), . . For simplicity, we follow Kleinman and calculate only that 

contribution which comes from the interaction occuring in the region x > d. 

The contribution from the region x < d should be smaller than that for x > d 

because the symmetry of the wavefunction is predominantly hole-like near

x = 0 (r^5 symmetry).
TTThe Bloch states for k near k = — (1,1,1) with energy E, near Er o a xr Lie

(energy of state at kQ)can be written as6,13

. ,k k .
T. = e1 - -2>kr ULc (£)•■» x > d » (4.1)

where u^c (]£.) is the Bloch function at kQ with symmetry. The states of

symmetry T® associated with k = 0 and energy E, near E_ are written as 2 kjo I c

YkA = 3 (x) e— - ur c (r), x > 0 .

Uj_,c (r) is the Bloch function at k = 0 with symmetry and energy E^.

The envelope function 3 00 is a solution to (x>0)

6, 13

(4.2)

+ v(x) ®=(em  * Erc
2 2 

.  n k

2mr<
ill) B

The effective mass of the conduction band is denoted by m ^  and the

electrostatic potential is

V(x) = ) ̂ TT£ nD (x-d)^, d > x > 0

(4.3)

(4.4)
x > d
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The number of donors per unit volume is n^, the static dielectric constant of the

semiconductor is eg, and d is given by (in the parabolic potential approximation)

d =

+ ep,F -
2ne nD .eV - d es

l
y (4.5a)

r es

r——-
-

>fa

+> h
(4.5b)2nen^ y

where V, is the barrier height, b
Eq. (4.3) is valid if eV, ~  V  E where E is the direct gap. Since eV, =M b 2 g g b

.63eV and E = .95eV, we see that (4.3) will not be valid for x near 0. We will g
account for this in our final expression for A(“ĵ ) by estimating the influence 

of the valence band with a two-band model. However, for simplicity let us 

initially assume that eq. (4.3) is valid for all x > 0 .

To completely specify (3 (x), we must match 3 (x) at x = 0 to the envelope 

function in the metal which is of the form

3 (x) = 2"Ysin (k x + 6), x < 0, (4.6)

where 6 is a phase angle and k ~k„, the metal Fermi radius, for the states ofr  b j£x- F >
interest. We require continuity of 3 (x) and — ■ ^  at x = 0^. We also assume 

kjj conservation (specular reflection).

The notation employed is that k^ represents the current carrying states

and k the metal - rl states. 
JC

We note that for x > d,
3 (x) = 3  (d) e

-Krc (x-d)
(4.7)

where

*1-,
. 2 2"Vc
41 h2

(Erc - V (4.8)
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,dlFor the calculation of A (“777) we will be interested in the case (eV = + huj )

where

"dV

em  = " e V  +  eV
Following CDMT1, we write 3 (x) as

3 (x) = A U(a,7l) + B v(a,7)) ,

rc
2 I, 2 . 2mTc

a = x’ p l  (E-~ ' E'-J
2 2

-  XKrc

x =
hV
16" “Vc6 nDV. .

T) = (d-x)/\.

LA‘

(4.9)

(4.10)

(4.11a)

(4.11b)

(4.11c)

A and B are constants to be determined by matching 3 (x) at x = 0 and x = d, and 

U(a,T|) and V(a,T]) are parabolic cylindrical functions. v(a,7]) is the 

exponentially increasing function as T) -» oo, and U(a,T|) is the exponentially 

decreasing function as Tj -* oo.

Applying the matching conditions and neglecting U(a,T]d) compared to 
V (a,T]d) , where

*nd = dA, (4.12)

we find

| ß (d) | 2 = 4 (2tt) 2 \K(0) exp (-^fo Kdx)
I’m K (0)

r ( k  + a) 1 + M - r —
t

where K2 (x) - k^M —
4II h 2

fu'(a,o

\yc - em + v(x)] ’

) - a2 U(a, o)
(4.13)

+ V (x)

and the metal electron mass is taken to be the free electron mass, m .

(4.14)
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We have made use of Darwin's asymptotic expansion"*"^ for V(a,T)) in eq. (4.14) 

in place of the asymptotic form used in CDMT'*’ because the former is more closely 

related to the WKB approximation.

To take account of the influence of the valence band and the breakdown of

eq. (4.3) near x = 0, we replace K(x) above with the expression obtained for a
9trajectory in a two-band model (for kjj = 0).

2m*K (x) =
■[h 2E

(V(x) - Ew  + (E„ - V(x) + Ekj0 - EpJkl Tc g rc‘
8

(4.15a)

, 1 1 A . 1 Xwhere = t  (“—  + ~ )  , m^ 2 m_ m Tc v
(4.15b)

The effective mass of the light hole valence band is m . We find° v

J :
d v , C Kdx = —
0

(£ - 2e) E(cp,k) + e F(cp,k)

+ fa + 3t - C) la(Q ' a)
^ C (a + e)

(4.16a)

where

Oi = (Vfa + M*F - eV)/M'F

6 Êrc “ Ekjê /M,F

£ Eg/^p:

sin cp = (£ - e) (a + e) ’ (4.16b)

C = M.f/Eo >

h 2n e2 n.
E =o m* e

■J e.
S

E and F are incomplete elliptic integrals. We note that our result differs

from that of Conley and Mahan because no turning point occurs between

0 < x < d .
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Let us now calculate the transition rate for a transition from y to 

with the emission of a LA phonon of wavevector £,

Pk£,kr(a) " tI < V  |Hel-ph (q) 1 Ykr > l' 6 <EM  ' Ekr ' taLA> * <4 ’17a>
-K_ (x-d) iq x ik Tc x i

f  I 8 <d> I2 “\ a dx e rx

X 6 <Ekje - Ekr - taLA> >
M  +

(4.17b)

2rr
h

e <d ) ] 2 M2LA
.2 8k.llt + k n 6 ( V  Ekr • ^  • (4-17c)

<«x + krx> + K fc t l  M

The matrix element is defined as

“ l a  ■ <ur c  I Hel-Ph (V  I uLc>- <4- 18)

We use normalization in a unit volume, neglect dispersion in the phonon energy 

h(i)T A, and consider only the contribution from x > d.

To be completely rigorous, we should have taken the L^ states to be standing 

waves in place of running waves and we should have taken account of the boundary 

in the phonon mode description. To the extent that we average over k and £ in 

calculating the conductance, such essentially interference effects should vanish.

For V < 0, the current due to this mechanism at T = 0°K is

I
1 ■ - 8eA\ ,  kr> q pm , kr(a) f(y  [i - £< y ]> (4.19)

where f(k) is the Fermi function and A is the area of the junction. The factor 

8 arises from the 2 spin directions and the 4 conduction band minima in Ge. 

Performing the sum over £, we find

I  PM , kr <9> ■ f  le<d>!2 “la ■®<ESt - Ekr ’ h“LA>‘ <4 ‘20)
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We see that z  Pkje kr (a) depends on the variables E ^  E^, and k ^  [3 (d)

and depend upon k̂ jj ] , so we write

2
8eA M

I = - LA
h 2v, dEW  i ( \ l  + eV - ^  / dEkr P (Ekr> 1 - f(Ekr •

X 6 (E, „ - E,_- hu)TA) d2ki i  1S <d) I 2 (4.21)' M  kr LA J(2n)2 Kj,

where p(E) is the Ge density of states for one spin band and one conduction

band minimum at . The energy variable Efc is the total energy, including

potential energy, measured relative to the L, conduction band edge. The Fermi
hkF

velocity of the metal is v_ = ---.J F mo
Doing the E^ integration, we find

8eA M
X = - LA

h 2 v, J d£k  P(EM  ' h0JLA} £(EM  + eV "

X 1 • f(Eke ■ ^ la - eP'F) (2n ) 2 *T

We are interested in the conductance, dl/dV, which is given by

m i 2 . ( 4 . 22)

dl
dV

8e2A M2 LA
, 2h v_

p(eM-F eV - taLA) 1 - f(-eV-houLA) liidil2

"To -
(4.23)

In eq. (4.23) we have taken a derivative of the Fermi function only. The E^
2variable in the expressions for |3(d)| and K^c (eqs. (4.8) and (4.13)) is 

evaluated at ejî  - eV. The k n integration can be extended to infinity.
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We see from eq. (4.23) that dl/dV vanishes for - huo^ <eV<0, and has a

step increase at eV = -h(J0̂  (see Fig. 7)

A.dx, 8e2A ^ AP ( ^ F) f d \  

dV = h 2v„ j  (2tt) 2 *r,
Jill |P W | (4.24)

where E, is evaluated at eu,„ + hu)T * • Similarly, for VXD, we find dl/dV 
kjj F LA

vanishes for CXeV<huo^^ and has a step increase at eV = hio^ given by eq. (4.24) 

with evaluated at e(ip - hu)^.

/: K

The most important k h dependence of l^^-l is in the WKB exponential
1̂1 V c

(k^y, x) dx jpreviously we have suppressed the variable k^y in K(x)| where

-V*K(kiil’ x) =‘V k2(x> + kl\
(4.25)

In eq. (4.25) K(x) is given by eq. (4.15). We estimate the k̂ jj integral in
2eq. (4.24) by expanding the WKB exponent to order k̂ || and neglecting all other 

k̂ || dependences. Hence, to a reasonable approximation

/

where

and

S i  l&idll2 '
k2 / ^ a

2rr)2 4n

1 rd -i
k2 ‘  J

K (x) d
a o

ilSIdil2̂  .

ooiJr

l * »  )

llidl
h e

k.„ = 0 ,
'ill

(4.26a)

(4.26b)

(4.26c)
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From eq. (4.15), we find
l h F (cp, k) 
~~2 = 2m* E (4.27)

where the definitions in eq. (4.16b) apply.

Hence, we find that the step increase in the conductance at eV = + ha)LA

is given by

. . d l ,  2^ k M\ a P(eV  k a
-------------------  ---------------tt n

16

laidi
“fc

2\
(4.28)

Using the parameters listed in table I , we find that (ignoring small 

differences between forward and reverse bias due to the changing space charge 

region)

*(§> - 1 0 ' 4  n ' 1 (4.29)

which is in order-of-magnitude agreement with the experimental data for

vacuum-cleaved Sb-doped and Ge units. [The predicted size of the effect for
18 3vacuum-cleaved As-doped units (n^ = 5.1 x 10 /cm ) is an order of magnitude 

lower than that observed, which is also the case for the background 

conductance in Fig. 3.] Since the background conductance ~10 Q , the step 

increases for LA phonon-assisted tunneling are approximately 107o of the back

ground which makes them easily detectable.
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Table I. Parameters for LA Phonon-Assisted Tunneling

18 -3nD = 7 x 10 cm -4 2A = 2.5 x 10 cm

e = 16s h(uLA = 28meV

m_ = .034 m Tc o
2 -49 2M = 4.3 x 10 ergLA

m = .044 m v o v_ = 1.7 x 10 cm/sec F

m* = .038 m E„ - Et = 0.154 eV Tc Lc

HF = 2^mV Et - Et = 2.36 eV Lc Lv

Vu = 0.63 B b

3cm

E =0.91 eV (Direct gap) g
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V. Phonon-Assisted Tunneling Due to TA, LO, and TO Phonon Emission

We have given a detailed analysis of only the LA phonon-assisted tunneling

because accurate values for the electron-phonon matrix elements have been given 
16only for the LA phonon between states of symmetry and L^. In this section, 

we shall make qualitative estimates of the phonon-assisted tunneling due to 

TA, LO, and TO phonon emission.

The strength of the TA phonon-assisted tunneling (conductance change at 

eV = + h(JU^) can be estimated if it is assumed that (as done, for

example, in Reference 6) and if the important region for the electron-phonon 

interaction is near, but not in the Schottky-barrier region (x > d). Since 

a typical energy of the metal - states is Ep^ - - e below the

conduction band edge, the tail contains some character. The magnitude

of the Tic admixture relative to T' is approximately (E_ - E - ep, )/Eg — 0.14.Z3 Z 1 C  JLaC r
(Eg is the direct gap at k = 0.) Since the transition is allowed for

TA phonons (see Fig. 5) and there are 2 transverse phonon branches, the change 

in conductance at eV = + hu)TA should be about 2 x .14 or ~  307» of that at 

eV = + huoT A . From Fig. 4, we see that this rough estimate is reasonable. We 

have neglected the contribution from the electron-phonon interaction in the 

Schottky-barrier region (0<x<d) and have neglected the contribution from the
-2admixture of Li into the L, conduction band states, which is ~eu,„/ (ET -E. ) «=; 10 3 1 ^F Lc Lv

(E^c - E^^ is the energy gap between L^ and L^.) The allowed transition 

r2 ^ L3 should therefore contribute to the TA phonon-assisted tunneling only 

~  17, as much as the f-4 L^ if the relevant matrix elements are comparable.

The strength of the LO phonon-assisted tunneling can be compared to the 

strength of the TA phonon-assisted tunneling since the transition is
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allowed for both LO and TA phonons (Fig. 5). If the matrix element for LO 

phonon emission is the same as for TA phonon emission, then the change in 

conductance at eV = + huo-̂ Q should be about half of that at eV = + huu,^ since 

there is only one longitudinal branch. This rough estimate is also in reasonable 

agreement with the experimental results (Fig. 4). (As before, we neglect the 

LO contribution from the ^->L^ transition (~1%) .)

The estimated relative strengths of the TO and the LO phonon-assisted 

tunneling is, however, not in good agreement with the experimental results.

The allowed transition for TO phonons is )L^, whereas the allowed transition

for LO phonons is r ^ ^ L ^  (Fig. 5). If the matrix elements for these two 

transitions are comparable, we would expect the relative strengths of TO to LO 

to be 2 qip/ (E^c - ), or ~  27«. From Fig. 5, we see that the experimental

data show that the TO phonon-assisted tunneling is comparable to the LO phonon- 

assisted tunneling, not 50 times smaller. We are, therefore, forced to conclude 

that either the TO matrix element is nearly an order of magnitude larger than 

the LO matrix element, or that the TO phonon-assisted tunneling proceeds by a 

mechanism which does not obey the selection rules, such as scattering from 

crystal imperfections.

VI. Summary
One group of metal-Ge (n-type) tunnel junctions studied in this investigation

were fabricated by cleaving Ge crystals in vacuum and then evaporating metal
electrodes (In or Pb) through a metal mask onto the cleaved surface. For

18 - 3junctions which were made from Sb-doped Ge (n ~  7 x 10 cm ), it was found 
that the experimentally measured conductance vs bias voltage curves agreed in

shape and magnitude with the predictions of the one-electron Schottky-barrier^
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model where all parameters were determined from experiments other than tunneling* 

Such agreement, although somewhat fortuitous, showed that the following 

approximations or assumptions are adequate in the description of these tunnel 

junctions. (1) The electrostatic potential near the metal-semiconductor inter

face can be replaced by an average, parabolic potential. (2) Specular 

reflection occurs at the interface. (3) The energy levels of the highly doped,
2 2 h kdegenerate n-type Ge are given by • •. ~ (or an appropriate generalization for
c

ellipsoidal energy surfaces) and that at T = 0 K these states are filled up to 

e(jL above the conduction band edge.

The conductance curves for vacuum-cleaved As-doped units do not agree with 

theory in magnitude as well as the Sb-doped units, but the qualitative features 

are similar. This discrepancy is not understood at present.

Capacitance measurements have been made on both vacuum-cleaved and air- 

cleaved junctions. For vacuum-cleaved units, the barrier height was found to 

be = 0.63 V and for air-cleaved, = 0.51 V. A substantially higher 

conductance due to the lower barrier height was observed in the air-cleaved 

junctions which formed the second group of junctions studied. The measured 

barrier heights were independent of the contact metal (In or Pb) and of the 

semiconductor impurity (Sb or As).

Strong phonon-assisted tunneling was observed in both Sb-doped and As-doped 

vacuum-cleaved units. Air-cleaved units showed only weak phonon-assisted 

tunneling. Prominent step increases in the conductance of vacuum-cleaved 

junctions were observed at bias eV = + hu), where h(JD is the energy of a Ge zone

boundary phonon along the <111> direction. Structure associated with the LA

phonon was the strongest. The TA phonon structure was not as strong as that
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for the LA phonons. The structure for the LO and the TO phonons was somewhat 

weaker than the structure for the acoustic phonons, but still clearly observable 

in dl/dV.
A calculation of the LA phonon-assisted tunneling has been presented in

Sec. 4. The predicted strength of the step increases in the conductance at

eV = + hcu is of the same order of magnitude as that observed experimentally.LA
The calculation is based upon a modification of Kleinman's explanation of 

similar phenomena in Ge p-n junctions. The essential feature of the mechanism 

is a two-step process, where (in reverse bias), an electron is injected from 

the metal into an evanescent semiconductor state associated with the conduction 

band and then emits a LA phonon with £ ~  ~ (19 1» 1)> making a transition to a' a
current carrying state at L^. A similar process occurs at forward bias. Since 

this is an inelastic emission process, the conductance has a symmetric (with 

respect to zero-bias) threshold characteristic which is clearly seen in the 

experimental data.
A qualitative analysis of the phonon-assisted tunneling due to TA, LO, and 

TO phonon emission has been given in Sec. 5. The relative strengths of the

conductance changes at eV = + h(jü ((JJ = ^ 0 ’ °r ^0^ were f°un<̂  to
reasonable for TA and LO phonons assuming the appropriate electron-phonon matrix 

elements are comparable. The strength of the TO phonon emission, however, is 

experimentally nearly 50 times larger than expected. This strong TO phonon- 

assisted tunneling is not understood.

It should be pointed out that the mechanism for phonon-assisted tunneling 

described in this paper (with the possible exception of the TO phonons), is due
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to the coherent coupling of the tunneling electrons to the constituent atoms 

of the semiconductor electrode and is not due to incoherent, impurity-induced

coupling.  ̂ ^
Finally, it should be noted that the sharp, strong, structure in d I/dV

at eV = +hoj provides an accurate method of measuring the phonon energies.

The pronounced minimum in the conductance at V = gives a reasonable estimate 

of the Fermi degeneracy. So the metal-semiconductor tunnel junction prepared 

by the vacuum-cleavage technique provides a useful spectrographic tool.
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Figure Captions

2 2
Fig. i Schematic drawing of the circuit used to measure dl/dV and d X/dV .

Flg, 2 Comparison between experimental conductance vs voltage curve (solid line) 

on nD= 6.7 x 1018/cm3 Sb-doped Ge at 4.2°K and the conductance calculated 

according to the model developed in Reference 8 (dashed line). The 

contact metal is In. The contact area is 2.5 x 10 4 cm2 , and the barrier 

height is 0.63 V. . The Fermi degeneracy |JLf = 23 mV. - 'n

Fig. 3 Comparison between experimental conductance vs voltage curves (solid 

lines) on As-doped Ge at 4.2°K and the conductance calculated using 

the model developed in Reference 8 (dashed lines) with In as the contact 

metal. The lower curves represent a vacuum-cleaved sample for which the 

barrier height = 0.63 V.. The upper curves represent an air-cleaved 

sample with Vb = 0.51 V.. Doping level and junction area for both 

samples are 7.0 x 1018/cm3 and 2.5 x 10' 4 cm2, respectively. The Fermi 

degeneracy (j,F = 24 mV.

Fig. 4 Conductance and d2I/dV2 of an indium contact on As-doped Ge junction
18 3at 2°K. The arsenic doping concentration is nD = 5.1 x 10 /cm . The 

observation of the In superconducting gap at zero bias is shown ex

plicitly. Its presence shifts the phonon structure to higher energies 

by ^ _ o.5 mV. Assignment of phonon energies is according to 

Reference 4. Sign convention for bias voltage is opposite to t*hat of

Reference 3.



29

Fig-,!

Figure Captions - continued

Simplified model of the band structure for Ge and allowed phonon- 

assisted transitions between the band extreme (see Reference 12).

(a) Schematic representation of metal-Ge (n-type) interface in 

k-space. One-electron tunneling flows via direct channel. Phonon- 

assisted tunneling involves two-step process. For reverse bias, step 1 

is the injection of an electron from the metal Fermi surface into an 

evanescent semiconductor state associated with the conduction band. 

Step 2 is the emission of a Ge phonon of momentum £ — — (1, 1, 1) and 

the transition of the electron to a current-carrying state in the 

conduction band. A similar process occurs in forward bias. (b) The

Fig- 7

metal - envelope function. Metal wavefunction connects onto an 

evanescent semiconductor state associated with F^ conduction band.

The component of the conductance due to LA phonon-assisted tunneling»
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1 3 .  A B S T R A C T

The experimental tunneling conductance of metal-Ge contacts is compared to the 
predictions of the one-electron Schottky-barrier model in which all parameters are 
determined from experiments other than tunneling. Agreement is found in the magni
tude and the shape of conductance vs bias curves for vacuum-cleaved, Sb-doped Ge 
units. The qualitative features of the As-doped units are also in agreement, but 
a discrepancy in magnitude exists. Substantially larger conductance is found in 
air-cleaved junctions than in vacuum- cleaved junctions. Capacitance measurements 
reveal that the barrier height for air-cleaved junctions is V^=0.51V whereas V^= 
0„63V for vacuum-cleaved junctions. Pronounced step increases in the conductance 
due to phonon-assisted tunneling occur at eV = + h u ) where h i)is the energy of a 
Ge phonon at the Brillouin zone boundary along the <!11> direction. Structure 
is clearly observed at all four phonon energies (TA,LA,L0,T0). The magnitude of 
the LA phonon-assisted tunneling is accounted for in a theoretical calculation 
bases upon a mechanism suggested by Kleinman to explain similar phenomena in Ge 
p-n junctions. The strength of the TA and L0 phonon-assisted tunneling also c 
appear to be in reasonable agreement with qualitative considerations, but the 
observed TO phonon-assisted tunneling is stronger than expected.
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