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Abstract

This paper presents a simple number-theoretic investigation 

of the structure of binary arithmetic AN codes. The range (0, B-l) of 

represented integers is related to the code length n through 2n-l = AB. 

The analysis is based on the partition of the integers 1 < N < B-l into 

orbits, which are analogous to cosets of the multiplicative subgroup of 

the powers of 2 modulo B. It is shown how the code minimum weight is 

related to the members of the orbit. The properties of sets of prime 

powers are used in developing a simple search strategy for codes. An 

important consequence of the presented analysis is the construction of 

codes of moderate distance and high rate, thereby filling the spectrum 

between the two known extremes of the single-error correcting Brown codes 

and of the maximum-sequence-like codes of Barrows and Mandelbaum. A list 

of codes of length < 36 is finally presented.
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I. Introduction

Arithmetic Codes, first proposed by Diamond (1955) have 

been the subject of continuing investigation over the past years. Single- 

error-correcting arithmetic codes have been investigated by Brown (1960), 

Peterson (1961), and Bernstein (1962). Burst-error-correcting arithmetic 

codes have been studied by Henderson (1961), Mandelbaum (1965), Stein (1962), 

and Chien (1964). In the case of multiple-error-correction only partial 

results are known. Results have been reported by Bernstein (1962),

Barrows (1966), Mandelbaum (1967), Chang and Tsao-Wu (1968) and Chien,

Hong and Preparata (1968). A survey of early results was given by 

Massey (1964). Use of arithmetic codes for improving computer reliability 

has been proposed by Avizienis (1965).

The purpose of this paper is to present new results on the 

determination of the minimum distance of arithmetic codes. Analytical as 

well as computational results are presented.

II. Background and preliminary results.

The codewords of an arithmetic code have the form AN. A is a 

fixed integer called the generator and N is a generic integer in the 

interval (0, M-l). Clearly M is the number of code words as defined by 

Peterson (1961).

The arithmetic weight (just "weight" hereafter) of an integer I 

is defined as the least number of nonzero (+1) digits required to represent 
the number I in the modified, binary form to be described later. The error 

correcting capabilities of the code depend solely upon the arithmetic weight
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of the code words. Although a generalization into any radix system is 

easy, our discussion will be confined to the most practical binary case 

only. The distance between the two codes words AN^ and AN^ is the weight 

of |a n l - AN^| and it is easily recognized as the weight of some third 

code word. Hence, the minimum distance of the code is merely the minimum 

of the weights of all the nonzero code words. An error pattern E is 

called t-fold if the weight of E is t, and the code can correct errors 

up to t if and only if the minimum distance of the code is larger than 2t.
We now recall the representation of an integer b in Nonadjacent 

Form (NAF). The sequence q^q^^.q^ is said to be the NAF representation 

of the integer b if

b = S q.21 
i=0 L

and
q ± = -1,0,1 (i=0,l,...,n)

V i + i  = 0

One way to obtain b in NAF is to expand b in a binary representation and 

apply a conversion algorithm due to Reitwiesner (1960). The algorithm 

terminates and the NAF representation is proved by Bernstein (1962). The 

NAF algorithms are related to techniques for speeding up arithmetic pro­

cesses and therefore have been the object of extensive studies in the 

latter context. (See, for instance, Wilson and Ledley (1961), Robertson

(1958)(1967), Metze (1962) and MacSorley (1961). The following variation
£is particularly useful for our purpose. Consider the fraction — where

both a and B are positive integers. 0 < a < B and B is odd. The digits

q̂, of — in NAF and the residues of each step of the expansion are recursively
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given by the following algorithm.

( 1)

1. - Set r  ̂= a/2.

2. - Compute and according to the rules:

2r . = q . ,-.B+r l ni+l i+l

( 2) qi+l

1 if 2B > r > B
3 i 3

0 if B > r . > B
3 l 3

-1 if l A > r . > 2B
3 l — 3

i = -1,0,1,2,

The following theorem establishes the validity of the given conversion 
algorithm.

Theorem 1: With the application of the Direct NAF Conversion
Algorithm:

(3) ’iqi + i = 0
,/ , 2B . 2b(4) _  > r . > . _

for i = 0,1,2,... .

Proof: For the case i = 0, if q^ = 0 (3) and (4) are automatically satisfied.
2b or rIf qQ = 1 then B > a > — , and 0 > rQ = a - B > y -  -B = - y  and q = 0 as

required; also rQ satisfies (4). If q = 0, (3) is satisfied and, by the 
B Balgorithm, — > r_̂ _̂  ^ ~ i-s satisfied also. If q^ / 0 we may assume

q-¡_ = 1 • (The case of q̂  ̂= -1 can be proved by a parallel argument.)
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q. = 1 implies /  > > f and f -  >  >  f - .  As = q.B+r.,
B B
3 > ri - " 3* Consequently, q .+1 = 0 and both (3) and (4) are satisfied 
2B 4b B b—  - B < ri < —  -B or equivalently - j < r ± < -j. Hence q = 0,
i i 2Blrl f: ~2 ~» and the theorem follows from mathematical induction on i. „

It is further observed that when the integers are considered 
modulo B, one may write,

(mod B)

jg
or — > r^ > 0, (mod B) .

(5) i+1

/
f  0 if F> . B r . > — i — 3

= 0 if B > r . > | aV i — 3

Also, r^ - 2Xro modulo B. Denoting by e(B) the exponent of 2 modulo B,

that is e(B) is the least integer for which 26 ^^ = 1, then r 5 2e ^ ri i
- ri+e(B)* also follows that qi+e(B) = for i > 1, namely the
expans ion

f = q0. ql q2 *•*

is periodic with period e(B) for i > 1; * ’'^e (B) is termed the
B-period of a/B, and its weight is defined as the number of nonzero q ' sni
it contains (1 < a < B-l).

Hereafter we shall consider arithmetic codes for which

B M = B



8

If N is modulo B, then AN is modulo 2e ^^-l. The generic code word then 

becomes

AN = N 2e(B^-l = ^(2e(B)-l) = S )q.2e(B^'J- q 
B B j=0 J 0

If = 0, the weight of AN is clearly the weight of the B-period of N/B.

If qQ = 1, notice that

AN = A(N-B) = (|-1)(26(B)-1) = (qQ-l) + e(B)'j-(q -1)
j=l J

i.e., the weight of AN equals in all cases the weight of the B-period of 

N/B. The preceding discussion proves the following Lemma:

Lemma 1. - The minimum distance d^CB) of the code generated by 

A = (2  ̂  ̂ )/B is the minimum of the weights of the B-periods of j/B,

(j = 1,2,...,B-1).

We now investigate the dependence of the weights of the B-periods

of j/B(j = 1,...,B-1) upon the number theoretic properties of B.
n a ±

Let B =  TT p^ and consider the integers in the interval

Ig = [l,B-l]. Consider now the sequence of the powers of 2 modulo B, i.e.,

F = {fj} = (fQ,fi*...>fe (B)-l^ w^ere fj = 2^ mod B. Then for any integer
a€l , the sequence {af .} is called the B-orbit of a. To characterize the 

B J  -------------

orbit we distinguish whether a is or is not relatively prime to B . In 

the former case there are cp(B) such integers, where cp ( ) is the Euler 

function. These integers form a multiplicative group £, and F is the
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B-orbits.
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Consider now an integer b€l^, relatively prime only to a proper

divisor Bn of B. We have that b = kB0, where B,B0 = B, and bf , N = b,
L 2 12 e(B^)

i.e., the B-orbit of b is periodic with period e(B^) and is the con­

catenation of e(B)/e(B1) copies of (90B2’* *’,qe (B )-lB2) where 
(9q »•••»9e )_i) is a local B^-orbit. The B-orbits of all such b's are 

called the transferred B-orbits, originated by local B^-orbits, for proper 

divisors B^ of B. This completely describes the orbit structure of B.

It is easily recognized from the definition of B-period of a/B 

and relation (5) that the weight of the B-period equals the number of 

integers in the orbit of a belonging to the semiclosed interval [b /3, 2B/3), 

hereafter denoted as the middle third of B. Since g£[Bj/3, 26^3) implies 

gB2€ [B/3, 2B/3), (6^ 2=6) then the number w^Ca) of middle-third elements 

of the (transferred) B-orbit of a is given by

( 6) V a) e(B)
etfsp

where w (a) is the number of middle-third elements in the B,-orbit of a. 
1 1 

The number of middle-third elements in the B-orbit of a is conveniently

designated as the weight of the B-orbit of a. This is summarized by the
following fundamental Theorem«

Theorem 2« - The minimum distance dm (B) of the code generated 

by A = (2e(B)-l)/B is the minimum of the weights of the local and trans­
ferred B-orbits.
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When B is a prime and has either 2 or -2 as its primitive root,

we have Barrows-Mandelbaum (1966, 1967) codes. Then e(B) = B-l, and there

is a single local B-orbit of length B-l, i.e., containing all the positive

integers less than B. Hence the B-orbital weight w (j) is constant for

all 1 < j < B-l and is given by [(B+l)/3]. This coincides with the
*expression for the code minimum distance as found by Barrows. As is 

well-known, the rate R(B) of these codes,

R(B)
l°g2B
B-l

is rather poor. Hence the Barrows-Mandelbaum codes are characterized by 

large distance and low rate. Indeed, they correspond to the maximal 

length sequence polynomial codes (Peterson, 1961). On the other hand, the 

single error correcting arithmetic codes (Brown, 1960 and Peterson, 1961) 

correspond to the other extreme case, i.e., the Hamming codes, which 

have good rate but can correct only one error. Our primary aim is to 

produce codes that lie between these two extremes, thus achieving reason­

able rate and minimum distance at the same time.

If B = pr , (p has 2 as its primitive root), dm(pr) = pr \  .PXP.tA).]
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III. Search Strategy for Codes

A prime p is called 2-regular (see Chien, 1964) if the exponent
2of 2 modulo p is different from the exponent of 2 modulo p. There are

£
only two non-2-regular primes less than 10 , namely 1093 and 3511 
(Riesel, 1964). Our attention is confined to 2-regular primes in the 

sequel, with practically no loss of generality. First, we recall a well- 

known theorem on the exponent of 2 modulo B, when B is a composite 

number.
a . ,

Theorem 3 Let B = tt p. 1 (a. > 1 for all i, 2'"f'B) and let e. = e(p.).
i=l 1 1

The exponent of 2 modulo B, e(B), is given by

(7) e (B) LCM r 1
]

Since LCM [a,b,c] = LCM [a,LCM[b,c]] and LCM [ab,cd] = ac LCM [b^d] 
2if (a,b) = 1, (c,d) = 1 and (a,c) = 1, one can rewrite Eq. (7) as

n a --1(8) e(B) = LCM [ tt p .  1 , LCM [e.]]
i=l 1 i 1

Obviously LCM [e .] = e 
i

(9)

( tt p.). We now factor LCM [e.] as. , l li=l l

LCM [e.] = (̂  TT p. lN) K 
i 1 V i=l 1 J

where s_̂  > 0 and K is not divisible by and p^ for all i. Thus,

^ajb denotes "a divides b" and a Njv b denotes "a does not divide b". 
(a,b) denotes the greatest common divisor of a and b.
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( 10) e(B) = if p max^i-!,8^ K
i=l

Given n distinct primes, p^,p2 »..., and p^, the exponents s^'s and 
K are entirely defined by Eq. (9). We call

( 11) S ~  S ( p - , p 2 ,  .  .  .  , p  )  =  TT p .1 z n . , ii=l
Si+1

the .g.aturation product of the given set of n primes, (S was called Kernel

in Chien, 1964). We first remark that e(S) = K 1  p,  1 = e(B) for any 
n 1=1 i y

B " 71 pi (a i — •*■) that divides S. An additional property of S withi=l
reference to its multiples is given by the following theorem.

n a •Theorem 4; If B = tt p 1 (a > 1) is a multiple of the saturation
i=l

product S(p1,p2,...,pn), then i) e(B) = e(S)| and ii) the number g(B) of 
distinct local B-orbits equals g(S).

Proof: Property i) is apparent from Eq. (10). For ii) let
n s.+l+fl.

B = n P.- (3. > 0), then
i=l 1 1 “

_ S .+3 .
f f  p 1 1

(12) g (B) = = ifl 1_____' ; e(B) n sTT 1 i
i=lPi

(V D i= 1
K = =  R ( S ) e(S)

K
Q.E.D

(13)

The rate R(B) of the code generated by (2e -1)/b is given by

R (B) =
log2B J ^ i ^ P i
e (B) n max (a . -1, s . )• TT p. 1 * i.

i= 1 L
(a. > 1)

K
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a .

For B (B = tt p_j, 1(ai > 1)), a divisor of S, e(B) = e(S), that is, the 
denominator in Eq. (13) is constant, whence R(B) is maximized for B = S. 

For B, a multiple of S, with increasing a^'s the denominator of Eq. (13) 

grows faster than the numerator, whence R(B) is again maximized for B = S. 

We summarize this formally as a theorem.

Theorem 5: Given a set of odd primes, p ,p , ...,p , B = S(p.,p_,...,p )
i  <£ n  i  A n

generates the maximum rate code in the class of codes generated by
Oi

(2e ̂ -1)/B, with B = . t t ,  p. , (a. > 1).i =  i  i  i  — '

Theorems 4 and 5 provide general guidelines for the search for 

"good" arithmetic codes. Let us first consider the codes generated by
"Dmultiples B of the saturation product S. Since e(B) = e(S)- and g(B) =s

g(S), the weight of the local B orbits is expected to be B/S times as

large as the one of the local S-orbits, yielding codes with large distance

but low rate. We mention here that a large proportion of these codes

(hereafter referred to as "extension codes" and further examined in

Section 5) are characterized by the ratio dm(B)/e(B) = dm(S)/e(S).

Let us now consider the codes generated by divisors B of S 
n 01 ’(such that B = tt p^ , (o^ > 0)). These codes have all the same length 
i=l

e(S) and increasing efficiency as B approaches S. We notice that as B

approaches S, dm (B) is monotonically nonincreasing. In fact, from Theorem

2, the minimum distance ^(B) is the minimum of the weights of the local

B-orbits and of the transferred B-orbits. The minimum of the weights of

the latter set equals d (B,) for some proper divisor Bn of B , whencem i  1 *
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dm (B) < d^(B^). (B^ divides B)

Since R(B) > R(B^) , the previous relation suggests the possibility that

we may gain rate without sacrificing minimum distance (i.e., when

dm (B) = d^(B^)). Therefore codes with high rate and large minimum
n Oi

distance are to be expected for values of B = II p, corresponding to
i=l 1

choices of (o^, 0i2 ’ ° ° ° i0in ) c‘*'ose to (s^»s2 > • •«>sn) in the lattice of 
integers having (s^s^,...,sn) as its supremum (See table II). This 

remark provides the rationale underlying the search for codes«

This search requires the actual computation for given B of the 

minimum distance of the code generated by (2e^-l)/B. The following 

remarks are quite useful in order to reduce the computational effort 
required.

n a 'Consider a given B = TT p„ (cy . > 0) , a divisor of the satura-
i=l 1 1

tion product S(p.,p_,...,p )„ Let w . (B.) be the minimum of the weights i z n min j °
of the local B^-orbits, where B^ is a divisor of B. Then, according to 
Theorem 2

d (B) = min -fw . (B . )£~4 ^  N 1 m V B |Bl minv j;e(B,) J

where the minimization is over all divisors B^ of B. The problem there­

fore reduces to computing wmin(B) for given B . The code length, e(B), 

and the number of distinct local B-orbits, g(B), are given by relations 

(7) and (12) respectively. One has to generate the local B-orbits and
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check the weights in each orbit by counting those elements that are in 

the middle third of B. We now provide a useful theorem for the deter­

mination of w . (B).m m
First, consider a B 4- 3, and any r such that (r,B) = 1.

Clearly if r is in the middle third of B, -r mod B also is in the middle 

third of Bo On the basis of the following theorem the actual checking 

effort can be halved.

Theorem 6: The integers r and -r (1 < r < B, (r,B) = 1) belong to

distinct B-orbits (having equal weight) if and only if 2e B̂^ 2 + 1 = 0 mod B. 
Otherwise, the B-orbit they belong to contains r and -r^e(B)/2 positions 
apart.

Proof: r and -r belong to the same orbit if and only if -r = r2^,

(0 < k < e(B)), i.e., r(2 +1) = 0 mod B. Since (r,B) = 1, it must be 
k 2K(2 +1) = 0, or, equivalently 2 - 1 = 0  mod B. It follows that e(B)

divides 2k, or k = j— for some positive j, whence k = e(B)/2.

Q.E.Do
We now select the B's to be inspected according to the guide­

lines provided by theorem 5 and the ensueing discussion. Theorem 2 

provides the basic search algorithm to find the minimum distance of the 

code to the chosen B. The minimum weight of the local B .-orbits for all 

the divisors B^'s and B is checked according to theorems 1, 3 and 6. A 

computer search, programmed on the CDC-1604, produced thousands of codes 

of various lengths in a reasonable time. For each length and minimum 

distance the highest rate codes (R > 1/3) are presented in Table I.
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In Table II, we present codes whose B's have the same prime divisors, 

to illustrate the point that, indeed, rate improvement is possible 

without sacrificing minimum distance for those B's that divide the 

corresponding saturation product.
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TABLE I

List of Codes Discovered
Code
Length

Minimum
Distance

Rate 
(> 1/3)

10
12
14
15 
18 
18 
20 
20 
20 
21 
21 
22 
22 
24 
24
24
25 
25
25
26 
28 
28 
28 
28 
29
29
30 
30 
30 
30
33
34
35 
35 
35
35
36 
36 
36 
36 
36 
36

11
39
43
151
133
667
123
451

3813
337

2359
267

15709
663

1989
46995

601
1801

55831
2731
1247
1695

24295
215265

2089
486737

1661
14949
71827

1649373
13788017

43691
2201

122921
279527

15610967
2071

24309
73815

959595
4740255

123818877

4
4
4
4
5
4
6
5
4
5 
4
6
4 
6
5
4 
7
5 
4
4 
7
6
5 
4
6
4 
7 
6
5 
4 
4
4
7
6
5
4 
9
8 
7
6
5 
4

0-400
0,500
0,429
0,533
0,444
0,556
0,350
0,450
0,600
0.429
0.571
0.409
0.636
0.417
0.458
0.667
0.400
0.440
0.640
0.462
0.393
0.393
0.536
0.643
0.414
0.655
0.367
0.467
0.567
0.700
0.727
0.471
0.343
0.486
0.543
0.686
0.333
0.417
0.472
0.556
0.639
0.750
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TABLE II

Comparison of Codes with Same Prime Components

Length Minimum 
Distance

B Better B

18 4 3.73 32.73
20 4 5.3.11 52.3.11

4 5.3.31 25 .3.31
21 3 7.127 27 .127
30 6 3.11.151 32 .11.151

3 3.31.151.331 32 .31.151.331
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IVo Extension Codes

We begin this section by investigating the sum W(B) of the

weights of the local B-orbit, To this end, we shall introduce some

convenient nomenclature. Let Z(B) ^ [^±i] = E W(Bn). Next, since 
n “i 3 B |B 1

B ^ > we represent B as an ordered n-tuple of exponentsi=l
P^ s> i«e», B = (O'̂ ,0̂ 2 > •«• ,Qi'n) . Thus B and all its divisors are 

represented as an n-dimensional lattice. If B,|b , B, = (3 ,3 ,.,.,3 )1 1 1 2  * n
with 3^ < ot^ for all i, and we denote this as B ^ C  B ("B covers B^").

Be*- Bq ~ 1 jQ̂2_ 1 > •» • >an~ 1) • B and B^ clearly defines a unit-n-cube C,
with l.u.b. = B and g,l,b. = B « When a point F € C , P  = (a ,-b ,(* -bo * 7 N i i * 2 2 * *

an’bn^ and h i  = 1 or 0 for a11 io Let h (p) = 2 b -> i.e., the Hamming
i=l 1

weight of the vector (b_,b0,... ,b ), Now,l z n

Z(B) = [ ^ ]  = E W(B .) , 
B .CB 1

or, equivalently, 1

W(B) = Z(B) - E W(B.) .
B.CB 1

Iterating this expression we see that the only points contributing to W(B), 

are the points in C, and they give positive or negative contribution 

to W(B) depending on whether they differ from B in even or odd number of 

coordinates, respectively. Therefore, from the definition of h(P),

(!4) W(B) = Z (-l)h(P)Z(P) .
PGC

We now obtain a convenient expression for Z(P). First, assume that 3
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does not divide B, so each can be expressed as = 3n^ + (-1)6i

with 6. = 0 or 1.l
•Dii i n c. <*.

Z(B) = [ ^ ~ ] = [j( n (3n.+ (-l)61) + 1)]
i=1

O', n l
-  [t ( n ( £  ( “ l)(3n.) 1 + 1)].

J 1=1 j=0 J

When the product is expanded, each term is divisible by three except
n 6 .a.
II (-1) 1 L, whence 
i=l n 6 .a.

n (-1) 1 1 + 1
i=l-■ n  a . 1 n 6 . a .

Z(B) = - D p . 1 - -  n (-i) 1 1 + 
i=l i=l

n 6ia i
Since II (-1) = + 1, the third term clearly equals zero. Substituting

i=l
ot. for cy.-b., we obtain Z(P), asl l i

(15)
R n i b. 1 ^ia i ” 6 .a.

z(p) = |  n (i ) 1 - i ( - i ) 1 1 ,n,(-i> 1 13 . , p . 3 1=11=1 l

From Eqs. (14) and (15),
n n 

£ bv k s 6.cr.2 b. , . i i i u u, -B * • i 1 n i b. . ,vi=l + . , i n 6.b.
w (b) = 1 2 {(-l)1 n (-4 r {(-l)1 1 n (-i) 1 L}

b. i=l Pi b.1 1 i= 1

(16)

B * n i b. , ,.1=1 1 1 * " (1+61)b1= f S { n (r1) --4̂ • }
b. i=l pi J b.1 1

where £ means that the sum is over all the binary n-tuples (b.,b_,...,b ). b 1 2 n
1
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We recognize now

and likewise

b.l

n
C n ((-1)
i=l

1+6 b
') X}

n 1+6 .
n (i+(-i)
i=l

which is 2 if and only if 6  ̂— 1 for all i, and zero otherwise. Thus we 
obtain fromEq. (16),

(17) W(B) 3

n
X a .

( - 1)
i=l if 6 . = 1l for all i and

(18) W(B) - if some 6 .=0d i

Now assume that 3 divides B. We let P =3 without loss ofn
generality.

, Oi -b n-1 a ,-b.
Z(P) = [-£(3 n n n P. 1 1 + 1)].

i=l 1
Oi -b -lrn-l Oi .-b . }

Clearly Z(P) = 3 n ^ II P 1 1 > for PEC and Oi >2, which in turn leads
_ (B) (,i=i j "■

to W (B) - 3 . I f  nowo;n=l, we partition C into D and DC, such that if
P^h, b^ — 0 and if P6D , b =1. We have,

/

Z(P) i

1 "Z1 (“ i'bi> 1 n-l V V V= 3 n p - 1 n (-1) 1 1 1
i=l J i=l if P6D

n-l (a.-b.)TT 1 i
i"iPb if PGD
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Rewriting Eq. (14) we get

W (B) = £ (-l)h(P)Z(P) + £ (*l)h(P)Z(P)
P6D P€D

n-1 Oi
Note that D is a unit- (n-1)-cube, and since II p, is not divisible by

b i=l 1
3, the first sum is (-1) ^(-|) = -W(^) (since b *1 if P6DC) to which the 

relations (17) and (18) apply. The second term is given by

b n-1 Oi. n-1 .. b. _
( -1) n £ { n p 1 n 1} = tp(f)

b.^b i=l i=l il n

Observing that cp (|;)_ = for a = 1, we readily obtain, for Oi =1(P =3),k3y 2

and 0^=1 for all i^n?
n n

" I 1* .
Î 1 1

W(B) . 2iSi 1 SEiBi + ill!“  2n"13 2 3

= ̂  + Ç ^ ( - 1)15“ 1

3 3  ̂ '

Summarizing these as a theorem, we have

Theorem 7: W(B), the sum of all the weights of distinct local B-orbits of
n a i

B = iHipi ^ i - 1^



23n

i) W(B) = if p^ = Sn^-l for all i

n-1 2
ii) W(B) = ^ ̂  “ ~ (“1) if Pn=3, 0^=1 and p^=3n^-l ¥i^n

iii) W(B) = ^   ̂ otherwise.

The third case of above theorem is of particular interest. Most

odd numbers are in this category and this is the case when we can easily

determine the minimum distance for B's that are divisible by the saturation

product, S, as will be shown in the sequel.

First we extend the concept of saturation with respect to a

subset of the prime factors of a number T. Relabelling the indices when 
n <*

necessary T - II p is said to be saturated with respect to the primes 
i=l

Pi > Po >« • •»P_ if a. > s . + 1 for i = 1,2,.. .m and 1 < ot. < s . for¿ ■ ¿ l u l l  —  i

i = m + l,...,n. From (9) and (10) we readily obtain the following 
properties:

n
Property 1: If T - .11 p. is saturated with respect to P.,P , and

u V l  ", B . m 6 1 2
P , then i) e(T• II p. -) = e(T) II p and ii) g(T* H p. ) = g(T) 

i=l ; i=l •' i=l 1
Consider a T saturated with respect to P ^  For both T and p^T,

the number of local orbits is g(T) = gCp^T) =cp(T)/e(T). Consider an

element b of a local T-orbit. Then b 2 ^ T') = v .T + b mod p,T, whereJ 1
° <  Yj < Pj_ for every j. The fact that e ^ T )  = P ^ T )  is the smallest 

positive integer solution for 2X = 1 mod p-T, shows that v f  v if1 1 j
i ^ j mod p^. Therefore to each element b of a local T-orbit there
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correspond px elements of the form b + jT in a local p^T-orbit, This 
yields :

Property 2; If T is saturated with respect to P , to any local T-orbit

with members [b^jb^,.„0,be_^}, there corresponds a unique local P^T-
orbit with members {bH-nTlo < i < e(T), 0 < n < p } .

Now label the weights of all the distinct local T-orbits as

w^(T) for all 1 < i < g(T). When T is partially saturated in terms of

P1 = 3, w i(P1T) = e (T) for all i, by Property 2. If P = B n ^ - l )6
(6 = 1 or 0), the number i  contributes to the weight of local P^T-orbit

only if n^T + t:(-1) < i  < 2n.T + —^ (-1)^. Therefore w.(P.T) =
J e (p T)1 J i 1

n^e (T) + (-1) w (T) = + (-1)^ [w (T)- — for every i. When
n 0i± l J

1 ~ 1 ̂i xs sat-urated with respect to P^ » * * * >pm > °ne can aPPly the
previous result repeatedly and obtain,

n a
Theorem 8: Let T = II p. be partially saturated with respect to

i=l X
P1,P2,...,Pm (m < n) and let w^(T) be known for all 1 <  i <  g(T). Then 

m  ̂jlfor B — T • II p^ the weights of local B-orbits become for every i

(19)

(20)

w i(B) e(B)
3

l 6-e
Wi(B) = 13M 1 +  (-1)1 1 1 l{wi(T)-Ê|îIj

if 3 is one of the p.'s 
saturated

6 .
if p.=3n.+(-l) 1 for all il l

6 . = 1 or 0.l

Now we can easily find the minimum weight of all the local

B-orbits. For Eq. (19), it is trivial, and for Eq. (20), w . (B) resultsm mm
from wmin(T) or wmax(T) depending upon whether £ 6 .0 . is even or odd,

i=l 1 1
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m

respectively. Thus the knowledge of w . (T) and w (T) is sufficientmin max
to find the minimum local orbital weights beyond the (partial) saturation 

product, without actually generating the local orbits and checking their 

we ights.
n Oi.

Consider now T = II p. saturated with respect to p ,p , ...,p 
i=l 1 1 2

(1 < m < n), and assume that, for every i < m either, p^ = 3n^ + 1 or 
2p. = 3 if 3 divides T (this falls in case iii) of theorem 7). Let 

m |3 ̂
B = T. II p., and let d (T) be known. We can now prove the following 

i=l
conclusive theorem:

n & iTheorem 9: Let T = II P. be saturated with respect to P, ,P , ...,
i=l 1 2

P (1 < m < n), where for all 1 < i < m, P- = 3n.+l or 3 if 3Z divides T m -  -  - - 1 R i—m Pt “ .P .
Then for B = T . II p . , d (B) = dm(T) II. p..

i=l = i ii=l
Proof: We must show that for every divisor B^ of B that does not divide T,

there exist a divisor T . of T such that w (B.) > w . (T.)e B̂j \  Any
J min J mLn J e(T )

such B. can be expressed (perhaps relabelling the indices eachJtime) as
£ a i+ai n Y .

B. = II p. * II p. 1 where l < k < m ,  1 < a. < P. and V. < Oi. for 
J i=l i=k+l V  a . y . 1 1  1 1

all i. Let T . = ft p. ft p. 1 Obviously T . is a divisor of T
J i=1 e(T)i=k+1 ^ Jand hence dm(T) < wmin (T \ » First, notice that any such B. and T.

mLn J J J
also belongs to the case iii) of theorem 7. Therefore,

W(T.) e(T.)
w . (T .) < w (T .) = — — = — —-*L- < w (T ) minv y  -  avgv y  g(T ) 3 - max^

Notice also that T. is saturated with respect to P,,P ,...,P , whence byJ -L tL * K
theorem 8, we have
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i) If 3 is one of the saturated primes

ii) Otherwise (6 *b for all 1 < i < k)
e(T ).. J

3
k a .rr 1

Hence for both cases w . (B .) > wm m  y  —

Q.E.D.

V. Conclusion

The reported research, contributes.-in filling the spectrum of 

arithmetic codes between the two extreme cases of single-error-correcting

Brown Codes and the maximal-sequence-like Barrows-Mandelbaum Codes, The 

direct conversion algorithm and the study of orbits are shown to be 

valuable tools in analyzing the structure of such codes. The underlying 

structure reveals a number of interesting aspects of the multiple error 

correcting arithmetic codes. The analysis indicates where "good" codes 

are to be expected and how to calculate their minimum distance. A class 

of large-minimum-distance codes is also presented, whose rate is higher 

than that of the Barrows-Mandelbaum codes.

The decoding problem essentially remains unsolved.even though 

some preliminary results have recently been presented (Laste and Tsao-Wu, 

1969). However, further research based on the orbit structure of B seems 
to be very promising.
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