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1. Introduction

An ongoing challenge in Markovian analysis is the so-called “state-space explosion,” 

which is the exponential growth of the size of the state space of a model when the 

model’s size grows. A lot of work has been done to decrease the size of the state space 

of a model (lumpability [9]) and to increase the size of the state space that can be 

solved (disk based methods [6], Kronecker [2], etc.).

Aggregation is one technique to address the state-space explosion problem; however, 

aggregation can introduce approximation error into the solution, which may or may not 

be bounded. Courtois and Semal bounds [3, 4] are the best-known bounded aggregation 

techniques for steady-state analysis, but are costly to compute and are tight only if the 

matrix is nearly completely decomposable (NCD) or nearly lumpable. The Courtois 

and Semal bounds can be applied to specific classes of models in order to develop 

more efficient bounding methods for those classes of models, such as Muntz et al. [10], 

Semal [13], and others have done.

However, the Semal and Courtois bounds are valid only for steady-state analysis, 

and different techniques must be used for transient analysis. The approach of stochastic 

orders and monotone matrices [8] is one such technique, and has been known for a long 

time. More recently, stochastic ordering has been extended by Forneau, Pekergin [7], 

and others to allow algorithmic generation of bounding aggregates. However, all of 

those techniques have very strict required conditions and require that states be ordered 

ahead of time and usually have loose bounds.

We have developed an aggregation technique that extends the stochastic ordering 

technique. We define a new partial order that is a more general relation between 

states than the total order required for monotone matrices. The partial order allows 

us to prove that the transient and steady-state solutions of an aggregated system yield 

bounds, and the partial order may also be used to construct bounding aggregates. Ad­

ditionally, the partial order can be used with structured models to develop aggregates 

and to prove global properties, based upon a local analysis of the model’s components. 

The partial order is also shown to be a generalization of monotonicity of the transition 

matrix and lumpability, in the sense that both properties can be proven and exploited 

using the partial order. The partial order was first introduced in [5] for a more limited
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class of model and analysis. We extend that work by generalizing the model class and 

properties considered, as well as proving additional properties of the relation.

2. B ackground

We first define some basic notation, introduce a class of Markovian models for which 

the approach can be applied, and describe the basic analysis steps for this kind of 

models. We choose a class of asynchronously communicating Markov models [1] that 

are especially useful for the description of queuing networks [2] as the model class. In 

the examples, we specifically consider open-capacity restricted queuing networks with 

losses. However, the approach can applied to more general models.

2.1. N otation

Vectors and matrices are named using small or capital boldface letters like p or 

P. We describe elements by setting their indices in brackets. For example, P (x , y) 

indicates the element in row x , column y of matrix P. Furthermore, P(a;*) denotes 

row x of P. If we have different matrices or vectors of the same type, then they are 

distinguished by sub- or superscripts. Thus, P i , . . .  , P k  denotes a set of matrices. I 

is the identity matrix of an appropriate dimension. If the dimension does not follow 

from the context, then it is added as a subscript, i.e., In is the identity matrix of order 

n. e is a row vector with all elements equal to 1, and is a row vector with 1 in 

position x and 0 elsewhere. Again, the vector dimensions follow from the context. 0 is 

the zero matrix or vector. p T and P T are used for the transposed vector and matrix.

Except for the set of real numbers R  and non-negative real number R +, sets are 

described by calligraphical letters (e.g., S, CS). Letters like i, j , k, /, x , y are used as 

running indices.

2.2. Stochastic C om parison

We briefly review two partial orders, one for random variables and the other for 

vectors. The two partial orders are “usual stochastic order” for random variables and 

“dominance” for probability vectors. We say a random variable X  is less than a random 

variable Y  in the usual stochastic order (A  < st Y ) if P {X  > a) < P(Y  >  a),V a [11]. 

X  < st Y  means that the inverse cumulative distribution function for X  will be less
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than Y  for all values, and thus the mean of X  will be less than or equal to the mean of 

Y. The set of functions that preserve stochastic order is the set o f all non-decreasing 

real functions. Additionally, if a > st c, b > st d, a and b are independent, and c and d 

are also independent, then a +  b > st c +  d.

Given two probability vectors po, p i of length N, p0 dominates pi (p0 pi if 

J2m=n Po(m) >  J2m=n P i(m)> Vn < N  [8]. A random variable X 0 can be associated 

with the probability vector po, by association of each possible value x  of the random 

variable Xo with an index i in the probability vector, where the entry po(*) =  P {X o =  

x ). If the value associated with each state in the probability vector is increasing in the 

state index, it is obvious that po ^  Pi 4=̂  X q > st X\.

2.3. M od e l Class

The models we consider in this paper are Markovian, i.e., the behavior depends 

only on the current state and the holding time in a state is exponentially distributed. 

However, in contrast to the usual Markov chains, we consider systems of interacting 

components that can be combined to form more complex systems. The composition 

of these components can be formally described using Kronecker sums and products of 

component matrices, e.g., [2], and will be briefly considered in section 6 in the context 

of bounding. Here we introduce the specification of a single component by means of 

vectors and matrices.

Let S =  {0 , . . .  , n — 1} be the finite state space of the component. Most of the 

presented steps apply also to infinite state space, but in this paper the model class is 

restricted to the finite case. A component can perform two kinds of transitions: local 

transitions that are initiated by the component and are quantified by a transition rate, 

and reactions to input that are initiated by some environment and are quantified by 

probabilities.

We start with local transitions. If we assume that the component generates no 

output, then all transitions are collected in a matrix Qo G R™’n such that Q o(x,y) is 

the rate of an internal transition changing the state from x to y. If the component 

generates output, the outputs are described by matrices Q i , . . .  , Q l where L is the 

number of disjoint outputs and Q i(x, y) describes the rate of a transition from state x 

to y that simultaneously generated an output of type l. It is implicitly assumed that
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outputs cannot be directly influenced by the environment (i.e., leaving entities cannot 

be blocked to remain in the component).

The dynamics initiated by the component are described by a continuous-time Markov 

chain (CTMC) with generator matrix

Q =  y " ' Qi -  diag \ W  QjeT ] (1)
1=0 \l=0 /

where diag (a) for column vector a is a diagonal matrix with element a (i) in position 

For a later analysis we define additionally

( 'Lsesq =  max ^  IQi(s>s)l
¿=o

(2)

the matrix

Q =  Q -  ¿ Q i (3)
1 = 1

and the matrices

P 1 =

Q i/q for 1 = 1 ,. . .  ,L  

Q /q +  I for l =  0

(4)

A component must react not only to outputs and internal transitions, but also to 

inputs. We assume that K  different inputs numbered 1 through K  may occur and 

that an input cannot be refused. Consequently, each state has to accept each input, 

and successor states are chosen probabilistically. Input probabilities are collected in 

matrices Ufc E R™’n (k =  1 ,. . .  ,K ). Each Ufc is a stochastic matrix, and U k(x,y) 

includes the probability of moving from state x  to y upon an arrival of type k.

To measure results of a system, rate-based reward values are used. Rewards are 

non-negative values assigned to states, and the interpretation is that the component 

gains a reward when staying in a state. R different rewards are defined, and each 

reward r is described by a column vector rr E R ” ’1 such that rr (a:) is the reward value 

of state x and measure r.

The instantaneous reward gained at some point in time is a random variable defined 

by the state probability vector, and the reward for each state. This random variable
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can be represented by another probability vector, in which each element in the vector 

is the probability of a specific value of the reward. The vector can be generated by 

a simple transformation of the state probability vector. We create the matrix R r to 

be this transformation. Let M  be the number of discrete reward values possible. We 

define a reward mapping function rmr(s), which maps a specific reward value to an 

index in the vector, with the restriction that t > s => rmr(t) >  rmr(s). We define the 

transformation R r G HN,M

R r{x,y)

1 if rmr(x) =  y

<

0 otherwise

(5)

Then p R r is a probability vector describing the probability distribution of reward r 

corresponding to the state probability distribution p. Further, rewards are arranged 

in increasing order, meaning that if there is a dominance between two such vectors, 

there will be a stochastic order between the rewards.

Finally, the initial distribution of the component must be defined. This is done in 

a row vector po G R + 1 such that po describes a distribution and po(:r) is the initial 

probability of state x.

2.4. Basic Behavior and Analysis

We consider two different kinds of analysis, the first kind is based on the observation 

of inputs and rewards without consideration of the outputs of a component. This 

viewpoint is sufficient for computation of results for the component in a random 

environment that is not affected by the outputs of the component. Examples include 

feed-forward networks for which the input of a queue is generated by upstream queues 

and the output only affects downstream queues. Additionally, by setting K  to 0, 

CTMCs that do not have interactions with their environments are included. The 

second kind of analysis considers inputs, rewards, and outputs of the system. For both 

types of analysis we apply the so-called “uniformization approach” (see, e.g., [14]).

The first kind of analysis is based on the observation of the rewards at some time t > 

0 or during the interval [0,t). Both measures are conditioned on sequences of external 

inputs (h ,k i ) , . . .  , (¿m , &m ) with 0 <  ii <  . . .  <  tM <  t and km G {1 , . . .  , K }. For 

notational convenience let to =  0, £a/+ i =  t, t =  (to, ■ ■ ■ , ¿m + i ), and k =  (k i,. . .  , &m )
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for m =  1 ,. . .  , M. Vectors k and t are valid, if t(m) > t(m  — 1) for m — 1 , . . .  , M  +  1 

and k(m) G { 1, . . .  , K }. The notation Vt, k is used for the (infinite) set of all possible 

valid vectors.

Define R[ k as the instantaneous reward of type r gained by the component at time 

t (M  +  1), if the the arrival sequence defined by t and k is observed. The value M  

is implicitly defined by the vectors and might be zero, which would mean that no 

interaction with the environment occurred and that the reward should be considered 

at time t\. The distribution o f (ftrk) can be computed as a probability vector as

ft,k =  PO ( n  Q M 771) -  *(m -  !)]u k(m)) Q [t(M  +  1) -  t (M )]R r (6)
\m=l /

where matrices Q [t] are computed using uniformization
oo

Q[t] =  ^ p o ( i ,q t )P k
i=0

(7)

where q >  max^g^ |Q(x, x)|, P  =  Q /q +  I, and po(i,qt) is the probability that a 

Poisson process with rate q performs i jumps in the interval [0, t) that is given by

po(i, qt) — e qt^~~ (8)
and ElR-l k] is the expectation of the reward value and can be computed as

E [R lk] =  Po ( n  Q [t(m) -  t(m  -  l)]U k(m) ) Q [t(M  +  1) -  t (M )]rr . (9)
\m=1 /

The infinite summation can be truncated at a finite point for a given error bound 

using standard means [14].

Apart from the reward at some time t, we can consider the accumulated reward 

gained during the interval [0, t). Define the corresponding measure as AR[ k. For the 

computation of the expectation of this measure we define vectors

Ptjk,m =  PO ( I I  Q[*(*) “  t(A -
i~ 1

(10)

that describe the state immediately after the mth arrival. Then we obtain



8 Daly, Buchholz, and Sanders

where the integral can be computed using uniformization [15] as

rt r t - t '  i OO
/  Q [r]dr =  Q[r]dr =  -  ^ P ‘ (l -p o (i,q (t  -  t')) . (12)

Jo

The analysis conditioned on the outputs will be considered later in Section 6.1.1. 

However, the analysis will be based upon an extra property. Once that property has 

been checked, the analysis of the system with outputs will be the same as for the 

system without outputs.

3. C om parison  o f  State

The previous section introduced the basic model class and its analysis according to 

the expectation of the reward at some time or during an interval. Here we consider the 

results conditioned on the initial state. The goal is to compare states in the following 

sense: State x  is greater than state y if it yields a greater reward for all possible sets 

of external arrivals (k) and arrival times (t). If we can assure that starting in state 

x  always yields larger rewards than starting in state y, then that fact can be used to 

define aggregates that bound reward values and have a smaller state space than the 

original component. The generation of aggregates is considered in the next section; 

here we explain the comparison of states intuitively, before introducing the idea of 

covering. We then develop an inductive definition of a partial order that relates states 

based upon the idea of covering. Following the definition, we prove several properties 

of the partial order, and compare the partial order with two established concepts for 

the comparison of states in CTMCs: monotonicity and strong stochastic ordering.

3.1. Intuitive E xplanation

To compare states, we define Rrt k as the reward that is gained by computing the 

value R[ k in (9) using p0 =  p. Intuitively, we say state x is greater than state y 
(denoted as x >z y) if and only if

Vt, k, r : Rrt,k,ex —st Rr
tjkje  ̂• (13)

Relation y  defines a partial order among the states of S. Observe that x y  y implies 

also ARrt Vi X > st AR[ k y for all vectors t,k . This can be shown by the combination of
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a simple inductive argument with the fact that the accumulated reward at some point 

and the reward at the next moment both depend on the current state but are otherwise 

independent, so that it is possible to add them together and preserve stochastic order.

Since (13) considers all possible sequences of allowed vectors t and k, we cannot 

expect to find a general method to determine y  exactly for arbitrary components. 

Instead, we will define a partial order y ^  that is weaker than y  (such that x y „  y => 

x y  y), but that can be efficiently computed. Intuitively, y „  is defined as the fixed 

point of a refinement algorithm such that x  y^  y implies 1) that the reward for x  is at 

least the reward for y for all the measures and 2) that each transition out of y to some 

state z (internal or by some input) is covered by a set of transitions of the same type 

out of x , such that the set of transitions has the same probability as the transition 

from y to z, and each transition in the set goes to a state greater than 2 according to 

y^ . This concept of covering will be introduced in the following subsection in some 

more detail. If the mentioned conditions can be assured, then it is rather obvious that 

x  cannot yield a smaller reward than y. This will be proved more formally below.

3.2. C overing o f  Transitions

The basic step in the following inductive definition of a partial order among states 

is the so-called “covering” of states according to transitions. Let y* be some partial 

order among the states of S. We say that state x  covers state y according to transitions 

in some matrix D  6 R™’n and according to some partial order >:* if and only if

1. x y * y,

2. for each element D(y, z) there exists some vector dx € R + n such that

(a) dx,y =  0 for D (y>2) =  °>

(b) dzxy * eT > D(y, z),1 and

(c) Vtt, d x y (u) > 0 => u>z± z.

3. " E d i , „ = D ( z . ) .
z = 0

xIf matrix D has fixed row sums, as it does for stochastic matrices, then > is substituted by =.
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U2 he  £2 
U3 h e  ¿2

FIGU RE 1: Example of a Covering. Row y is Covered by Row x.

A covering implies that for each transition originating in y and ending in 2, a set of 

transitions with the same value originates in x, and each of these transitions ends in a 

state that is greater than z according to partial order >:*.

A simple example of the idea of covering is shown in Fig. 1. In the example, state 

y (with transitions described by row D (y»)) is covered by state x  (with transitions 

described by row D (x*)), as will be argued in the following. To see this covering, note 

that row D(y*) contains two non-zero elements in the positions z\ and Z2, and row 

D ( x * )  contains three non-zero elements in the positions u\, U2, and M3. The probability 

in row x is divided into two vectors to cover the two elements of row y. The first vector 

contains element u\ and a fraction of element M2, and the second vector contains the 

rest of M2 and M3. For a covering, the following conditions have to be met:

1. The sum of elements in the vector dZly has to be greater than or equal to D(y, z\) 

and the sum of elements in the vector dZ2y has to be greater than or equal to 

element D  (y, Z2) in row y. Equality has to hold in both cases if we assume that 

the matrix has equal row sum (as is the case in the figure).

2. The sum of vectors dZly and dZ2y has to be equal to row D(x*).

3. Each non-zero element in the vector d ^ y has to be greater than z\ (i.e., u\ Z\ 

and M2 :̂* z{), and each non-zero element in the vector d*2 has to be greater 

than Z2 (i.e., M2 >:* Z2 and M3 >:* 22)

We say that a partial order is completely covered for the matrices D i , . . .  , D jv 

if and only if condition 2 is observed for all pairs of states x >:* y.
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3.3. Inductive D efin ition

A useful partial order has to assure that x h y implies that x yields a greater reward 

than y according to (13). We now introduce an iterative approach to compute such a 

partial order as a fixed point of a refinement approach.

Define a family o f partial orders he (c =  0 ,1, 2 , . . . )  on S as follows:

1. x ho y if and only if rr (:r) >  rr(y) for all r =  1 , . . .  , R,

2. for c >  0, x >ic y if and only if x covers y according to the matrices P, P i , . . .  , P l 

and U i , . . .  , U k , and the partial order hc+i-

Condition 1 of the definition of covering assures that partial order >ic+i contains no 

relations that are not contained by he• We say that hc+i is finer than h e  or that

is coarser than hc+i- The following theorem introduces two basic properties of the 

partial order.

T h eorem  1. For a sequence of partial orders he defined as above, the following prop­

erties hold:

1. I fh c —hc+i, then >ic=^c+i for all i >  0.

2. All relations he are transitive and reflexive.

Proof. To show 1 it is sufficient to consider step 2, in which relations that are 

present in he are removed. Assume that hc—hc+i- Consider states x ,y  such that 

x ^ c+1 V■ We show that x hc-\-2 V- Condition 1 of the definition of covering is true 

by assumption. Also from assumption, we know that x covers y with respect to the 

transition matrices for the relations in h e  so it also covers y for the relations in hc+i, 

since the relations are the same. Therefore, condition 2 is also true, x hc+2 y , and 

further, hc=hc+2=hc+i-
Transitivity of the relations is proved inductively. Obviously, >:o is transitive, since 

x ho y implies rr(x) >  rr(y) for all r =  1 , . . .  , R. Consequently, x ho V and y ho z 

implies x ho z.

We show that if transitivity has been proved for he-, if also holds for ^ c+i- To show 

that x >ic+i V and y hc+i z imply x hc+i -z, we have to show that a covering o f y by x 
and of  ̂ by y implies a covering of z by x. Assume that the covering is built according
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to matrix D, and consider element D(z, w) >  0 that should be covered. Let d™z be 

the vector of the covering of 2 by y. For each value d yZ{y) >  0 there exists a vector

dY. N o w  construct a vector•*> >£/

It is easy to show that the resulting vectors describe the covering of 2 by x for matrix

component. The proof for reflexivity is trivial.

The first point in the above theorem shows that after finitely many steps a partial 

order is reached that remains constant in further iterations. This holds since the 

number of relations between states in ^0 is finite, and each step from y c to ^ c+i 

removes relations between states that can happen only finitely many times. >̂ c is 

denoted by minc : bc=hc+1 as Below we will consider some properties of that 

partial order. The second point in the previous theorem shows that is a partial

T heorem  2. If >:* is a partial order that is a refinement of >:0 and that is completely 

covered for the matrices P , P i , . . .  , P l , U i , . . .  , U k , then x y  * y => x y^  y.

Proof. The proof is done inductively over the sequences c =  1,2,___ First

notice that for x >:* y the relation x y is necessary by assumption. Furthermore it 

is obvious that if no covering exists that refines a coarse relation, then also no covering 

exists that refines any refinement of the coarse relation.

Assume that x h* y =>• x y c y. We show that x >:* y => x >:c+i y. If x covers 

y according to the relations in then it must also cover y according to the coarser 

order >zc. Therefore, x >:* y => x ^;c+i V-

Since the result holds for all c, x >:* y => x y holds and that proves the theorem.

The theorem shows that is the coarsest order that can be found through con­

sideration of coverings. However, >z might be coarser than since the concept of 

covering considers only sufficient conditions to prove x>zy.

v:dy,;*H>0

D. Since the result holds for arbitrary matrices, it can be applied for all matrices of a

order.
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3.4. Basic Properties

We now prove the basic properties of the partial order namely that x E~ y 

implies x >z y.

T h eorem  3. If x E~ y, then i?£ke  ̂ >st ^t,k,e,y f or va^  vectors t ,k.

Proof. According to (6) and (7) the probability vector ftr k e2 for A[ k e is computed 

as an infinite sum of the form

prohaez
i=0 a6{0

where proba are appropriate probabilities, Do =  P  and D*, =  for k > 0. We prove 

that for an arbitrary sequence of matrices of length i =  0, 1, 2, . . .  the vector dominance 

relation

ftV ,., =  E  E

B-r ^

holds, that implies that the above summation is greater for z — x  than for z — y, 

and that there is a stochastic order between the corresponding random variables. The 

proof is done by induction.

For i =  0 we have exR^ =  ermr(rr(x)) erm(rr(y)) =  eyRr? which holds since 

x  Eo y, and the probability vector entries are arranged in order of increasing reward 

value.

Assuming that the result holds for a sequence of length i, we show that it then also 

holds for sequences of length i +. 1. Let a describe a sequence of length i +  1 that can 

be decomposed into a sequence of length i defined by the subvector a' that consists of 

the elements 2 through i +  1 of a and a sequence of length 1 with matrix The

value for y can be computed as

i + l  i+1  n — 1 ¿+1

| {  ^a(j)R r =  Da(l)(y*) h)a(j)Rr ^ ^a(l) (.Vi z)&z | | Da(j)R-r-
3=1 3= 2  z=0 j = 2

For x we obtain
i + l  i + l  n —1 n —1 i + l

ex 11 Da^R^. D a^^(x*) 11 D a( )̂R .̂ ^ 2 ^ {  {  -^a(ji)Rr
j —l j —2 z = 0 w=0 j —2
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where vectors are the vectors describing the covering D a(i)(y,z). It follows that 

dx,y(.w) >  0 implies w z and =  D a(1)(y ,z )2. Since the assumption

holds for sequences of length i we have
¿+i ¿+i

Vtn . W Z . Gw J([ D a( j ) R r  '¡p Gz D a( j)R - r  =$’
3=2 3=2

t + 1 i+1
X/ d a. y(,uj)ew D a(j)R r D a(i)(?/,2)e2 0  D a(j)Rr,

w.wP^z j —2 j= 2

which completes the proof.

4. M on oton icity  and Lum ping

The partial order is related to st-monotonicity for matrices [8] and to lumping [9]. 

We show that a generator matrix is st-monotone if and only if all the states are totally 

ordered according to by the state index, and two states x and y are lumpable if 

and only if x >z~ y and y x. We prove both of these relations below.

T heorem  4. x V and y x if and only if x and y are lumpable and have the 
same reward vector.

Proof. If states x and y are lumpable with the same reward vector, they will trivially 

cover each other, and therefore x y and y >ẑ  x.

We show that the converse is also true for Assume that x >ẑ  y and y x. 

The state x  must cover the state y with respect to y^ , and vice versa.

Let R C S be a subset of the state space such that for v € R, D(y, v) > 0 or 

D (x,v) > 0. So long as R is non-empty and finite, there exists a (not necessarily 

unique) state z G R such that Vu G R, z y^  v or v z.

Define the set of states equivalent to z:

L(z) C S s.t. v G L (z) = y  v z and z y „  v (14)

By the definition of covering we have:

dx,y(u) >  0 = >  U>z~ z (15)

But by assumption z y^  u, therefore u G L (z ).

2Observe that equality has to hold here since all involved matrices are stochastic.
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n—1

E  < ; ^ T , di , v = D (x*'l (16)
v €L (z )  v=0

Therefore:

Y  D {y ,v) <  Y  D (x >v) (17)
vGL(z)  v£L{z)

But the argument is symmetric, so:

Y  D (y>v) =  Y  D (x ’ v) (18)
v£ L(z )  vGL(z)

Considering the remaining states in R, there exists a state w G R such that Vw G 

R/L(z), eitherw « , or u w. We conclude that dx y (v) = 0 , Vu € L(z), since we

have already shown that states x  and y have the same probability mass of going to a 

state in L(z). Therefore, the above argument can be applied to L(w), and inductively 

on all remaining states in R. The result is that for all states x and y such that 

x y x:

Y  D (x ,v )=  Y  D(y,v),\/z€S  (19)
v£L{z)  vEL(z )

Therefore, all states x, y such that x y and y >z~ x proceed with the same 

probability to states that are also equivalent according to Therefore, we conclude 

that the states that are equivalent according to form the sets of lumped states, 

which means that x  and y are lumpable.

T h eorem  5. If D  is monotonic and x > y implies r(a;) >  r (y), \/x,y, then x > 

y implies x >ẑ  y,Vx,y.

Proof. Since x > y implies r(:r) >  r(y) we have x  >o y for x > y.

Assume x > y implies x >k y , Vx, y. Consider two arbitrary states x, y such that 

x > y. By assumption D (x») D (y*). It can be shown the x  covers y. The cover

can be constructed by greedily selecting the largest subvectors for dzx y starting with 

the largest reachable state and proceeding through lesser states to the smallest states. 

Therefore, x > y implies x >k+i y ^ x ,y .  Therefore, by induction, x > y implies x

y,Vx,y-



16 Daly, Buchholz, and Sanders

T heorem  6. If x > y implies x >z~ y and y ^  x then D  is monotonic and x > 

y implies r(x) > r (y).

Proof, x > y implies x y , which directly implies that x > y implies r(x) >  r (y). 

x >ẑ  y implies that x covers y , so there exist vectors dzxy  for all 2. Since dzx (u) >
n—1 n—1

0 implies u >z~ z, and u z only if u > z, £  dx y T>(y). But Y, dx,y =
z —0 z = 0

implying that D(x») D(y»)  for all x > y, which means that D  is monotone.

If the state space is maximally lumped so that there are no states in the state space 

that are lumpably equivalent, then the requirement in Theorems 5 and 6 that y ^  x 

becomes trivially true. If that is the case, the Theorems 5 and 6 are the converses of 

each other.

5. A ggregation  and C om parison

The concept introduced so far compares states from one state space S. However, 

to build aggregates, states from different state spaces have to be compared. Here we 

first present the general concept of aggregation and then show how states belonging to 

different state spaces are compared.

5.1. A ggregation  by State M apping

The basic idea of aggregation is to combine several states of the original component 

and represent them with one state of an aggregate. Afterwards, the aggregate can 

be integrated instead of the component in an arbitrary environment. Different aggre­

gation methods exist and in some cases yield exact results. However, aggregation of 

components usually introduces an approximation error of an unknown size. Although 

approximation errors are often relatively small, at least for stationary analysis, it 

is important to bound the error. Unfortunately, not much is known about bound 

computation in compositional analysis.

Let Sc — { 0, . . .  ,nc — 1} be the state space of the entire component and Sa =  

{ 0, . . .  ,na -  1} be the state space of the aggregate. We assume here nc > na for a 

useful aggregation, although there might be some interesting cases with na > nc, e.g., 

if the aggregate is a product form queuing network and stationary results are required. 

The aggregation is described by a function map : Sc —> Sa. “map~1(x') for x' G <Sa”
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denotes the set {x\x' G map(x)}. We assume that all sets map~l {x') are non-empty; if 

they are not, state x' can be removed from the state space of the aggregate. A mapping 

can be described by a matrix M  G R™°’na such that M (x ,x ')  =  1 for x' — map{x) and 

0 otherwise.

5.2. C om parison  o f  D ifferent M odels

The comparison of states from different state spaces according to a stochastic 

ordering was first presented in [12]. Here we use similar ideas, but we use the partial 

order among states developed in the previous section and compare CTMCs that can 

interact with their environments, whereas [12] compares DTMCs without interaction 

with the environment.

For the comparison of two models we use the superscript (o) for the matrices and 

vectors of the first (original) model and superscript (a) for the second (aggregated) 

model. Then we build the union of the two models, yielding matrices and vectors of 

the form

D = and rr =
»

. r
Sa)

For the resulting system, partial order can be computed as before. We say that 

(a) is larger than (o) if and only if

\/y G S ^ y x  G map 1(y) : y x. (20)

Similarly we define (a) as being smaller than (o) if and only if

Vx G <S^°\Vy G map(x) : x>z~y. (21)

The following theorem shows that the terms “smaller” and “larger” have a direct 

implication for the reward measures of the system.

Theorem  7. If aggregate (a) is larger than system (o), then

V t , k , r : j r «t,k,pX t,k,P(j

and if aggregate (a) is smaller than system (o), then
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when

PoaV )  =  P o ^ z )
x€ map~1(x)

Proof. From Theorem 3 it is known that x >z~ y implies R[ k &x > st R[ k e . If 

the aggregate is larger than the original system, then all states x' of the aggregate are 

larger than the states x o f the original system that are mapped on x'. Consequently, 

-R£k,ex/ —st Rt,k,ex f°r x> ^ and x e  map~1(xl). Furthermore, =

Ylxemap-'ix) Po^^) such that the following relation holds:

Rr’H (a)t,k,pQ S  P 0“
x'ES(a)

V K ; k,ex/

^  Z )  p
x'EiŜ 0) xEmap~1(x')

( o ) r -(°) _  ^ r ’(a)
.Pò

The proof for smaller aggregates is completely analogous.

Since the above theorem holds for all valid vectors t and k, the same result also holds 

for accumulated rewards ARr,('a\ a) and ARr,('°\0s. The theorem shows that under
t ,k ,P^  t , k , p l0o)

the same arrival process, a larger aggregate determines an upper bound and a smaller 

aggregate determines a lower bound of the reward measures of the original model.

For a complete system (i.e., a CTMC without inputs and outputs but with rewards), 

the only thing that needs to be checked is whether condition (21) or (20) holds with 

respect to matrix P. If either of them does, it is assured that the smaller/larger 

aggregate bounds the reward of the complete system from below/above, due to theorem 

7. It is obviously not necessary to compute the whole order only (21) or (20) must 

to be verified. That nevertheless implies that we either know some order among the 

states to be aggregated or impose such an order for the states of the aggregate.

6. Analysis o f  C om ponents in C om position

Having analyzed components and simple systems, we now investigate more complex 

systems that are compositions of systems. The composition of systems relies on the 

composition of Markov chains. The resulting structures are well-established, and it is 

known that the generator matrix of the composed model can be described as a sum of
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Kronecker products of small component matrices, which is a nice structure with which 

to prove compositional results and realize algorithms. We first consider the acyclic 

composition of two components, and extend our approach to the cyclic composition 

of two components. Observe that the composition can easily be extended to multiple 

components. We assume that the reward structures for all of the components are 

combined by a function that is non-decreasing in all of the component rewards, such 

as addition, multiplication (if rewards are positive), min, and max.

6.1. A  Few C om m on  C om ponents

Before we analyze the acyclic models, we briefly introduce and describe some com­

mon types of components that arise in compositional systems. In this section, we 

introduce some properties of the components, and in the following section we will 

analyze compositions of those types of components in more detail.

6.1.1. Output model An output process may have no rewards and no input events such 

that R =  K  =  0. However, the departure rates of the outputs provide an order, as 

one state cannot cover another state if it has a lower output rate. Therefore, x >z~ y 
implies that the departure rate of each class l is greater if we start in x than if we start 

in y, and this holds for all times.

The class of output processes that can be described with the proposed concepts 

include MAPs and BMAPs and can additionally be used to specify correlated arrivals 

of different classes.

6.1.2. Input model For a system with inputs, but without outputs, L =  0 and the 

results from Section 5 apply. We have already shown that a system with inputs can be 

replaced with a smaller or larger aggregate to bound results for a given arrival process. 

To classify the behavior with respect to different arrival processes, the reaction of the 

system according arrivals has to be classified. We say a system is input-increasing 

if U k(x,y) >  0 implies y x. Thus, in an input-increasing system, each input 

improves the situation according to all rewards. Similarly, a system is input-decreasing 

if Ufc(x, y) >  0 implies x >z~ y. Consequently, the situation becomes worse with an 

arrival.

Input-increasing and -decreasing systems show some form of a monotonicity property
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such that with an increasing/decreasing arrival rate, the reward grows/shrinks. In 

compositional analysis, such behavior is important when input processes or other com­

ponents are replaced with larger or smaller aggregates and bounds for the component 

should be computed. Without such a monotonic behavior, it would be unclear whether 

the reward value increased or decreased under a larger or smaller aggregate for an input 

process.

6.1.3. Input/Output model A model with inputs and outputs is a simple extension of 

the input model and the output model. The analysis of the component will depend 

upon whether the component is input-increasing/decreasing with respect to the ma­

trices U i , . . .  , Ufc.

6.2. A cyclic  C om position  o f  T w o M odels

We now consider a system composed from an output model (1), and an input model 

(2). Since the first component is an output model, and the second is an input model, 

the first component has no inputs (i.e., K  — 0) and the second system has no outputs. 

Furthermore, we assume that the number of outputs of the first system equals the 

number of inputs of the second system, such that inputs and outputs with the same 

number can be connected. It is well-known that the generator matrix of the composed 

system can be represented as

Q = Q(1)® Q (2) + E Q " ( S ) u i2) (22)
k—1

and the reward and initial distribution vectors are given by

where (i) denotes the component index, is the size of the state space for component 

i, In is the identity matrix of order n, and 0  is any non-decreasing function. The 

following theorem gives some results about bounds on the complete model that exist 

when one component in the model is replaced with a larger or smaller aggregated 

version, based upon the preservation of by matrix operations.

T h eorem  8. Consider the composition of two components (1) and (2) as described 

above, then the following relations hold.
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1. If component (2) is input-increasing (decreasing and component (1) has no re­

wards) and (a+) is a larger aggregate for (1), then the composition of (a+) with 

(2) yields a system that is larger (smaller) than the original system.

2. If component (2) is input-increasing (decreasing and component (1) has no re­

wards) and (a—) is a smaller aggregate for (1), then the composition of (a—) with 

(2) yields a system that is smaller (larger) than the original system.

3. If (a+) is a larger aggregate for (2), then the composition of (a+) with (1) yields 

a system that is larger than the original system.

4- If (a—) is a smaller aggregate for (2), then the composition of (a—) with (1) yields 

a system that is smaller (larger) than the original system.

Proof. Parts 3 and 4 follow directly from Theorem 7, since the changes have no 

effect on the first component and are guaranteed to increase the second component, 

and the reward is a non-decreasing function of the rewards of each component.

To prove part 1 of the theorem, we need to show that the complete model with 

larger aggregate for the first component has states that are greater than the states of 

the complete model with unaggregated components. First we show that if x\ x2 

and yi h ^  2/2, then (#1, 2/1) (x2,y2).

Consider arbitrary states (#1, 2/1), (#2, 2/2) such that x\ hliP £2 and 2/1 h t y  y2. 
(xi,yi) ho (â 2, 2/2) since the rewards are combined in a non-decreasing fashion.

Assume that if #1 £2 and yi h &  y2, then (#1, 2/1) he (£2, 2/2)- None of the

local transitions for the second component have any effect on the first component, 

so all the transitions from 2/1 will cover those from state y2. Transitions in the first 

component can change the state of the second component, but may only change it 

to a greater state. All transitions from state #1 will cover those from state #2 with 

respect to the first component. However, since component 1 is an output model and 

£1 £2, £1 will also be more likely to improve the state of the second component

than x2. Therefore, all of the transitions in the first component for state x\ will cover 

those for x2 in the complete model. Therefore, state (#1, 2/1) covers state (#¡2, 2/2), and 

(£i,2/i) hc+i (£2, 3/2)- Therefore, (#i ,yi )  (£2, 2/2) for #1 £2 and yi ^  y2.

Given that if #1 x2 and yx h &  2/2, then (#1, 2/1) (£2, 2/2), it becomes
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Original Model 
C2/C2/1/N

Bounding M odels 
M /M /l capacity N

/ ----------- ~ —

A.+A,—
p + . - . p -

C 2/C 2/1/N ’

States: 1..N’ o r N - N ’...N

F i g u r e  2: C2/C2/I/N Model and Possible Aggregates.

trivial to prove part 1 of the theorem. State (x , y) in the unaggregated complete model 

will be mapped to state (map(x),y) when the first component is aggregated. But 

map(x) > :!})  x, and y > zty  y, so therefore (map{x),y) > :^  (x ,y ) for all states x,y.

If component (2) is input-decreasing, the analysis is similar, except that more 

arrivals lead to lesser states in the second component. Therefore, a larger aggregate 

for component (1) will decrease the reward of the second component. If there are no 

rewards on the first model, then the composed system will also be smaller.

The second part of the theorem is just the reverse of the first part, and can be 

proved with a similar argument.

Of course, the different ways to build bounding aggregates can be combined. For 

example, the input process could be replaced with some smaller or larger aggregate 

according to 3 or 4, and afterwards a larger or smaller aggregate for component (2) 

could be used to build a second aggregated model that bounds the results of the first 

one.

To illustrate the possibilities, we consider a queue with capacity N and a 2-phase 

Coxian arrival and service process with parameters p, 1, p,2, a and Ai, A2, b, respec­

tively. States of the model can be described by triples (x, y , /) where l > 0 describes
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the population or level, and x and y describe the phase of the service and arrival 

distribution. We consider the population, the probability that the buffer is completely 

filled, and the throughput as the rewards. The rewards for the population and the 

probability that the buffer is completely filled depend only on the population in the 

queue, whereas the reward for the throughput depends on the phase of the service 

time distribution. We begin with aggregation of the arrival process and represent 

the aggregate with an exponential distribution with rate A-  =  min(aAi,A2) for a 

smaller aggregate and A+ =  max(aAi,A2) for a larger aggregate. Similarly, we can 

define aggregates for the service process by using rates =  min(6/Ui, y?) for a larger 

aggregate and y + =  m ax(api, ¡12) for a smaller aggregate. These rates define the 

matrix as the aggregate. Matrix =  (1) in both cases. Obviously, both

aggregates are input-increasing. Observe that due to the specific structure of the 

aggregate (i.e., a birth-death process) and the specific reward structure (i.e., increasing 

with the state index) the relation x >  y x >z~ y holds.

A smaller aggregate for the system is generated by combining the input process with 

rate A-  and the service process with rate y + . To show that the resulting system is 

smaller, we have to prove that every state x £ S(a  ̂ is smaller than all the states x 

represents. Such a proof is usually easier than the complete computation of if an 

order among the states of the aggregate is known, as it is here. Since the example has a 

very specific structure and states are aggregated according to the first two components 

in their description, we can identify each aggregated state by one population. Thus, 

aggregated state Z represents all detailed states (x, y, l) where x is the phase of the 

arrival process and, if l > 0, y is the phase of the service process. By the choice of 

the reward values it is assured that (x, y , Z) >:o (0- By induction we have to show that 

(x, y, l) >:c (Z) holds for all c >  0. First consider matrix U. In the detailed state space, 

an arrival brings the system with probability 1.0 to state (x, y, Z +  1) if Z <  K  and to 

state (x, y, Z) if l =  K. In the aggregated system an arrival causes a transition to state 

Z + 1  or to state Z if Z =  K. Additionally, we know (Z) (Z — 1) in the aggregated state 

space. Together these imply that if (x, y, Z) (Z), then (x,y,Z) hc+i (Z) according 

to the matrices U. Now consider matrix P  and compare the values in the matrix of 

the aggregated system P (a) and the original system P(°). Observe that both matrices 

have to be generated according to the same value a that is chosen here as max(yi, ¡12)-
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For l =  0, the state remains the same with probability 1.0 in both the detailed and 

aggregated systems. In all other states, the aggregated system goes with probability 

p =  y +/a to states l — 1 and remains with probability 1 — p in state /. In the original 

system, a transition in matrix P  that originated in state (x , y , l) (/ > 0) ends with 

some probability q in a state at level l — 1 and remains with probability 1 — q in a 

state at level l. Due to the construction of the rates for the aggregated system, p > q 

holds in all cases. Consequently, we can repeat the argumentation used for matrix 

U. If (x ,y ,l ) y c (/), then (x ,y ,l ) >;c+i (/) after the refinement has been done with 

respect to matrix P. Since the relation is not modified by any of the matrices and 

(x ,y ,l) >io (0 holds initially, it is clear that (x ,y ,l ) >:^ (/) also holds. The proof for 

the larger aggregate is very similar and is not given here.

There are several other options in building aggregates. A natural idea is to restrict 

the buffer size to some value N~ < N. For a smaller aggregate, all states (x, y, l) 

with l > N~ are mapped onto state (x ,y ,N ~). The proof that this aggregate is 

smaller than the original system is similar to that for the previous case. It has to be 

shown that (x ,y ,l ) >z~ (x,y,V) where (x ,y ,l ) G S^°\ (x,y,V) G S ^  and l =  l' for 

l <  N  and l' =  N~ otherwise. Each transition in the original system from (x, y, l) to 

(a;, y , l+ 1) is replaced with the same transition in the aggregate if l < N ~. For l > N ~ , 

the transition is replaced with a transition remaining in state (x ,y ,l ). A transition 

downwards from (x, y, l) to (v, w,l — 1) in the original system either remains the same in 

the aggregate (if l <  N ~) or is replaced with a transition from (x, y , Af~) to (v, w, N~ — 

1). Together, with the appropriate definition of rewards, we have (x ,y ,l ) >r0 (x ,y ,l ') 

and can show inductively that this relation holds for all partial orders >zc. A larger 

aggregate is generated by replacing all states (x ,y ,l ) with l < N  — N~ onto (x,l, 0), 

and replacing the remaining states with l > N — N~ onto state (,x , y, l — N  +  N~).

6.3. C yclic C om position

A cyclic composition can be created with models that are input and output models. 

A chain of such models can be created by connecting inputs and outputs appropriately. 

The cyclic case is merely a simple extension of the acyclic case, and all models may 

be compared pairwise to determine the net effect. We analyze the three possible com­

binations of two components that are input-increasing or input-decreasing. Therefore,
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consider two input and output models A and B , such that the output of A goes to B, 

and the output of B goes to A.

If A and B are both input-increasing, replacing A with a larger aggregate will lead 

to a larger global model, as A will experience greater states locally and it will have 

increased departures to B. The increase in arrivals to B will result in greater states in 

B, and the greater states in B will increase the departures back to A, further improving 

the state of A. The models will behave similarly if a smaller aggregate is used.

If one component (A) is input-increasing and the other (B) is input-decreasing, no 

bounding results can be ensured. Replacing A with a larger aggregate will lead to 

greater local states and more departures. However, more departures will lead to lesser 

local states in B , and therefore fewer departures from B. A will receive fewer arrivals, 

and thus have lesser local states. This negative feedback makes it impossible for us to 

guarantee any bounds at this level of analysis. Similar behavior will also be observed 

if A is replaced with a smaller aggregate, or if B is replaced with a larger or smaller 

aggregate.

If both models are input-decreasing, the behavior is slightly more complicated, and 

no global ordering results on the states can be assured. However, if both components 

are input-decreasing, and component A is replaced with a larger aggregate, the states 

of component A will be increased, leading to more arrivals to component B. The 

increase in arrivals to B will lead to lesser local states in B, and fewer departures to 

component A. However, the decrease in arrivals to A will further improve its local 

behavior. Therefore, component A will always be in greater states that it would have 

been, and component B will be in lesser states. This behavior therefore will lead to 

bounds for rewards defined on one component, but not for global rewards that are 

defined as a function of both components.

7. C o n c lu sio n

In this paper we introduced a new partial order for proving that the results of solving 

aggregated models bound the results of the original model. The partial order is applied 

to a general class of Markovian models that may interact asynchronously with their 

environments. In order to define the new partial order, we developed the concept of
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“covering” , which specifies that one state is greater than another state, and proceeds 

to greater states than does the other state. We then used the concept of covering to 

define the partial order, and proved that the partial order has the property that one 

state is greater than another state if the model will have a greater reward at any point 

in time, provided that the model starts in the first state instead of the second state. 

Additionally, we showed how the partial order was related to the stochastic ordering 

techniques of monotone matrices and to the concept of lumpability in Markovian 

models. Finally, we developed sufficient conditions for the existence of relations of 

the partial order in a structured model based upon analysis of the components of the 

model, which facilitates the substitution of aggregated components for the constituent 

components of the model.
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