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AN ERROR-CONTROL SYSTEM BASED ON 
MAJORITY-LOGIC DECODING

R. B. Brown, C. L. Chen, R. T. Chien and S. Ng

I. INTRODUCTION

During the past two decades, many classes of error-correcting codes 

have been invented. However, these codes are rarely used in data transmission 

systems for combating channel noise. The reason for this is that the imple

mentation of these codes is usually very complex and costly. From a practical 

point of view, the problem of finding efficient decoding algorithms that can 

be simply implemented is, therefore, the most important problem in coding 

applications today.

Among the codes that have been discovered, the class of BCH codes 

is perhaps the best known class of constructive codes [1,2]. These codes are 

efficient for error correction and error detection. In addition, due to the 

work by Peterson, Chien, and Berlekamp [l,2], there is a decoding algorithm 

which can be implemented with reasonable amount of equipment for this class 

of codes.

Codes based on finite geometries have been constructed by

Rudolph [1,3], These codes are called finite geometry codes, They include

as subclasses Euclidean geometry codes and projective geometry codes. These 

codes can be made cyclic. Many of these codes are, in fact, BCH codes.

The important feature of finite geometry codes is that they are

majority-logic decodable. That is, the decoding of a received code word can 

be simply implemented using majority-logic gates. In fact, many of the 

finite geometry codes can be more simply implemented than the BCH codes.
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Recent developments in majority-logic decoding of finite geometry 

codes have greatly simplified the decoding complexity due to the reduction 

of the number of majority-logic gates [4,5]. This and other facts make 

finite geometry codes very attractive for practical error-control systems, 

especially for military applications.

An investigation was made on the problems in the design and 

implementation of finite geometry codes. As a result of the investigation, 

a binary coding system was constructed. The coding system meets the require

ments stated in the work statement. In particular, four different error 

correcting codes are built into the system giving the user a choice of four 

different coding schemes with different error correcting capabilities. Three 

of the codes are 1/2-rate codes and the other one is a 1/4-rate code. The 

codes selected are all majority-logic decodable so that they can be imple

mented with a reasonable amount of hardware. The newest theory known to-date 

has been applied in the design of the majority-logic decoder. Each code is 

interleaved to enable the system to correct both random errors and burst 

errors. If an (n,k) code is capable of correcting t random errors, the 

interleaved code with interleaving degree i is capable of correcting any 

errors that occur in a burst of it positions. Many multiple burst-errors 

of shorter length are also correctable. The selection of interleaving degrees 

and codes was made primarily based on the requirements of the work statement. 

The system can operate at any channel rate between 300 and 19,200 bits per 

second. The system also includes automatic frame resynchronization and 

interface compatibility with MIL-STD-188C.

The system consists mainly of two parts, viz., an encoder and
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decoder (Fig. 1). The encoder is to be inserted between the binary data 

source and the modulator (Fig. 1) of a regular digital data transmission 

system. Its function is to take every k binary information digits from 

the source and change them into n coded message digits, called a codeword, 

by adding (n-k) redundant check digits. The decoder is to be inserted between 

the demodulator and the binary data destinations (Fig. 1). Its purpose is to 

take each received codeword from the demodulator, corrupted by noise intro

duced by the transmission channel and the modem, and with the help of the 

redundant check digits recover from it the original k information digits.

Other supporting units of the system includes various control cir

cuitries for the proper operation of the encoder and decoder, clock circuit

ries, and synchronization logic for establishing the starting point of each 

codeword.

The codes used are described in Section 2. These codes are selected 

based on the requirements of the work statement. With the exception of the 

(31,16) code (code D), these codes are less powerful in random error correc

tion than the competitive BCH codes with the same rate. However, the decoding 

of these majority-logic decodable codes used are considerably simpler than 

that of the BCH codes. Code D is actually a BCH code. It has the same error 

correcting capability as the Golay (23,12) code. On a binary symmetric channel 

(BSC) the performance of code D is inferior but close to the performance of the 

Golay code. Implementation wise, code D is simpler. The performance of the 

codes used in the system and the Golay code on a BSC is shown by the curves in 

Fig. 12. Although it is not possible to raake a direct comparison on the per

formance of these codes because of the differences among the code length and
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the number of information digits, it can be seen that the (82,21) code consis- 

tantly outperforms code D and the Golay code in the sense that the probability 

of block decoding error is smaller for the same number of information digits 

in a block. This is due to the fact that the (82,21) code is a 1/4-rate while 

the other codes are 1/2-rate codes. We remark here that these codes may 

perform differently on a channel which cannot be modeled by BSC.

II. CODES USED

Four different codes are built into this system. A basic (n,k) 

t-error-correcting code encodes k information digits into a codeword of length 

n digits and can correct t or fewer errors occurring anywhere within each 

codeword. Interleaving the basic code b times results in a (nb, kb) code 

capable of correcting up to t bursts of errors, each burst of length b or 

less, occurring anywhere within the interleaved codeword of nb digits. Many 

patterns of random errors not guaranteed by the system are also correctable 

simply because majority-logic decoding does not perform bounded-distance 

decoding.

(a) The first code used is the punctured (253,127) 10 majority-error 

correcting EG code interleaved 25 times to yield a (6325,3175)
•kcode capable of correcting 8 bursts of length 25 each. Twenty- 

five redundant bits are added to each codeword to make it an over

all (6350,3175) 1/2 rate code.

(b) The second code used is the (127,64) 7-error correcting EG code

The last two bits punctured in a codeword are assumed to be fcero at the 
decoder. Thus the decoder actually guarantees the correction of 8 errors, 
although the original unpunctured code can-correct 10 errors. However, 
the decoder is able to correct patterns of 9 errors 75% of the time, and 
correct patterns of 10 errors 2570 of the time.
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interleaved 50 times to yield a (6350,3200) code capable of cor

recting 7 bursts of length 50 each. Fifty redundant bits are added 

to each codeword to make it an overall (6400,3200) 1/2 rate code.

(c) The third code used is the shortened (82,21) 10-error-correcting PG 

code interleaved 75 times to yield a (6150,1575) code capable of 

correcting 10 bursts of length 75 each. One hundred and fifty 

redundant bits are added to each codeword to make it an overall 

(6300,1575) 1/4 rate code.

(d) The fourth code used is the (31,16) 3-error-correcting EG code 

interleaved 200 times to yield a (6200,3200) code capable of 

correcting 3 bursts of length 200 each. 200 redundant bits are 

added to each codeword to make it an overall (6400,3200) 1/2 

rate code.

Twenty-five of the redundant bits in each interleaved codeword of 

the codes mentioned above are utilized for synchronization puprose. The 

synchronization scheme is discussed in Section 5. The following table is a 

summary of the codes used.

Basic Code 
(n,k91)

Degree of 
Interleaving

Overall Code 
with Sync Rate

A (253,127,10) 25 (6350,3175) 1/2
B (127,64,7) 50 (6400,3200) 1/2
C (82,21,10) 75 (6300,1575) 1/4
D (31,16,3) 200 (6400,3200) 1/2

See footnote on previous page.
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III. ENCODER

A binary (n,k) cyclic code is completely specified by its parity 

check polynomial

h(x) = hQ + h^X + ••• + h^X^ hi eGF(2)

such that any codeword (a a, •••••a ,) satisfiesJ o 1 n-1

E h .a. , . = 0
j=o J J+1

for 0 <  i <  n-k-1. For binary codes, hQ = h^ = 1. From here on a binary
n _

polynomial A(x) = aQ + a^ X + ... + an^  x will be represented by listing 

its exponent of X of nonzero terms. For example, the polynomial 1 + X + X"* + 

X ^  will be represented as (0, 1, 5, 11),

A general encoder for a cyclic (n, k) code with parity check 

polynomial h(x) is shown in Fig. 2. With the switch at position A, k 

information digits are shifted into the shift register. Next, with the 

switch moved to position B, the shift register is shifted n-k times. The 

n digits that come out of the output during this cycle form a codeword and 

it is in systematic form. If a basic (n, k) cyclic code is interleaved b 

times, one needs only to replace each stage of register in the encoder for 

the basic code by a b-stage shift register, and the resulting encoder is 

that of the (nb, kb) interleaved code. Thus as far as logic circuitry is 

concerned, one only needs to consider the basic code.

(a) Code A: This is a punctured cyclic code obtained by

omitting two parity check digits from the (255, 127) 

cyclic code. The encoding circuit of Fig. 2 can still



be used, with the modification that after the switch has 

moved to position B the shift register needs only be 

shifted n-k-2 = 126 times instead of the n-k = 128 times 

required for the cyclic code. This will yield a total 

of 253 digits during each cycle of operation. The parity 

check polynomial of the original cyclic code is

(0, 1, 2, 5, 6, 7, 8,

11, 14, 15, 16, 17, 20, 21,

22, 23, 24, 26, 28, 31, 33,

CM 45, 46, 49, 52, 53, 54,

55, 56, 60, 61., 63, 64, 67,

68, 69, 71, 73, 78, 79, 81,
CM00 83, 84, 85, 87, 90, 93,

95, 97, 99, 100 , 102, 104, 105,

106,, 109 , 111, 112, 113 , H5, 117,

118,, 120>, 121, 123, 125 , 126, 127)

(b) Code B: This is a cyclic code and hence can be

implemented by the encoder of Fig. 2. Its parity

check polynomial is

h(x) = (0, 2, :3, 6

15, 16, 21,

32, 33, 34,

48, 49, 51,

00 9, 10, 11, 12,

23, 24, 26, 30, 31,

37, 38, 43, 45, 46, 47,

53, 58, 60, 61, 62, 63, 64)

(c) Code C: This is a shortened cyclic code obtained by

omitting three information digits from the cyclic (85,24)
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code. The encoder circuit of Fig. 2 has to be modified to 

that of Fig. 3. At the beginning of each cyclic, switches 

SI, S2 and S3 (Fig. 3) are in position C and the "0" generator 

shifts out two 0's into the register. Next with both switches 

in position A the k-3 = 21 information digits are shifted into 

the register and sent out to the modem. The cycle is then 

completed by moving switch SI to position B and shifting the 

register n-k = 61 additional times. This will yield a total 

of 82 digits during each cycle of operation. The parity check 

polynomial of the original cycle code is 

h(x) = (0, 2, 3, 4, 7, 10, 11,

12, 14, 15, 17, 19, 24)

(d) Code D: This is a cyclic code. Thus its encoder is exactly of

the form given in Fig. 2. Its parity check polynomial is

h(x) = (0, 4, 5, 6, 7, 12, 15, 16)

(e) The complete system encoder: Since the numbers of times the

four different codes are interleaved are all multiples of 25, 

and their interleaved block lengths are approximately the 

same, it is possible for the encoders of the four different 

codes to share the same shift register, with 25 stage shift 

registers as the basic building block. The complete encoder 

for the system is as shown in Fig. 4. The switch S4 permits 

selection of any one of the four codes.

The operation of this system encoder can best be understood with 

an example. Consider the (127, 64) code interleaved 50 times to become the



9

(6350, 3200) code. For this code both the buffer registers B1 and B2 and 

the encoder register R (Fig, 4) are each used as a 3200-stage shift register. 

The actions of switch SI and switch S2 are always complementary, i.e., if 

SI is up, then S2 is down, and vice versa. Assume Bl is already completely 

filled with data bits, then with SI in position B input data is shifted into 

B2 at a speed of 1/2T bits per sec. (bps), i,e„, it takes 2T sec. to shift 

each bit in. At the same time with S2 in position C, S3 in E, and S5 in G, 

the data stored in Bl are shifted into R at twice the speed, i.e., 1/T bps.

At the end of 3200T sec. R is completely filled with the 3200 data bits 

originally in Bl, and 3200 output bits have already been generated. In the 

meantime 1600 bits have been shifted into B2. Next S3 is moved to F and R 

is again shifted at 1/T bps, while data continues to be shifted into B2 at 

1/2T bps. At the end of 3150T sec, all 3150 parity check bits have been 

generated by the encoder to yield a total of 6350 output bits. At the same 

time B2 is now filled with 1575 additional data bits to contain a total of 

3175 bits. S5 is now moved to H and 50 redundant bits are generated by the 

sync pattern generator and shifted out at 1/T bps, while 25 more data bits 

are shifted into B2 at 1/2T bps to completely fill B2. The same cycle can 

now be repeated by moving SI to A and S2 to D.

The encoder operates in very much the same manner for the other 

three codes, except that for the (6150, 1575) 1/4 rate code, R has to be 

operated at four times the speed of Bl and B2, as compared to two times for 

the other three 1/2 rate codes.

IV, DECODER

As in the encoder, the decoder logic circuit of a (nb, kb) code,
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obtained by interleaving a (n, k) code, can easily be derived from that of 

the basic (n, k) code by replacing each stage of its shift register by a 

b-stage shift register. Hence once again as far as logic circuitry is 

concerned, one only needs to consider the basic code.

(a) Code C: The decoding of this code is simpler than the

other three codes and will be described first. It is 

different from the other three codes in that it requires 

only one level of majority decoding.

A block diagram of the decoder is shown in Fig. 5. It 

consists of an 85-stage shift register and a 20-input 

majority gate. The decoder register supplies the inputs 

to the majority gate by forming twenty parity check sums 

according to the following parity check equations:

(0, 1, 41, 25, 72)
(0, 2, 59, 50, 82)
(0, 3, 62, 53, 5)
(0, 4, 79, 15, 33)
(0, 6, 10, 21, 39)
(0, 7, 49, 27, 19)
(0, 8, 66, 30, 73)
(0, 9, 37, 35, 32)
(0, 11,, 29, 75,• 81)
(0, 12,, 78, 42,, 20)
(0, 13 3, 38, 14,■ 54)
(0, 16,, 61, 60,, 47)
(0, 17,, 34, 68,, 51)
(0, 18,, 64, 70,> 74)
(0, 22;, 77, 65., 58)
(0, 23,, 28, 26., 76)
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(0, 24, 40, 84, 71)
(0, 31, 69, 45, 44)
(0, 36, 63, 55, 43)
(0, 46, 67, 52, 56)
(0, 48, 57, 83, 80)

Each check sum is the modulo 2 sum of the outputs of those stages of the 

register corresponding to each parity check equation. The 20-input majority 

gate is realized by a number of half-adders and full-adders as shown in 

Fig. 6. Its function is to output a 0 if ten or more of its inputs are 0, 

and output a 1 otherwise.

The decoder operates as follows. Assume the first three stages 

of the register is initially cleared. With the switch S at position A 

(Fig. 5), the 82 bits of the received codeword is shifted into the first 

82 stages of the register. Next the switch S is moved to B and the 

register is shifted 21 times. The 21 information digits will then be 

decoded and appear as the output. S is then moved to C to shift in 0's, 

and the register is shifted 61 more times. This ensures that the first 

three stages of the register is cleared. The same cycle can now be repeated 

over again. Thus each codeword is decoded in two complete shifts of the 

decoder register. The decoding delay is one complete shift of the decoder 

register.

The remaining three codes all require two levels of majority 

decoding. A block diagram of a general decoder for a (n, k) t-error correct

ing cyclic code which requires two levels of majority decoding is shown in 

Fig. 7. It consists of two n-stage shift registers and two 2t-input 

majority gates. The first level register R1 supplies the inputs to the
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first level majority gate by forming 2t parity check sums according to a 

set of 2t parity check equations,, The output of the first level majority 

gate is fed into the second level register through a multiplying circuit 

which multiplies it by a given polynomial p(x). If the given polynomial 

p(x) = pQ + pjX + •*• + Pn“l^n t^e rault^Ply^nS circuit is as shown in 

Fig. 7. The second level register R2 supplies the inputs to the second 

level majority gate also by forming 2t parity check sums.

The decoder operates as follows. With switch SI in position A 

and S2 open, the codeword to be decoded is shifted into R1 while R2 is 

also shifted at the same speed in the same time. After the first k 

shifts, R2 is broken at a number of places and 0's start to be shifted 

in to clear R2. After n-k additional shifts Rl is completely filled with 

the n bits of the codeword and R2 is completely cleared. SI is then moved 

to B and S2 is closed, and both Rl and R2 are shifted n times. This 

completely fills R2 with the results of the first level of majority 

decoding. With SI moved back to A and S2 open, the next cycle of operation 

can now be repeated. During the first k shifts of the next cycle the first 

k error digits of the previous codeword are determined by the second level 

of majority decoding and these are subtracted from the first k received 

digits of the previous codeword to yield the k information digits. Thus 

each codeword is decoded in two complete shifts of the decoder registers. 

The decoding delay is also two complete shifts of the decoder register, 

as compared to one complete shift for the one level majority decodable 

codes.

(b) Code D: This is a cyclic code and hence can be
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implemented by the decoding circuit of Fig. 7. The 

six parity check equations for the first level are:

(0, 4, 12, 15, 1, 8, 13, 17)
(0, 4, 12, 15, 2, 9, 22, 27)
(0, 4, 12, 15, 3, 11, 25, 28)
(0, 4* 12, 15, 5, 6, 7, 16)
(0, 4, 12, 15, 14 , 18, 20, 30)
(0, 4, 12, 15, 19 , 21, 26, 29)

The polynomial p(x) is

p(x) = (3, 7, 10, 15, 16, 19, 22, 26, 27, 28).

The six parity check sums for the second level are:

(30, 3, 11, 14)
(30, 6, 17, 27)
(30, 7, 23, 29)
(30, 8, 10, 12)
(30, 15, 16, 28)
(30, 19, 20, 21)

A 6-input majority gate can be realized by a number of half-adders and

full adders as shown in Fig. 8.

(c) Code B: This is also a cyclic code and hence can be

implemented by the decoding circuit of Fig. 7. The 14

parity check equations for the first level are:

(0, 4, 114, 15, 24, 30, 85, 81,
31, 8, 120, 7, 117, 102, 34, 43)
(0, 4, 114, 15, 24, 30, 85, 81,
62, 64, 50, 93, 70, 14, 94, 66)
(0, 4, 114, 15, 24, 30, 85, 81,
82, 35, 75, 42, 111, 91, 47, 48)
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(0, 4, 114, 15, 24, 30, 85, 81,
3, 11, 61, 1, 76, 123, 121, 27)
(0, 4, 114, 15, 24, 30, 85, 81,
44, 86, 55, 23, 72, 49, 52, 107)
(0, 4, 114, 15, 24, 30, 85, 81,
37, 18, 103, 92 , 16 , 84 , 68, 105)
(0, 4, 114, 15, 24, 30, 85, 81,

to 00 125 , 73, 19 , 40 , 100, 65', 29)
(0, 4, 114, 15, 24, 30, 85, 81,
6, <41, 104, 45, 51, 2, 109, 79)
(0, 4, 114, 15, 24, 30, 85, 81,
115 , 32 , 88, 46 , io, 22 , 33, 83)
(0, 4, 114, 15, 24, 30, 85, 81,
69, 95, 113, 77 , 20, 108, 39», 96)
(0, 4, 114, 15, 24, 30, 85, 81,
106 , 67 , 90, 12, 101, 53, 6C>, 21)
(0, 4, 114, 15, 24, 30, 85, 81,
74, 119 , 71, 97 , 17 , 57 , 87, 122)
(0, 4, 114, 15, 24, 30, 85, 81,
116 , 110, 36 , 9, 54 , 26 , 25, 98)
(0, 4, 114, 15, 24, 30, 85, 81,
118 , 5, 99, 89, 58, 112 > 80, 13).

The polynomial p(x) is

= (11, 27, 33, 37, 44, 45, 49, 51,
54, 56, 58, 61, 62, 65, 70, 74,
76, 77, 79, 84, 85, 86, 87, 90,
91, 92, 94, 96, 98, 100:, 102, 103
104 , 106i, 108, 110, 111,, 113, 119
124)

The 14 parity check sums for the second level are
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(126 61 108 66 55 73 68 ' 99)
(126 6 94 49 85 89 91 110)
(126 123 104 64 32 24 105 43)
(126 81 118 107 82 62 36 79)
(126 13 54 11 41 17 19 33)
(126 2 116 57 58 27 100 46)
(126 50 4 69 51 97 125 90)
(126 88 102 60 70 5 52 71)
(126 111 83 28 96 25 7 93)
(126 35 10 42 95 77 56 22)
(126 117 21 20 112 109 26 92)
(126 48 16 65 122 72 34 45)
(126 9 101 38 103 106 98 18)
(126 119 59 44 74 86 31 8)

input majority gate: can be realized by a number of half-adders and

adders as shown in Fig . 9.

(d) Code A: This is a punctured cyclic code obtain by omitting

two parity check digits from the (255, 127) cyclic code. The

decoding circuit of Fig. 7 can still be used, with the modifica

tion that the received codeword is shifted into the first level

shift: register R1 at the third stage instead of the first stage

for cyclic codes. Then only 253 shifts are required to fill the 

255-stage register with the received codeword. The second round

of shifting in each cycle still consists of 255 shifts. 

The 20 parity check equations for the first level are:
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(252 246 198 190 178 163 144 127 126 73 72 30 23 2 1 0)
(253 250 238 147 145 142 126 102 72 61 47 34 5 3 1 0)
(249 225 208 148 126 98 72 43 39 33 14 10 6 4 1 0)
(247 235 199 156 126 104 81 72 58 49 40 24 11 7 1 0)
(243 229 212 193 182 167 126 105 76 72 66 50 26 8 1 0)
(244 214 207 188 154 137 126 72 70 67 56 45 32 9 1 0)
(200 172 158 151 135 126 113 111 108 82 78 72 20 12 1 0)
(233 224 203 176 140 126 124 121 100 79 72 38 21 13 1 0)
(209 191 164 139 128 126 123 99 95 89 72 63 36 15 1 0)
(231 218 187 173 165 153 136 132 126 90 83 72 53 16 1 0)
(232 230 227 223 217 186 175 168 133 126 119 72 51 17 1 0)
(202 201 159 152 131 130 129 126 120 72 64 52 37 18 1 0)
(228 210 192 169 160 134 126 114 112 109 96 72 65 19 1 0)
(254 251 245 197 189 177 162 143 126 125 72 71 29 22 1 0)
(241 219 194 181 166 150 126 107 92 84 77 75 72 27 1 0)
(248 236 220 196 161 126 115 97 93 87 72 59 42 28 1 0)
(240 226 222 216 205 179 149 126 117 74 72 69 44 31 1 0)
(239 237 234 215 155 141 126 122 116 103 94 72 46 35 1 0)
(213 206 185 184 183 180 174 126 118 106 91 72 55 54 1 0)
(221 204 146 138 126 101 88 80 72 68 62 60 57 #48 1 0)

The polynomial p(x) is
= (254, 251, 249, 248, 245, 244, 243, 242, 241

237, 236, 234, 232, 230, 227, 222, 221, 220
218, 217, 214, 212, 209, 207, 205, 201, 198
195, 193, 192, 189, 187, 186, 185, 183, 180
178, 172, 159, 156, 154, 149, 147, 143, 125
122, 119, 117, 116, 113, 112, 111, 109, 108
105, 103, 101, 98, 97, 93, 92, 88, 80,
77, 73, 72 71-, 69, 65, 64, 61 , 59.)
51, 45, 39'• 38:, 35, 34, 32, 30i, 12,P
2, 0)
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parity check sums for the second level

(125 71 0 254)
(251 143 1 254)
(146 4 2 254)
(248 32 3 254)
( 38 9 5 254)
(103 48 6 254)
(242 65 7 254)
(206 31 8 254)
(198 80 10 254)
( 77 19 11 254)
(223 37 12 254)
(207 97 13 254)
(163 88 14 254)
(230 131 15 254)
(118 50 16 254)
(158 63 17 254)
(133 111 18 254)
(175 123 20 254)
(161 142 21 254)
(245 197 22 254)

A 20-input majority gate is as shown in Fig. 6.

(e) The complete system decoder: As in the encoder, it is possible

for the decoders of the four different codes to share the same 

shift registers R1 and R2, with 25-stage shift registers as the 

basic building block. The complete decoder for the system is as 

shown in Fig. 10. For convenience of representation, only one 

1/2 rate code and the (6150, 1575) 1/4 rate code are explicitly 

drawn. The switches S select the proper decoding circuit to be
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used. They are closed for that particular code to be used.

As an example for the 1/2 rate code, assume the (6350, 3200) code 

is being used. For this code both input buffer registers B1 and B2 and 

decoder registers R1 and R2 are each used as a 6350-stage shift register, 

while the output buffer registers B3 and B4 are used as 3200-stage shift 

registers. Assume Bl is already completely filled with a received codeword 

and that the correct block sync has already been established from the 50 

sync bits. Then with switch SI in position B the next received codeword is 

shifted into B2 at a speed of 1/2T bps. At the same time with S2 in position 

C, S3 in E, and S4 open, the received codeword stored in Bl is shifted into 

R1 at twice the speed, i.e., 1/T bps. Also at the same time with S5 closed 

and S6 in H (assuming B3 is already filled with decoded information digits),

R2 is shifted at 1/T bps. The decoded information digits of the previous 

received codeword, now shifting out of Rl, will then be shifted into B4 also 

at 1/T bps. Also at the same time with S7 in I the decoded information digits 

in B3 are shifted out as output at 1/4T bps. After 3200 T sec. B2 contains 

1600 bits of the codeword coming in from the line, while Rl has received the 

first 3200 bits of the codeword that has been stored in Bl, and the 3200 

information bits of the codeword previously contained in Rl have now been 

decoded and are stored in B4. Also 800 decoded bits have emerged from B3.

Next with S5 open R2 is shifted to clear, while Bl, B2, and Rl continues to 

be shifted as before. Thus at the end of 3150T additional sec. B2 is filled 

with 1575 additional bits, while the codeword originally stored in Bl has 

now been completely transferred to Rl, and 787.5 additional bits have emerged 

from B3.* R2 is now cleared and there is no change in B4. Now S3 is moved
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to F, S4 is closed, and with S5 still open, both R1 and R2 are shifted at 

1/T bps. B2 continues to be shifted as before. At the end of 6350 T 

additional sec. B2 is completely filled with the 6350 bits of a new 

codeword, and R2 is completely filled with the results of the first level of 

majority decoding. Also 1587.5 additional digits have emerged from B3 to 

make a total of 3175 bits. During the next 100 T sec. Bl, B2, Rl, R2, and 

B4 are idle while the 50 sync bits are being received and examined. B3 

continues to be shifted as before and at the end of this 100 T sec. all 3200 

bits have been shifted out of B3. Now with SI moved to A, S2 to D, S3 to G, 

and S7 to J, the same cycle can be repeated over again.

Code D operates in precisely the same manner as described above. 

Code A also operates in the same manner, except that during the time the 

25 sync bits are received Rl and R2 continue to be shifted.

Code C operates somewhat differently due to the fact that it is 

a 1/4 rate code and that it requires only one level of majority decoding.

For this code Bl and B2 are used as 6150-stage shift register. Assume that 

both Bl and B3 have already been filled and that sync has already been 

established. The next received codeword is shifted into B2 at 1/2T bps., 

while the codeword stored in Bl is shifted into Rl at 1/T bps with S3 in 

position E and S5 open. At the same time the decoded digits in B3 are 

shifted out at 1/8T bps. At the end of 6150 T sec. the entire codeword 

originally stored in Bl is now transferred to Rl, while B2 is filled with 

the first 3075 bits of the next codeword. Also 768.75 decoded digits have 

emerged from B3. Next with S3 in position F and S5 closed Rl is shifted 

at 1/T bps. and the resulting decoded digits are shifted into B4. At the
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end of 1575 T sec* B4 is completely filled, and R1 and B4 become idle.

B2 and B3 continue to be shifted as before. At the end of 4575 T additional 

sec. B2 is completely filled with a new codeword, while 1537.5 bits have 

emerged from B3. During the next 300 T sec the 150 sync bits are being 

received and examined. B3 continues to be shifted as before and at the end 

of this 300 T sec, all 1575 bits have been shifted out of B3. Now the same 

cycle can be repeated over again.

V. SYNCHRONIZATION SCHEME

The synchronization scheme described below is for frame synchroniza

tion. The purpose of frame synchronization is for the decoder to recognize 

the beginning of each block of coded bits. Bit synchronization is assumed 

to be provided by the modem or other external equipment.

The fixed pattern 11111 00101 10111 00010 00000 of 25 bits is 

selected as the sync pattern for frame synchronization.

Data blocks are arranged as shown in Fig. 11, where N is a sequence 

of coded bits, and L is a sequence of alternating l's and 0's. The number of 

bits in N and L depend on the codes used. These numbers are

(a) For code A,N = 6325, L = 0

(b) For code B,N = 6350, L = 25

(c) For code C,N = 6150, L 15 125

(d) For code D,N = 6200, L = 175

In the decoder a sync pattern scanner is used to test the received

nc when part of the 
if the channel errors

are assumed to be independent with bit error rate of IO“-*-.

It is shown in [6] that the probability of false s 
received sync is in the 25-bit register is 7 x 10“
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bit stream for the presence of the 25-bit frame synchronizing signal and

initiate the decoding process for the next N bits. The scanner consists of

a 25-bit serial input shift register, 25 exclusive OR gates and a 25 input
0 1 2  3adder with five binary outputs: 2 , 2 , 2 , 2 and 2 .

The decoder input contains gating circuits which can gate the

incoming bit stream to the sync shift register or to the input buffer.

A 14-bit counter is used to count the N bits, and at the count of N, provides

an Mend-of-block" (EOB) signal to reset the counter and to switch the received

signal from the buffer input back to the sync register input.

The exclusive-OR gates in the scanner section are "hard-wired"

so that when the sync word is completely contained in the 25-bit shift

register, each gate output is zero. In the event that one or more bits do

not match the "hard-wired" word, the corresponding gates will produce a "1"

output. Since each gate output drives one input to the 25 bit adder, the

adder output is the number of mis-matches in the sync register. The five
2 3 4adder outputs are gated so that a "1" in positions 2 , 2  or 2 will inhibit

generation of a sync signal. In other words, an acceptable sync pattern

may contain as many as three bits in error out of the 25. When outputs 
2 3 42 , 2 and 2 go to zero, a pulse is generated which causes the input signal 

to be switched from the sync register input to the data buffer input and 

resets the counter. The next N bits are accepted by the decoder as a valid 

data block.

The decoder input circuits also contain a sync error counter.

A sync error is defined as follows:

Error=SYNC • EOB + SYNC • EOB
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The presence of a sync signal or an EOB signal will cause the decoder to 

accept the next N bits as a valid block, even when such signals also produce 

a sync error, provided no more than three such errors have occurred in 

succession. A valid data block is defined as:

SYNC + EOB • (Number of Errors < 4)

Four sync errors in succession will cause a red panel light to be 

turned "ON" displaying a sync error condition. If the sync search switch 

on the panel is in the "MANUAL" position, the indicator will remain "ON" 

until it is reset manually or until the switch is placed in "AUTO", and 

both the SYNC and EOB signals occur in coincidence.

If four successive sync errors have not occurred, and the sync 

search switch is in either the AUTO or MANUAL positions, the first time 

both EOB and SYNC signals are in coincidence the sync error counter is 

reset to zero. When in the AUTO mode, the sync scanner circuits cycle 

continuously, and the signal SYNC • EOB will cause the error counter to be 

reset regardless of the number of sync errors recorded.
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Output F P -3 8 3 9

Fig. 2. General Encoder for Cyclic Codes
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Fig. 3. Encoder for Shortened (82,21) Code



Fig. 4. Complete System Encoder
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Fig. 5. Decoder for (82,21) Code
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F P -3 8 4 3

Fig. 6. 20 Inputs Majority Gate
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Fig. 7. General Decoder for Cyclic (n,k) t-error 
Correcting Code Requiring 2 Levels of 
Majority Decoding
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