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THE [INTERNAL STRUCTURE OF SHOCK WAVES

Bruce L. Hicks, Shee-Mang Yen and Barbara J. Reilly

Abstract

The non-linear Boltzmann equation has been solved for shock waves in
a gas of elastic spheres. The solutions were made possible by the use of
Nordsieck’s Monte Carlo method of evaluation of the collision integral in the
equation. Accurate solutions were obtained by the same method for the whole
range of upstream Mach numbers M~ from 1.1 to 10 even though the corresponding
degree of departure from equilibrium varies by a factor greater than 1000. Many
characteristics of the internal structure of the shock waves have been calcu-
lated from the solutions and compared with Navier-Stokes, Mott-Smith and Krook
descriptions which, except for low Mach numbers, are not based upon the Boltz-
mann equation itself.

Among our conclusions are the following:

1. The reciprocal shock thickness 1is in agreement with that of the
Mott-Smith shock (u2—moment) from M* of 2.5 to 8. The density profile is
asymmetric with an upstream relaxation rate (measured as density change per mean
free path) approximately twice as large as the downstream value for weak shocks
and equal to the downstream value for strong shocks.

2. The temperature density relation is in agreement with that of the
Navier-Stokes shocks for the lower Mach numbers in the range of 1,1 to 1.56. The
Boltzmann reciprocal shock thickness is smaller than the Navier-Stokes value at
this range of Mach number because the viscosity-temperature relation computed is

not constant as predicted by the linearized theory.



3. The velocity moments of the distribution function are, like the
Mott-Smith shock, approximately linear with respect to the number density;
however, the deviations from linearity are statistically significant. The four
functionals of the distribution function discussed show maxima within the shock.

4. The entropy is a good approximation to the Boltzmann function for
all M~_. The solutions obtained satisfy the Boltzmann theorem for all Mach
numbers. The increase in total temperature within the shock is small, but the
increase is significantly different from zero.

5. The ratio of total heat flux g to (associated with the longi-
tudinal degree of freedom) correlates well with local Mach number for all MM in
accord with a relation derived by Baganoff and Nathenson. The Chapman-Enskog
linearized theory predicts that the ratio is constant. The (effective) transport
coefficients are larger than the Chapman-Enskog equivalents by as much as a
factor of three at the mid-shock position.

6. At M1=4, and for 40% of velocity bins, the distribution function
is different from the corresponding Mott-Smith value by more than three times
the 90% confidence limit. The rms value of the percent difference, in distribu-
tion function is 15% for this Mach number. The halfwidth and several other
characteristics of the function Jfdw~dvz differ from that of the Chapman-Enskog
first iterate, and many of the deviations are in agreement with an experiment
by Muntz and Harnett.

7. The ratio of the collision integral (found from our solution of
the Boltzmann equation) to that calculated from Mott-Smith velocity distribution
functions is approximately 0.8 near the cold side for the majority of the velocity
bins and varies below and above one elsewhere in a shock for M*=4. Comparison

of the Boltzmann collision integrals with the Krook expression indicates that



the latter expression is inadequate in several respects for representing quali-
tatively the characteristics of either the gain term or the loss term of the
Boltzmann collision integral, near the upstream and downstream region of the
shock. Therefore, in these regions, the solutions of the Krook equation will
not agree with solutions of the Boltzmann equation.

8. A three-dimensional, computer-generated graphical display was
found to be useful in representing variations of the distribution function f and

the collision integral in the velocity space and for studying their character-

istics .



INTRODUCT ION

Nordsieck™s Monte Carlo Method

A shock wave is a commonly occurring, well-defined, non-equilibrium
phenomenon in gas dynamics.* It is therefore desirable to be able to determine
any of its properties that are currently of physical interest and to be able to
determine others as they are needed in the future. Unfortunately, experiment
yields only a few properties of shock waves and, until recently, calculations of
the structure of strong shocks have been based upon assumptions whose validity
has not been established.

Nordsieck®"s development of an accurate Monte Carlo evaluation of the
collision integral in the non-linear Boltzmann equation has radically altered
this situation, both for shock wave calculations and for other rarefied gas
dynamics problems. No longer is it necessary to assume near-equilibrium or
near-free-molecule flow, nor to assume the validity of equations that substitute
for the full, non-linear Boltzmann equation. Nordsieck"s evaluation of the
collision term (gain and loss terms separately) makes possible direct solution
of this basic equation, a possibility that has been largely ignored in the
century since it was derived by Boltzmann.

Nordsieck®"s method was developed in 1958 and was First described in
the literature in 1966. Brief accounts of the application of the method to
strong shock waves have appeared there and in the Proceedings of the Sixth
Rarefied Gas Dynamics Symposium.2 Applications to other problems have been made

by Hicks and Yen.3*A-°'<'5’6

Part of an extensive analysis of the systematic and
random errors of the method and its applications was described in a paper

published in 1968.~ More recent analysis of the errors and improvements of the

method have been described in a CSL report.



Using Monte Carlo evaluation of the nonlinear collision integrals, we
solved the non-linear Boltzmann equation, during 1968-1969, for shock waves in
a gas of elastic spheres. We used the same numerical methods for eight Mach
numbers in the range 1,1 to 10, In the present paper we describe selected
results from these calculations.

There are several reasons for publishing only selected results of
these shock wave calculations, the most obvious being the large volume of
results, larger than it is possible to reprint in a journal. Only a small
fraction of the calculated values of the Boltzmann collision integral, for
example, can be reported here. Furthermore, no direct comparison with experi-
mental results are possible until new theory is developed that predicts the
effects upon the collision integral of changing the intermolecular forces or
until differential cross sections for realistic, slightly "soft” molecular Tfields
are. known. It is also impossible to predict exactly which detailed computed
properties of shock structure will be needed in the future to compare with other
calculations and with experiment. Using our basic Boltzmann program, however,
which solves the Boltzmann equation, and the AVERR program, which gives detailed
information about moments and functions derived from them, we can relatively
easily calculate the specific details of shock structure when they are needed.

For these reasons we have chosen to describe, here those, characteristics
of shock waves having the greatest physical interest at present. These charac-
teristics are named iIn the section headings. With one exception we discuss first
those characteristics which are most commonly treated in gas dynamics, namely,
shock thickness and density gradients, (these two properties alone do not, of
course, provide Tull characterization of a shock wave)We then discuss less

familiar characteristics, like Boltzmann flux and longitudinal transport of heat,



concluding with a description of the microscopic properties of the shock as
defined by the velocity distribution function and its spatial derivative.

It is useful to preface our discussion of these characteristics with
general remarks on our methods. For a number of reasons (summarized iIn a CSL
reportg) we Find it desirable to use the local particle density n as the
independent variable rather than x, the position coordinate. Except in Sect. 2,
then, we consider variations of the different shock properties as functions of
n rather than of x. We use the dimensionless variable n = 6n~n1)/€p2—nY)-

The solutions we discuss are iterative solutions of the Boltzmann
difference equation, which we have reason to believe approximate well the
solutions of the differential equation. 79 The difference equation is solved
by embedding Nordsieck®s Monte Carlo method of evaluating the collision integral
in an iterative scheme of finding velocity distribution functions (everywhere in
the shock wave and at all positions in velocity space) which produce two sides
of the Boltzmann equation that are equal within about 1%. We have studied the
convergence of the iterative scheme and made strong uniqueness tests of our
solutions. The results of weaker tests have been published.”

The units we use are the values, denoted by the subscript 1, of
various properties of the upstream gas. Thus n”™ T are the units of number
density n and temperature t. The unit of length JI* = I/~2TTn"2) = (mean free
path)1/\ fl. The unit of velocity =] (2nkTI/m) = (mean speed) X (n/2) . The
unit of time is therefore (mean free time)® X (V2/tt) and of the velocity distri-
bution function 1is nA/CA3- In these units the Boltzmann equation for the shock

wave is

wdf/dx = a - bf = J(FF "-Ff7) |kev [dv® (dk/4m) ,



where f - f(v,x) is the velocity distribution function; x is the distance
variable, perpendicular to the shock; the unit vector k gives the direction of
the line of centers during a collision; v®» = v° - v; and f,f",F,F" denote the
four values of f corresponding to the four velocities, v,v",V,V". Integration
is over the whole 4w solid angle in order that the k integration limits may be
independent of v and v!. The notation bFf reminds us that this second part of
the collision integral is proportional to f(v,x), a fact of importance in
devising a stable method of integrating the differential equation.

In all calculations we used 226 bins in velocity space. For this
subdivision of velocity space it is possible to make meaningful calculations up
to a Mach number = 10 but not much higher. We used the LS and the MB cor-
rections and the "single sample™ technique (described elsewhere”) throughout the
calculations in the entire Mx range of 1.1 to 10. For each M~ runs were made
for each of four large, independent collision samples (210 collisions per sample),
yielding estimates of the mean value and the statistical error of any quantity
derived from either the velocity distribution functions or the collision inte-
grals. The rms probable errors of the velocity distribution function, calculated
by our solution of the Boltzmann equation, were determined for each Mach number
and are about 3% for a Mach number of 4. The probable errors in various
moments of the velocity distribution and of the collision integral are smaller
by factors of ten to one hundred. This level of accuracy is obtained on the
CDC 1604 digital computer (50 microsecond multiplication time) in a run lasting
about two hours, for each Mach number.

The values of the mean and the statistical error of each function
derived from the velocity distribution function or the collision integral is

calculated by the AVERR program. This program computes the means and errors of



101 functions for each set of four collision samples, for each position in the
shock and for each value of the Mach number» We discuss seventeen of these
functions in later sections of the paper»

The overall method is summarized in Fig. 1» As shown in this figure,
properties and transport properties of shock waves are calculated from the
moments of the distribution function; gradients, from the moments of the col-

lision integrals; and transport coefficients, from both of the two moments»

Remarks on other Determinations of Shock Properties

Much of our discussion of the results will make use of comparisons
with Mott-Smith shock waves» We have tested the accuracy of the Mott-Smith
solutions in satisfying the Boltzmann equation and have found that our Monte
Carlo solutions satisfy the Boltzmann equation more accurately by a factor of
100. Since we know the magnitudes of the random errors of our solutions, we can
state unequivocally, in the comparison with the Mott-Smith solution, which
differences are significant and which are not» The comparison with Mott-Smith
results is of interest because we have found that the qualitative features of
the Mott-Smith velocity distribution functions are correct and that some of the
Mott-Smith moments give surprisingly good accuracy despite the error in the
distribution function itself.

Furthermore, the Mott-Smith shock is easy to interpret physically, and
it possesses the simple property that each moment of the velocity distribution

function is a linear function of n, the particle density. Use of the Mott-Smith

«
It is, therefore, clear that it would not be possible to establish accuracy of

any proposed solution f(v,x) solely on the basis of the moments of the dis-
tribution function.
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Fig. 1 Overall method of computation of shock wave properties from the

solution of the Boltzmann equation.

Definitions of Symbols

T velocity distribution function
a-bf  Boltzmann collision integral
n particle density

X coordinate perpendicular to the plane of the shock
k-th moment of f
dMdeX k-th moment of df/dx
RST reciprocal shock thickness
Boltzmann flux
H/n
Boltzmann function
temperature
lateral temperature
total temperature
heat flux
stress
viscosity coefficient
thermal conductivity

~5 —|_Qqﬁ_|-,-|.:|:30

subscripts

associated with x component
associated with perpendicular component
total

X

Number of the section where this shock property is discussed.
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model thus permits us to present detailed results, especially in Sections 7
and 8, in a rather compact form. Also, since many other proposed shock wave
solutions have been compared with Mott-Smith results, the difference between

our Monte Carlo solutions and these solutions can also be easily predicted.
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1. Measures of Departure from Equilibrium

Shock waves are interesting phenomena in rarefied gas dynamics because
their interiors exhibit large departures from thermal equilibrium. It is there-
fore appropriate to discuss measures of this departure before discussing other
aspects of shock waves.

A monatomic gas is in a state of thermal equilibrium if it has a
Maxwell-Boltzmann velocity distribution function. One measure, then, of the
departure of a gas from thermal equilibrium is the deviation of its velocity
distribution function f(v) from the Maxwell-Boltzmann form.

We may write the deviation as

6f = f - feq (1.1)

where feq is a Maxwell-Boltzmann function that corresponds to the same values
of density n, gas velocity u and temperature (or total energy) t. Since the
Krook model of the collision integral is proportional to 6f, this measure is
essentially just the Krook collision integral, although ¥ is not, in general, a
solution of the Krook equation.

A monatomic gas is also known to be in a state of thermal equilibrium
if the Boltzmann collision integral vanishes. Thus a second measure of the

departure from thermal equilibrium is the deviation of the collision integral

from zero. We write this in fractional form as

6y = (@ - bf)/a = 1 - (bf/a) (1.2)

where each quantity a, bf and 6y is a function of v.
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In certain circumstances we are interested in the variation of 6f and
of 6y throughout velocity space. Usually, however, we would use more global
measures of departure from equilibrium, which we obtain by integrating (or
summing or bounding) 6Ff, (a-bf), or 6y over velocity space. Among these global
measures are the following:

a) rms values of 67T;

b) rms values of 6y or of related functions;

c) maximum values of 6y ;

d) heat flux g and stress T and other properties which can be calcu-

lated from moments of T;

e) moments of (a-bf).

Our calculations yield values of each of these measures of departure
from equilibrium, but we shall discuss just two of them, the second and fifth
ones in this section and the fourth one in Sections 3,4, and 5.

In our studies of the relative departure from equilibrium we hawe,
found it convenient to use a certain function of 6y or of the ratio a/bf. This

function is

ilr@bf) = (a-bf) /(atbf) = 6y/(2-6y). 1.3)

Its value runs from -1 (for a/bf=0) to +1 (for bf/a=0). For a gas in equili-
brium its value is zero. The global measure of departure from equilibrium that
we use is the rms value of \|i(@bf) over velocity space, which we call ‘;b’ The
values of ¥ for different Mach numbers and different positions in the shock
waves, show us the degree of the local departure of the gas from thermal

equilibrium.
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Figo 1.1 summarizes the degree of departure from thermal equilibrium
at three positions in shock waves for Mach numbers ranging from 1.1 to 10. We
notice first the very large range of values of \Jf, from 1.3 X 10_3 near the hot
side (n = 7/8) of the weakest shock (M* = 1.1), to 0.32 near the cold side
(n = 1/8) of the strongest shock (MW = 10). These two values of Y correspond,
roughly, to values of |6y] equal to 3 X 10 and 0.5, respectively. Our
development of Nordsieck®s method of evaluation of the collision integral has
made it possible to solve the Boltzmann equation over this very wide range of
non-equilibrium conditions.

A second characteristic of the curves in Fig. 1.1 is noteworthy: for
Mach numbers Ilarger than about 1.2 the departure from equilibrium, as measured
by F is larger near the cold side (n = 1/8) than in the center of the shock
(n = 1/2) . Inspection of the isolines of YLD show that the origin of this effect
lies in the large values of [J§] (or of bf/a) for negative values of VXj’ that is,
corresponding to the molecules with backward velocity relative to the shock that
are being (rapidly) produced by the collisions. This non-equilibrium phenomenon,
due to "diffusion™ of such high speed molecules backward or toward the cold side
of a shock wave or other rarefied gas flow, has provoked the interest of research
ers for many years.

Krook” suggested the use of a local Knudsen number (Kn)» which may

be defined as

(Kn)e = A (1.4)

where i = local mean free path and $ = any macroscopic property (dimensionless).



Fig.

1.1 Maximum departure from thermal equilibrium
shock waves.

in weak and strong

14
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Since S = [Jadv]/[n X ref. velocity] and d$/dx = J (a-bf)0dv/ , we are able to
calculate any such local Knudsen number from moments of the collision integral.
When (Kn)» defined on the basis of density (i.e., 8=n) was calculated, it was
found, in contrast to ¥ that the departure from equilibrium measured this way

is larger near the hot side than the cold side.
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2. Shock Thickness and Density Gradients

As noted in the Introduction, we will use n rather than x as inde-
pendent variable in giving a detailed discussion of shock structure. The present
section will concern itself with relation between n and x. Discussion of this
relation will show the nature of the x - n transformation and will also exhibit
characteristics of the density profile in the shock waves. A comparison of
Boltzmann and Navier-Stokes density gradients, for = 1.2, will be given in
Section 6.

The density is a sigmoid function of x which is approximated by the
hyperbolic tangent function first suggested by Mott-Smith.1l The density pro-
files, for two Mach numbers are shown in Fig. 2.1. These calculated curves are
not symmetrical, but the asymmetry is not easy to see in an n vs x plot. Also,
choice of origin is arbitrary, which makes objective comparison among n-xX curves
from various sources rather difficult. Plotting dn/dx vs n (density gradient
profile), to be discussed shortly, removes both of these difficulties.

Just one characteristic of the density profile (or of the density

gradient profile) is usually used to represent shock structure, namely, the RST

(reciprocal shock thickness). It is also the characteristic most commonly
determined by experiment. In defining RST we first introduce the reduced density
n= (M- D/(n2 - n» c.D

which ranges from O on the cold side (n=1) to 1 on the hot side (n=n2).
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Reduced Distance, x.

Fig. 2.1 Variations of reduced number density n with reduced distance x.
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This reduced density gradient dn/dx has a maximum value [dn/dx]maX

somewhere within the shock. Then

RST =1J 1 [dn/dx] na (407

X
The unit of RST here is the upstream mean free path.

Many theoretical calculations of the shock wave have been made on the
basis of different collision laws. In order that the RST on the basis of these
calculations could be compared with each other (or with experimental values for
different gases), it has been suggested that a reference mean free path other
than the upstream value be used. For low Mach numbers, Sherman12 suggested the
use of the mean free path for M = 1, assuming that the maximum slope occurs at
the same location with M = 1. For large Mach numbers, Ziering13 has found that,
for Mott-Smith shocks, the RST is insensitive to the collision law if the mean
free path at the point where n = \ 1is used as the reference value in defining
the shock thickness.

Our solutions of the Boltzmann equation for shock waves in a gas of
elastic spheres lead to the values of RST in Figs. 2.2 and 2.3. We should like
to point out these values of RST were evaluated from the moment of the collision
integral, not from the n-x curve.

As shown in Fig. 2.2, the RST for low Mach numbers are smaller than

L §
the corresponding Navier-Stokes results. Since the characteristics of the

k

To be more specific we might call this the (density) RST to suggest that reciprocal
shock thicknesses based on the profiles of other gas properties are different

from RST for density,

tThe RST curve for Navier-Stokes for M1=1-2 is obtained from calculations of alge-
braic theory.1Z&F This curve deviates, on the average, by 1.6% from Wang-Chang®s
resultl5 for M1=1-1.2; by 3.8% from Grad®"s resultl® for M] =1.2; and by less than
r% from Schmidt®s numerical resultsl” for M=1.2-2.



Reciprocal shock thickness

Mi_l NS-184

Fig. 2.2 Variation of reciprocal shock thickness with Mach number for
weak shocks.
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Reciprocal Shock Thickness

Fig. 2.3 Variation of reciprocal shock thickness with Mach number for
strong shocks.
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Navier-Stokes shock can be described by the t-n curve and the transport
coefficients together with the n-x curve, the interpretation of our comparative
results for low Mach numbers will be made in Section 6 in which the results on
dt/dn and the transport coefficients are presented. However, we do want to
point out here that the variation of properties with respect to the number
density n in a Navier-Stokes shock depends on the integral curve, i.e., the

t-n relation and thus on the Prandtl number Pr, while the determination of the
variation with respect to X requires, in addition, the [i-t relation. Sherman
and Talbot18 studied the RST at low Mach numbers. They measured the temperature
profile for M» = 1.335 - 1.713 and obtained the density (or velocity) shock
thickness by using the theoretical t-n relation.

For values of M > 2.5, as shown in Fig. 2.3 we compare values of RST
only with the Mott-Smith results (with u2—moment)- The Boltzmann and Mott-Smith
values agree with the 9070 confidence Iimits.t The fact that the Boltzmann RST
curve and the Mott-Smith RST curve are not far apart, for intermediate values of
the Mach number, does not imply that other shock characteristics calculated by
the Monte Carlo method and the Mott-Smith method also are in approximate agreement.

The RST, of course, shows only one characteristic of the density pro-
file.\e It tells nothing about the physically interesting relaxation rates in
the wings of shock nor about the asymmetry of the density gradient profiles. The

degree of asymmetry of the profiles is exhibited directly in plots of our

The 90/ confidence limit = 3.07(€"9). = probable errors which are
given in all figures.

Grad suggested a definition of the shock thickness based on the integral
properties of the profile.
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calculated values of dn/dx vs n, as in Figs. 2.4 and 2.5. The density profiles,

s

if needed, can be calculated by numerical integration J (dx/dn)dn, as shown
n=n
in Fig. 2.1.

We remark first that the four curves for each individual Monte Carlo
sample are smooth and of similar shape (i.e., the four curves are ™hested").

It is therefore permissible to make somewhat more detailed analysis of the shape
of the (average) density gradient curves than would be justified by the values
of shown in Fig. 2.3.

Comparison of ordinates for symmetrically placed values of n affords a
more powerful test of asymmetry. On this basis we see that the gradient curves
are asymmetric for all Mach numbers except M = 2.5. The asymmetry produces
larger upstream than downstream gradients for M®» < 2.5 and smaller upstream than
downstream gradients for M > 2.5. These qualitative results for high Mach
numbers were anticipated in our algebraic theoryl4 of 1967.

We can connect the asymmetry within the shock to the density relaxation

rates in the shock wings by generalizing part of the Mott-Smith Ansatz.

As x =* -® we assume that

a1

dn =~ W -3
and as X ¢ +»

dx ~"2_

dh ~ 1-n -4

which follows directly from linear dependence of f on n (in Mott-Smith"s Ansatz,

where a® = a”~)e A simple form for the n dependence of dx/dn that satisfies
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Reduced Density Gradient,

Reduced Number Density, n

Fig. 2.4 Variation of density gradient with reduced density n for M, = 1.1,
1.2, and 1.56. 1
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Fig. 2.5 Variation of density gradient with reduced density n for M, = 2.5,
4, 6, 8, and 10.
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both of these conditions is

dx N . oxd 31+ (v aba
i h 2.5
dE h i-n h(i-h) @-9
The linear expression + (@™-a™)n is thus a correction factor for the symmetric
function n(l-n). For a" > (slower relaxation per unit path downstream than

upstream) the gradient curves are skewed to the left, while for a” < a® (faster
relaxation downstream than upstream) the gradient curves are skewed to the righto
Applying these results to Figs. 2.4 and 2.5, we see qualitatively that for

< 2.5 the upstream relaxation rate must be greater than the downstream rate,

and the reverse is true for > 2.5,
The new Ansatz leads to simple formulas for n*_ , n* and n

—————— r % max max
“ifl= 2Cai + V @-6)
"max = < N+ N ) 2 @7

= 2.
Noax = Val/ G/a7 + viD) 2.-8)
Thus ni is proportional to the arithmetic mean of a, and an and that n! Q

is proportional to the sum of the geometric and arithmetic means.
The new Ansatz describes our data qualitatively but not quantitatively.
To represent the Monte Carlo results within the tolerance given by the 90% limits

we modify it again, assuming now

-1
B = [n(1-n)] (@/dx) = [ — + ABn(1-n)] 2.9
al+ (a2~ai”™n
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The resulting values of %1 = ai\, %P = a?l, and Ad are shown in

Table 2.1. The three coefficients are each proportional to (M*-1) for N 1.56»

Table 2.1 Parameters of the Density Profile in Shock Waves

M1 Bi B2 % H 4
(Boltzmann) (M-S;u2)

1.1 0.088 0.053 0.044 0.077 0.086
1.2 0.176n" 0.105 0.088 0.154 0.169
1.56 0.40 0.29 0.24 0.40 0.44
2.5 0.62 0.69 0.49 0.78 0.86
4.0 0.70 1.00 0.76 1.02 1.12
6.0 0.74 1.37 0.96 1.20 1.22
8.0 0.74 1.85 1.08 1.36 loll
10.0 0.74 2.3 1.18 1.45 1.29

The relaxation rate B~ is proportional to M* for M~ > about 7. The relaxation
rate B" seems to approach an asymptotic value of about 0.7 as M = 10. The two
rates appear to be equal for ~ 2.1, in agreement with our earlier, qualita-
tive conclusion. In the wings (h £ 1/16 or ~ 15/16) the values of [b—ADn(I—n)]
computed from solution of the Boltzmann equation show large deviations above and
below the values of [a”+(a2~a”™)n). |In the intermediate range (1/16 < n < 15/16)
the two sides of the equation agree to within less than the 90% confidence limits
of the left hand side.

We emphasize that the values of Bq, B and A® in the table are tenta-
tive. When used in Eq. (2.9) they describe our present Monte Carlo results. But
the strong evidence for asymmetry and the estimates made of the magnitude of the
relaxation rates in the wings will, we hope, stimulate further experimental and
theoretical studies of the density gradient profiles of shock waves.

Shock wave theories for low Mach numbers describe B by various functions

of n. For example, B for Grad"s thirteen moment shock is a linear function of n
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with positive coefficients. The fact that the asymmetry for this shock is to

the right is obvious; however, the relaxation in the wings cannot be explicitly

determined. As the Mach number approaches one, the density profile becomes

symmetrical for all shock wave theories for low Mach numbers; therefore, the

first order theory for very low Mach number gives a constant value of B.
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3. Shock Properties as Functions of Mach Number

In Sections 3, 4 and 5 we shall be discussing a number of functions
derived from our solution of the Boltzmann equation for shock waves. In prepara-
tion for this discussion we shall now define a number of properties which are
derived from the velocity distribution function f(v,x). We shall then describe
the behavior, as functions of M*, of certain of these properties, especially
those which possess extrema within the shock waves.

From six moments of the velocity distribution function f we can calcu-

late all of the ordinary macroscopic properties of the non-equilibrium gas. The

SIX moments are n = - and . #Ij, 7)\4, b and #IS/ where
\ =Jf$k d™ (3a)
and
sy =1 3=VxL 6~ 'x
* 2
— $ —_—
= Yy 4 X 9 M
The moments , 7™ and ~ are the invariants. The reduced, dimensionless

properties derived from the six moments are:

gas velocity u=Ww2/n G.2)
lateral temperature 4. = TT»j9/n (3.3)
stress T = 3n(tj-"t)pl .4

total heat flux q @Ti4/"2)-3tx -2t _-2rru2 (3.5)

longitudinal heat flux A (2rlféL/-I'£L)—3tX—2ttu2 (3.6)
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In accordance with our definition of units in the Introduction, the units of
the dimensional quantities (corresponding to the dimensionless quantities
u, t, T and ) are, respectively, uv*, t™, p», and u"
To calculate the gas temperature t we need to have t, the longitudinal

temperature, but this, as seems not to be generally realized, is a function of n

which can be derived explicitly from the first two conservation equations: 19
™ = 2u[-u2 + ($3/n)] G.7
The temperature and pressure are then given by
1 2
1"Vvx +1t G-8)
p=nt 3.9
The temperature t_, associated with the mass velocity, is defined by
t = 2tw2 (3.10)

Knowing n and t we can calculate any thermodynamic property of the

equilibrium reference gas, such as entropy S per unit volume, for example:

S = n[loge (nt 3/2)-3/2] (3-11)

The foregoing discussion shows that 1 occupies a special place in

shock theory. Unlike t, its dependence on n cannot be derived from conservation
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equations but must be calculated from a solution f of the Boltzmann equation
for the shock and subsequent calculation of ft“/n by numerical integration,, But
once f§ (n) is known, then the temperature t, and the properties T/p” and g can
be computed, as functions of n fromEgs. (3.1)-(3.8) .

The dependence of tj , at the mid-shock position, on is shown in
Figo 3.1. Similar curves could be drawn for other positions in the shocks»
There 1is a small but significant departure of the Boltzmann points from the
Mott-Smith curve. This difference is enlarged when translated to (t]_-t ) or
T/p”™ or q. Except for weak shocks, t_ has reached >70% of its downstream value
at the mid-shock position. The variation of f§ with n is represented (indirectly)
in Section 4 by the variation of dt/dn with n.

Our calculations show that each of some nine moments of f is nearly a
linear function of n, that is, f and its moments are rather similar to the Mott-
Smith T and its moments, which are exactly linear functions of n. The maximum
deviations from linearity amount to -0.39% and 1.8% for the moments 7A* and 7\ ,
for example, for = 2.5. The Monte Carlo fluctuations are much smaller than
these deviations. Rather than showing, iIn this section, the detailed variation
of the moments n%)and ﬂ& with n, we will instead discuss the characteristics of
the derivatives of various related quantities in Sections 4 and 5.

There are two other important macroscopic properties of the non-

equilibrium gas, the two Boltzmann functions

J T loge T dv (3.12)

T
1

and

()
1

}:X T Iogef dv (3.13)
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ature, U
(n=1/2)

per

Reduced Lateral Tem
at Mid-shock Position

Mach Number, Mi

Fig. 3.1 Variation of reduced lateral temperature t at mid-shock position
(n = %) with Mach number M~
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These are seldom discussed because their calculation requires knowledge of the
velocity distribution function, (which can only be calculated accurately by our
method, for gases that are far from equilibrium), and because the integrations
must be performed by quadrature.

The Boltzmann Theorem for a steady state flow, as iIn a shock wave,
says that G must monotonically decrease through the shock. We shall make a
sensitive test of the conformity of our results to this theorem in Section 4.

We shall see shortly that H (and the related function h = H/n) also possess
certain other interesting properties in shock waves.

With these preliminaries out of the way we shall now discuss four
properties, each a functional of f, and each exhibiting a maximum within the
shock waves,

The first functional t°tj,) = -3T/2n refers to non-equilibration of
temperature, that is, the lack of equality between E( and tj_. In Fig. 3.2 the
value o¥-(ix—i1j at the mid-shock position is plotted as a function of M1o
Since (ﬁ_:tx) at the up- and downstream boundaries of a shock wave,, (tx—ti) must
pass through an extremum somewhere inside the shock. The curve for the Mott-

n
Smith temperatures is shown for comparison and is seen to differ by a small but
statistically significant amount.

It was noticed many years ago (Nordsieck, 1959; Hicks, 1963; Yen,lg)
that the longitudinal temperature t , as a function of n in the shock [Eq. (3.7)],
possesses a maximum, Ffor 2 =1.8. We represent this overshoot in Fig. 3.3 by
plotting L(t ) -19] at the mid-shock position as a function of upstream Mach

number M~ . According to the results of our Boltzmann calculations the lateral

temperature i does not show a maximum, for any Mach number or position in the
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Reduced Temperature Difference (ix

3.2 Variation of departure of

Fx;q—’ at mid-shock position (n = \) with Mach number M

isotropicity
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in reduced temperature,
" -
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Percentage Overshoot of Reduced Longitudinal Temperature, (tx)

Fig. 3.3 Variation of overshoot of reduced temperature associated with longi-

tudinal random motion, (t ) - t , at mid-shock position (n = %)
with Mach number - X m X
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o
shock» The existence of a maximum of t thus assures that for M, >1.8, the
X J.

temperatures are not equilibrated»

The total temperature

dae N2 2
h m1+1 (3»14)

Its variation, thus depends on two moments,#?1 and#?9>> We have found that it
has a maximum for all the Mach numbers studied. As shown in Fig. 3.4, the
maximum overshoot, defined by (tB/(t1, is less than 8.5%.

For weak shocks, the Boltzmann function H per unit volume and the
entropy S per unit volume are nearly equal. For strong shocks, the difference
between the two functions is thus a global measure of departure from thermal
equilibrium. (See also Section 1.) At the up- and down-stream boundaries the
two functions are exactly equal, so that, just as in the case of (tj_-t ) the
difference must possess an extremum inside the shock. The difference (H-S) is
plotted in Fig. 3.5, for the mid-shock position, to show its general behavior
as a function of MM,

It was also noticed some time age20 that the value of s, the entropy
per molecule, calculated from the Navier-Stokes description of a shock wave,
possesses a maximum within the shock wave for all Mach numbers. The. maximum is
caused by the change of sign of the (large) heat conduction term d(kdT/dx)/dx
which dominates the (smaller) positive, viscous dissipation term (4@./3) (du/dx)”™.
It is therefore of interest to examine the behavior of the corresponding Boltz-
mann function h — H/n. We fTind that it has the same qualitative behavior as
s = S/n, as is shown by the h overshoot plot of Fig. 3.6, where the measure of

overshoot 1is
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Fig. 3.5 Variation of difference iIn reduced Boltzmann function H and reduced
entropy S at mid-shock position (n = \) with Mach number
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Maximum Reduced Boltzmann Function per Molecule
or Maximum Reﬁuce&n Entrope per !\ﬁo[ecu?e, S

Comparison of maximum of reduced Boltzmann function per molecule ft
with the Navier Stokes of maximum entropy per unit mass.
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We have now discussed many of the functions that possess maxima
within the shock wave: n" 1in Section 2, and (t - g(), g(, tt, H-§, and
% in the present section» In Fig. 3.7 we compare the positions of the maxima
of four of these functions, n", t, t, and h, for different Mach numbers.
We shall discuss the stress T and the heat flux g in Section 5 but show here
the positions of the maxima of t and g and the position at which the local
Mach number M becomes one in Fig. 3.8.

It is clear that no one position (value of n) within shock waves has

a special significance for all shock properties and all Mach numbers.
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Position

Fig. 3.7 Variation of location of the maximum with Mach number M, for the
following: longitudinal temperature t , Boltzmann function h,
density gradient n", and total temperature t .
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Position

Fig. 3.8 Variation of locations of maximum stress t, maximum heat flux g, and
local Mach number = 1 with Mach number M~™.
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4. Profiles of the Gradients of Shock Properties

In Section 2 we discussed the dependence of number density upon
position in the shock and upon Mach number M.

In Section 3 we examined the behavior of various characteristics of
shocks, evaluated at the mid-shock position (n — %)» as a function of the
Mach number M™» In this section we will look at the detailed variations, for
each Mach number, of several shock characteristics as functions of the inde-

pendent variable n. The functions are the Boltzmann flux

G=JV 1o f “.1)

the temperature t, and the total temperature t = t+ t /A< In each case we
é

shall study the n-derivatives of the function.

According to the Boltzmann Theorem for steady flow of a gas
dcé/dx £ 0 4.2

throughout the gas. Since dn/dx is positive throughout each shock wave (see

Section 2) the Theorem can also be stated in the form

dG/dn £ 0 “.3)

One test of the physical validity of our solutions of the Boltzmann
equation is the question, Do the solutions satisfy the Boltzmann Theorem?™.
The answer, for our solutions is "yes"™ for the complete range, of Mach number

from 1.1, where the largest value of dlog£G/dn is about 10~5 to a Mach number
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of 10 where, this derivative is as large as 0.306. The rather similar Mott-Smith
velocity distribution functions also satisfy the theorem. (This has not been
shown analytically but is a result of our numerical calculations.) Agreement
with the Boltzmann Theorem is clearly one criterion that any supposed solution
of the Boltzmann equation should satisfy.

The detailed variation of dG/dn with n is conveniently represented in
terms of the reduced quantity dG/dn, which is plotted vs n for four Mach numbers
in Fig. 4.1. Notice that dG/dn is almost independent of at the mid-shock
position, for greater than about two.

The derivative dt/dn is a function worth studying for several reasons.
First, the Navier-Stokes treatment of the shock wave is based on this function.
Secondly, the value of this derivative fixes the quantitative nature of the
singularities at each boundary of the Navier-Stokes shock. Finally, this
function enters explicitly into the formula for the (effective) Prandtl number
that we shall discuss in Section 5. We shall therefore compare the values of
dt/dn obtained from the Navier-Stokes and from our solutions of the Boltzmann
equation.

The values of dt/dn, the reduced derivative, are plotted vs n for six
Mach numbers in Figs. 4.2 and 4.3. The Navier-Stokes values of the derivative
are marked on the plots at n — 0 and 1 and agree well with the Boltzmann values
for low Mach numbers. The curves are dashed where the sharp cold peak produces
large quadrature errors.

The derivative dt/dn is related to the number density and the deriva-

tive of the total temperature tt by the equation

dt/dn = (4TT/5)~/n3) + dtt/dn
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dG/dn

Reduced Gradient of Boltzmann Flux,

Fig. 4.1 Variation of the gradient of reduced Boltzmann flux dG/dn with
reduced density n for = 1.56, 2.5, 6, and 10.



Fig.

dt/dn

Reduced Temperature Gradient

4.2 Variation of the~gradient of reduced temperature,
reduced density n for = 1.1, 1.2, and 1.56.

dt/dn,

with
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dT/dn

Reduced Temperature Gradient

4.3 Variation of the gradient of reduced temperature,
reduced density n for = 2.5, 6, and 10.

dt/dn,

with
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Since, as has been discussed by Baganoff and Nathenson21 for example, the
change in total temperature 1is rather small in a shock wave, we would then
expect dt/dn to be a rather steep function of n, somewhat like inverse cube

of n, as was indeed illustrated in Fig« 4.2. The values of dt~/dn are plotted
vs n in Fig. 4.4 for = 1.1, 1.56, 2.5, and 10. As expected, they are much
smaller than dt/dn, but these small values represent the part of the variation
of dt/dn with n which is not predictable a priori from the term 4Tm2/5n" and
which can only be calculated at present from solutions of the non-linear Boltz-
mann equation. Note also, for strong shocks, that near the hot side, dt/dn is
much less than either jdt /dn] or dt~/dn, i.e., there is a delicate balance
between the large positive value of dt~/dn and the large negative value of

dt_/dn.
X



Reduced Gradient of Total Temperature, dit/dn

Fig. 4.4 Variation of the gradient of reduced total temperature,
with reduced density n for = 1.1, 1.56, 2.5, and 10.
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dt /dn,
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5> Transport Properties of Shock Waves

5.1 Properties at the Mid-Shock Position

In Section 3 we discussed the variation with Mach number of certain
properties of shocks evaluated at the mid-shock position. In Section 4 we
discussed the gradients of some shock properties as a function of position in
the shock. In the present section we shall discuss variations of the transport
properties of shock waves, both with respect to M* and with respect to shock
pos ition.

Three transport properties are basic to our discussion. There are
T, a measure of the total stress (or momentum Fflux); g, a reduced heat flux,
an3 gx> the part of the heat flux associated with the longitudinal random
motion of the molecules. The properties are calculated from the formulae given
in Section 3. As seen from Eqs.(3.1)-(3.8) 1in Section 3, t and g can be
derived from one moment of f, namely 7\ (see Section 4), or from the lateral
temperature tj_, together with tb which is a known function of the. conserved
moments and therefore of M and of n. To calculate g® an additional moment
mus t be known, namely, 7!%-

Let us first consider the momentum transport T. Eq.(3.4) shows that
it vanishes only when the two temperatures t and f§ are equal. Fig. 5.1 shows
the behavior of T/p”~ as a function of M~, at the mid-shock position. Its
behavior is very similar to that for the Mott-Smith shock. The difference
varies between 2% (near the cold side) and 6% (nhear the hot side).

Fig. 5.2 shows the variation of g and g™ with M~A. From earlier
remarks we know that the curve of g is not independent of the t curve in Fig. 5.1.
However, within a shock wave the lack of equilibration of the longitudinal and

lateral degrees of freedom makes it necessary to introduce also the second
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12)

Reduced Stress, r/p Lat Mid-Shock Position (n

Fig, 50l Variation of reduced stress, T/p”, at mid-shock position (h = h)
with Mach number
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quantity gx in describing the heat flux. As shown in Fig. 5.2, the Mott-Smith
values of g” are larger than the Boltzmann values, and their difference
increases as MM increases.

The ratio gx/q is also of interest. As pointed out by Baganoff and
Nathenson21 the Chapman-Enskog approximation yields a constant value of
gx/q = 0.6. Baganoff"s model23 gives gx/q = 15M2/(7+18M2) where M = local Mach
number. Our solutions of the Boltzmann give the curve shown in Fig. 5.3 which
is in good agreement with Baganoff"s model. Note that even for low Mach
numbers, the ratio gx/q is not a constant as predicted by Chaptman-Enskog
approximation, but is a function of the local Mach number. We have found also
that we can correlate the Mott-Smith values of gx/q with Baganoff®s expression,
but only approximately. The plot of Mott-Smith gx/q is lower than Baganoff"s
curve for large M/~

In fluid dynamics one is interested in the relation between each Tlux
and the corresponding gradient. In Navier-Stokes fTluids the relation is des-

cribed by the transport coefficients g and k, defined by

T/ (dn/dx)

x~
1]

g/ (dt/dx) (G.D

For a gas of elastic spheres the temperature dependence of the coefficients is

given by

T
I

MLt/ eL)n

=~
1]

ki(t/tH)» (G.2)



Fig. 5.2 Variation of heat flux, g, and heat flux associated with longitudinal
motion, qa - with Mach number Ml'
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Heat Flux Associated with

Longitudinal Random Motion, gx/Heat Flux,

5.3 Variation of heat flux ratio q /q with local Mach number M for
Mx = 1.2, 2.5, 4, 6, and 10. X
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In the Kkinetic theory of a non-equilibrium gas, like that in the interior of a
shock wave, it is convenient to use the same definition of transport coef-
ficients but to normalize them by dividing by t2 and the upstream value of the

coefficient. Thus in our discussion we shall use

Clrel

VALY 7 (/1) 2

krel K/k1)/(t/t1)2 G-3)

For a Chapman-Enskog gas (i.e., small values of (Mi—l)) G}e[ and kref should be

equal to one.

These quantities are plotted in Figs. 5.4 and 5.5 against for the
mid-shock position. We notice first that, up to Mj = 10. 1< crel < 1.6 and
1< krei < 3 so that the near equilibrium theory predicts too small values of
the transport coefficients, but not by an order of magnitude. The fact that
our values of these reduced coefficients approach 1 as approaches 1 is
evidence of the extreme accuracy of the Monte Carlo solutions in this region,
for determination of each of the coefficients requires division of a flux by a
gradient, namely, of one small number by another, since each of these numbers
approaches zero as approaches 1. The Boltzmann and Mott-Smith values of
arel are in aSreement within 90% confidence limit for Ml > 2.5; however the
Mott-Smith values of k ~ are significantly larger than the Boltzmann results.

In near equilibrium flows the Prandtl number Pr characterizes the
variation with density of most macroscopic properties. (See Section 6.) We

therefore also calculate it for the mid-point position of the shocks, as shown



at Mid Shock Positi

[X/IX]

(

Ratio atei

5.4 Variation of the viscosity-temperature ratio, a = @)/ )
mid-shock position (n=%) with Mach number M*. re * N1 tl
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Fig. 5.5 Variation of the heat conductivity-temperature ratio, k~""™. -~
(k/k1)/(t/t1)~, at mid-shock position (n = h) with Mach number
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in Fig. 5.6. The Chapman-Enskog value of the Prandtl number for the elastic
sphere gas is 8/9. Our Monte Carlo results are not in disagreement with this
value for weak shocks except near the hot side. The Mott-Smith values for

Pr are nearly constant for weak shocks but are considerably lower than 8/9

(40% for = 1.1 and 1.2). The Monte Carlo results suggest that the asymptotic

value for the Prandtl number, as M™ =* 00, may lie near 0.5 for elastic spheres.

5.2 Profiles of Transport Properties (M = 4)

We next look at the variation of the transport properties within a
shock wave for M = 4. Figs. 5.7 and 5.8 show the variation of three fluxes,
t, g, and for the Boltzmann shock and the Mott-Smith. At the upstream and
downstream boundaries of the shock the Monte Carlo values of the three fluxes
are consistent with the zero values expected there. As shown in the two
figures, the three profiles of the Boltzmann shock are similar to those of the
Mott-Smith shock; however, the differences are significant, especially near the
upstream boundary. The maximum percentage differences are 9.8% (at n = 0.125),
21% (at n = 0.25), and 6.5% (at n = 0.1875) for T, g, and q respectively.

Figs. 5.9 and 5.10 show respectively the variation of G} and k

el rel

in a shock wave for M,i =4 _. The values of a .p are larger near the boundaries
than in the interior of the shock wave and therefore depart quite significantly
from the values expected for near equilibrium flow.1™ This departure is much
larger for k ~ near the downstream boundary. Whether this disagreement is due
to systematic errors in our solutions of the Boltzmann equation near the shock

boundaries or due to errors iIn the (first order) Chapman-Enskog theory cannot

be decided without further investigation. As shown in Figs. 5.9 and 5.10, the
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Boltzmann and k ~ are in agreement with the Mott-Smith values at most
positions for this shock wave.

The variation of Pr vs n is given in Fig. 5.11. The Boltzmann value
of Pr is consistent with the C-E value of 8/9 at the upstream boundary;
however it is very much smaller at the downstream boundary. Except very near
the downstream boundary, the Boltzmann and Mott-Smith values of Pr are in

good agreement.



1/2)

Prandtl Number, Pr at Mid-Shock Position (ft

Mach Number, Mi

5.6 Variation of Prandtl number Pr at mid-shock position (n -
Mach number M™.
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rp and Reduced Heat Fluxes g and ¢

Reduced Stress

Fig. 5.7 Variation of stress T/p-p heat flux g, and heat Fflux associated with
longitudinal motion g with reduced density n for W» = 4.
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Reduced Stress r/p”and Reduced Heat Fluxes q and q

Fig. 5.8 Variation of stress T/p—", heat flux q, and heat flux associated with

longitudinal energy gx with reduced density n for a Mott-Smith shock
of = 4.
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Figo 5.9 Variation of viscosity-temperature ratio, o
n for a shock wave of = 4.
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Fig. 5.10 Variation heat conductivity - temperature ratio k"
with n for a shock wave of = 4.
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Prandtl Number,

5.11 Variation of Prandtl number Pr with n for a shock wave of
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6. Comparison with Navier-Stokes Shock at a Low Mach Number = 1.2)

In Section 2, we have found that the Boltzmann results on RST are
smaller than the Navier-Stokes values for low Mach numbers» In order to extend
our comparative study, we will look at four additional properties in detail
for = 1.2: the density gradient dn/dx, the profile of temperature t vs
density n, the Prandtl number Pr as a function of n, and the viscosity
coefficient |Ji as a function of n.

It is worthwhile to review how the Navier-Stokes shock solution is
usually obtained. The first step is to obtain the integral curve for constant
ir, yielding either the t-n or the t-v profile. As indicated in Section 3,
several properties including temperature are functions of = JVQ T dv; there-
fore, the t-n relation determines also many other shock properties as functions
of density n, The second step is to obtain the density profile, the density n
vs the distance x, by using a viscosity-temperature ([i-t) relation consistent
with the collision law of a gas.

In our comparative study of the Boltzmann and Navier-Stokes for

= 1.2 we need (1) to look at the difference in dn/dx, (2) to compare the
dt/dn profile, (3) to examine the variation of Pr in the Boltzmann shock, and
(@ to see if the viscosity coefficient in the Boltzmann shock is proportional
to the square root of temperature, a relation derived from the linearized
theory for hard sphere gases.

Fig. 6.1 shows the variation of reduced density gradient dn/dx vs
reduced density n. For n > 0.2, the"Boltzmann values of dn/dx are significantly
lower than the Navier-Stokes results. The value of RST for M1 = 1.2 shown in

Fig. 2.2 is proportional to the maximum value of dn/dx in this figure.
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Reduced Density Gradient,

Fig. 6.1 Comparison of density gradients n* of Boltzmann with Navier-Stokes
results for = 1.2. \ “



The results on the reduced temperature gradient dt/dn are compared
in Fig» 6.2 which shows good agreement for the two shocks. This agreement
implies good agreement also for the variation of the properties such as t,
t~, T, and q (which are functions of #5) as functions of density n. Fig. 6.3
shows the variation of Pr vs n in the Boltzmann shock. The significant
variation of Pr, except near the cold and hot sides, is less than 10%. Since
the Navier-Stokes dt/dn was obtained on the basis of constant Pr of 8/9
(corresponding to Pr = 2/3), our result on Prandtl number are also in accord
with that of the Navier-Stokes shock.

The ratio = @AM/ (/) 2 is one for gas of elastic spheres.
We have studied this ratio for the Boltzmann shock (see Section 4). The
variation of this ratio for = 1.2 is given in Fig. 6.4. We note that this
ratio is appreciably greater than unity, with a maximum departure of 40%. The

fact that the ratio a, is greater than one for the Boltzmann shock is the

ei.

reason why the Boltzmann dn/dx and RST are smaller than the Navier-Stokes

results for = 1.2 and other Ilower Mach numbers.
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di/dn

Reduced Temperature Gradient

6.2 Comparison of Boltzmann gradient of reduced temperature,
with the Navier-Stokes values for = 1.2.
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dt/dn,
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7. The Velocity Distribution Function (M"=4)

In the previous sections we have discussed the dependence on Mach
number and shock position of many moments of f, the velocity distribution
function, and of other functions derived from f. In this section we shall
describe the behavior of T as a function of position in velocity space for
one Mach number (M*=4) and at several positions in the shock.

The qualitative feature of the distribution function was monitored
by the CSL computer graphical display system.22 The layout of the velocity
space for the display of our velocity dependent functions is shown in Fig, 7,1,
A representative distribution function f at the mid-shock position (h = %) ,
given in Fig, 7,2 for M» = 4, shows well its bimodal characteristics.

For the reasons explained in the Introduction we shall present our
results in the form of comparisons of the Boltzmann values of f with the Mott-
Smith values. We shall also compare our results with the special distribution
functions measured by Muntz and Harnett.23 Before making these comparisons we
should interpolate remarks about approximate theoretical methods.

Direct comparisons of our solutions of the non-linear Boltzmann
equation for shock waves with various approximate descriptions of shock waves,
like those based on the Mott-Smith or the Krook model, are obviously of interest.
One comparison of Krook and Boltzmann collision integrals is made in Section 8.
Otherwise we defer detailed comparisons until later papers, remarking, however,
that the Krook solutions for the shock waves are obtained very easily by our
Boltzmann program and for exactly the same values of those parameters which
control the nature of the numerical methods used. An auxiliary program makes
possible direct estimates, at any point in velocity space, of the accuracy of
either the distribution function or of the collision integral calculated from

the approximate shock descriptions.



Fig.

7.1
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Computer Graphical Display

Function Displayed

Layout of velocity space used in the computer display system to
exhibit functions of velocity.
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Shock

(Mx=4, n=1/2)
Distribution Function f

(Front View)

Fig. 7 2 Display of distribution function T at mid-shock position (n =\)
for W = 4.
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Let us now define

6F  Toortz. s (7.1)

each term in the equation, of course, being calculated for the same value of v
and n, and for the same Mach number.

The nature of the variation of 6Ff across velocity space for the mid-
shock position (n = %) 1is shown in Fig. 7.3. Notice that there are regions in
which 6f is positive and other regions in which 6F is negative. These regions
are well-defined at all positions within the shock but their shape, and size vary
with position. This figure suggests that the errors of the Mott-Smith function
for this Mach number and position in the shock are indeed significant.

This opinion is confirmed when we look at values of 6f for individual
bins in comparison with the estimates we have made of €90f for the same bins.

We. find that for about 40% of the bins at most shock positions 6f is greater
than 367f, that is, the 6f observed for these bins would occur by chance only
once in 100 or more trials. Near the cold boundary these highly significant
values of f occur only for about 20% of the bins, so that here the Mott-Smith
Ansatz gives fewer large deviations from the solution of the Boltzmann equation
than elsewhere. Nevertheless the largest individual deviations also occur near
the cold side of the shock.

The rms values of both 6f and are approximately constant across
the shock. The rms value of 6f for all stations (l_EkbGLYZ) is 1.7 times larger
than the average value of €9Qf (DJK%(KTZ) and is a 6.3 times smaller than the

rms value of f throughout the shock.

*

Essentially the same result was found earlier for the M*» = 2.5 shock.q
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Shock
(Mx=4, n=1/2)
Difference in Distribution Function

N ABoltzmann ¢ MMott-Smith

(Back View )

Fig. 7.3 Display of the difference between the Boltzmann distribution g nction
and the Mott-Smith distribution function 6F = F - f at mid-

shock position (n = for = 4. Boltz. MS
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A qualitative summary of the characteristics of 6f, and therefore
of f itself, would be useful in guiding the future development of analytical
or analytical-numerical methods of describing the properties of shock waves«
Let us therefore summarize the qualitative features of the solution f(v,n) of
the Boltzmann equation for the shock wave« To do this we shall again use 6T,
the departure of f from the corresponding Mott-Smith function, because the
fractional deviation 6f/f is generally small, though not small in each local
region in velocity space and in the shock. What are the qualitative properties
of 6F obtained from our solution of the Boltzmann equation?

1) 6f

0 at the up and downstream boundaries of the shocks.

2) 6n in Eq.(7.1)

J?Gﬁw must = O because the values of f and fM

Borltz g

are calculated for the same value of n. Therefore, 6f must have both positive
and negative values for each position in the shock.

3) The three conserved moments of 6f, like those of f and of fh -
must be constant across the shock.

4) 6f cannot be represented as a product of a function of n and a
function of v, because the shape of the isolines of 6f changes with n, i.e.,
with position in the shock.

5 In particular, 6f is not simply proportional to n(l-n), because
analysis of three of the non-conserved moments of f show that it cannot be
represented by quadratic functions of n.

23 -

Muntz and Harnett have recently made two experimental measurements

for M, = 1.59s F(v ) = Jf dv_dv and F(v_) = PF dv_dv . They found that F(v_)
’j- X u Xy Yy Xz X
deviates significantly from that of the corresponding Chapman-Enskog8s first

iterate. In order to find if similar deviations exist between our Boltzmann

results and those of C-E Tfirst iterate, we have made a similar comparison for
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M,1 - 1.59 for hard spheres. The results on half-width of F(vx) are shown
in Fig. 7.4.

It was indeed interesting to find that we have obtained the following
detailed agreements with Muntz®s findings: (1) the half-widths of F(vx) over-
shoots in the region n > %; (2) the half-widths of F(v ) are smaller than the
C-E values in the region n < \ but are larger in the remainder of the shock,

(@) the departure of profiles of F(v*) from those of C-E, are significant,
depending on the location in the shock, (4) the results on F(v®) indicates there
is a significant enhancement of high speed molecules (large v ) in comparison
with C-E results.

We should like to point out that Muntz"s results are for Argon gas
with different collision cross-section than that of hard spheres; therefore, it
would not be possible to make direct, quantitative comparison of our Boltzmann
results with Muntz®"s values. However, we are pleased to find the detailed
qualitative agreement mentioned above, especially for a relatively low Mach
number of MA» = 1.59 in which a high accuracy of the calculation of the small

Boltzmann collision integrals 1is required.
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Navier-Stokes

Boltzmann - Average 90%
Confidence Limit = 1.7%
(Monte Carlo Collision Sample =217)

Experiment - Muntz 8 Harnett

W = WsWI
w2W:
W = Half -Width

1~ Upstream
2 ~ Downstream

0.2 0.4 0.6 0.8 1.0

Reduced Number Density, n

NP-277

7 4 Vvariation of reduced half-width W of the function F(v ) ff dv dv
Yy

with reduced density n for = 1.59.
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8. The Boltzmann Collision Integral (M'=4)

As pointed out in the Introduction, it is Nordsieck’s method of
evaluation of the (nhon-linear) Boltzmann collision integral that has made
possible the solution of the Boltzmann equation for strong shock waves and
other far-from-equilibrium situations» We have deferred discussion of the
collision integral until this concluding section, however, because the char-
acteristics of the function, even though fundamental to understanding the
detailed behavior of rarefied gases, are less familiar to gas dynamicists than
the distribution function and its moments.

We shall First describe briefly the nature of the Boltzmann collision
integral, as calculated by Nordsieck"s Monte Carlo method from a solution of
the Boltzmann equation for M*=4_. We shall then compare this function, as well
as its two parts separately, with the approximations to it associated with the
names of Mott-Smith and Krook in order to discover how far these approximations
may be useful as descriptions of the solutions of the Boltzmann equation for
strong shocks.

In Fig. 8.1 are shown the isolines of the function \fj_(a-bf) (the
function calculated directly by our numerical solution of the Boltzmann
equation) at the mid-shock position (n =\) for M-"=4. The negative values of
the function for large positive v» correspond to df/dx < O and to the scatter-
ing loss of molecules with high forward velocity, like those characteristic of
the cold side of the shock. The negative values for v < 0 (molecules moving
in the upstream direction) correspond to df/dx > 0. The collision integral
should vanish on the line vx = 0 if df/dx is to be finite there. This require-
ment is a strong test of the reliability of numerical solutions of the

Boltzmann equation or of approximations like those of Mott-Smith and Krook.
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Fig» 8ol Isolines of the function \j (a-bf) at the mid-shock position for

= 4. vt (a-bf) is the function calculated directly by Nordsieck’s
Monte Carlo method»
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Except in the case of a few velocity bins the values of (a-bf) obtained by
Monte Carlo solution of the Boltzmann equation satisfy this criterion well.

A graphical representation of (a-bf) is given in Fig,, 8.2. The
negative peak is again in evidence. The values of the ordinate elsewhere
are all positive except for vwx < 0. The function f increases in the down-
stream direction, as noted in the preceding paragraph, except near the cold
peak o

Now let us look at the situation for the Mott-Smith approximation.
Mott-Smith"s Ansatz does not, of itself, provide values of the collision
integral from solution of the Boltzmann equation.* We therefore compare the
values of (a bf)~g calculated from our solution of the Boltzmann equation,
with a given Monte Carlo collision sample, to values of (a-bf)Mg calculated
from Mott-Smith values of the velocity distribution function using the same
collision sample. We already know from the discussion in Section 2 that
(a-bf}ns calculated from the Mott-Smith f is proportional to n(lI-n) and that
this proportionality does not hold for the Boltzmann values of (a-bf) calcu-
lated from solution of the Boltzmann equation. We could now show, in full
detail, how the Boltzmann and Mott-Smith values differ from one another over
velocity space. Instead, we will just comment here on two features of the
Mott-Smith values.

We find, TFfirst, that the curve along which (@~bf)MS=0 is displaced
from the line v”~=0 by about 10% of the upstream gas velocity. The Mott-

Smith (a-bf) thus does not satisfy the criterion that it should vanish on the

The collision integrals of the Mott-Smith distribution function could be
evaluated analytically and were obtained by Narasimha.
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8.2

Shock

(Mi =4, n=1/2)

Boltzmann Collision Integrals, (a - bf)

(Back View)

Graphical display of the Boltzmann collision integral
at the mid-shock position (n = %) for = 4.

(a-bf)

82



83

line wx=00 Aside from this strong defect of the Mott-Smith (a-bf), its
qualitative features like the negative peak, for example, agree well with
the Boltzmann (a-bf).

The Krook Ansatz says that the collision integral should be replaced
by b(fecff)’ where b = average collision frequency. The function féq is the
Maxwell-Boltzmann distribution function for the same values of the density,
temperature and gas velocity as obtained locally for the gas in the shock wave,
that is, the values calculated from the Monte Carlo velocity distribution f.
IT the Krook collision term accurately describes the variation over velocity
space of the Boltzmann collision term, even if only in part of the shock wave,
then in this part the Krook equation can be used to replace the Boltzmann
equation.*

We look first at the behavior of the Krook term near the line vk:O.
We find that for n in the range 0.6 to 0.8 the Krook term vanishes near this
line. For other positions iIn the shock the curve on which the Krook term
vanishes is displaced by 5 to 30% of the upstream gas velocity, the greatest
displacement being near the cold side of the shock. From this qualitative
evidence we conclude that a solution of the Krook equation can satisfy the
Boltzmann equation, for = 4, only near n — 0.7. Aside from this major
defect the Krook expression is similar, in its qualitative features, like the
negative peak, to the Boltzmann term.

It would be of interest also to see if the gain term a is symmetrical

with respect to u, the local average speed as predicted by the Krook model.

Solutions of the Krook equation for the shock waves are easy to obtain with
our program. Detailed comparison of the "Krook shock'™ and the 'Boltzmann
shock'™ 1is, however, a large topic that will be treated elsewhere.



84

Fig. 8.3 shows the behavior of "a" in the velocity space for the unit shock
position (n = %) for = 4. (As mentioned in the Introduction, the gain
term "a" and the loss term bf in the collision integral are calculated
separately.)

We also may ask how well values of the Krook expression, for given
velocity bins, agree with the Boltzmann values. We find that for VX< 0 the
Krook values are generally too large by a factor of about 1.6. Thus if each of
the Krook values, for all bins for which vX < 0, and for each station in the
shock, were multiplied by 0.6, these values would agree with the Boltzmann
values, within about 15% on the average. The situation is quite different for
the bins for which v > 0. Here the values of the Krook expression are too
large on the average by factors which vary, from 2,6 at the upstream side of
the shock (n=1/8) to 1.4 at the downstream side (n=7/8). We might say then
that the Krook expression overestimates the collision rate more seriously on

the upstream side of the shock than on the downstream side.
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Shock
(M1=4, n=1/2)
Boltzmann Gain Term "a"

(Front View)

Fig. 8.3 Graphical display of the Boltzmann gain term "a"™ at the mid-shock
position (n = %) for = 4.
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