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■Abstract

The stability of an infinite beam of charged particles penetrating 

a plasma against small amplitude electrostatic perturbations is investi

gated .

In Section A the dispersion relation is derived, taking into account 

the velocity distribution of the beam particles.

In Section B is is shown that in the presence of collisions the 

electrostatic instabilities can be quenched if the beam particles have 

a velocity spread.

In Section C the results are applied to a beam of finite cross 

section held together by its own magnetic field. The criteria for the 

stability of such a beam against electrostatic perturbations is derived«
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A. Derivation of the Dispersion Relation •'

We make the following assumptions and approximations:

1* In the steady state we treat beam and plasma as uniform over 

all space. ' ■ ' ' • / . .

2. We neglect the effect of all magnetic forces on the plasma.

3. We neglect the thermal velocities of the plasma electrons.

Ij-. We neglect the effect of the magnetic forces on the beam par

ticles due to the steady state magnetic field produced by the unper

turbed beam current; in short, we do not consider the pinch effect.

5. We assume that the changes in beam current density (or charge 

density) are small compared to the current (or charge) density produced 

in the plasma as a result of the perturbing fields.

6. We treat only small perturbations in the linear approximations.

7. We consider a single Fourier component, so that each first order 

quantity varies in space and time a s :

f -exp < i k * x - iojt

If we suppose that we are interested in an initial value problem 

(in external forces after t = 0) we must then consider k to be real.

From these assumptions it follows that the first order plasma cur

rent density has the form: >

(p la s m a )

— 3--------  = (£ - 1)
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where the dielectric constant£ of the plasma is given by

<?= 1
0)

<*)(<*> + i J r  ) (2 )

i / r  is an effective collision frequency for the plasma electron (which 

may depend slightly on the frequency W ) • w is of course the usual "plasmaJsr
frequency" for the electrons in the stationary plasma.

Similarly we can show that the first order change in the beam current 

has the form:

biiiJ (beam)
a
U) = Kaf3 Ef3 (3)

K
may be called the susceptibility of the beam: the expression (3 ) is 

meant to include the effects of the first order magnetic field; we can in

clude these effects in the form (3) by expressing B in terms of E via

Faraday1s law B = - l x  E o> An explicit calculation of the tensor K

will be given later. For the time being we shall make (5) more specific 

by the:

assumption: K < < 1

We can now write down Ampere1s law :

o o

^  1 ÒE k-nV  x B --- 37- = —c dt c
‘plasma . -tbeam+ cl
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for the first order quantities. Substituting (l) and (3 ) in the R. H. S.
p]r -y’ TS 1—> oand B = -------- in the L. H. S., together with ^  = ik; = - i w

gives immediately:

{ (safs * ka V  ' f t  Kc&] EP - (£ Ea <5>

The set of 3 equations (5) will then give us the eigenfrequencies and
C W 2eigenmodes for our problem; it is convenient to think of a. = c —
c2

as the eigenvalue. To solve the eigenvalue problem we now make use of 

the assumption (*0 and use standard perturbation methods to find the 

first order effect of the beam.
• * - • _ • " v ' * '

First we must find the eigenvalues and mode to zero-th order in

K _ ,  i.e., without a beam. The three eigenvalues and modes are easily op 2
found: (a0 ) \° = £ —  = 0  with E parallel to k. This mode cor-

c2
responds to the familiar plasma oscillation. If the collision frequency 

t /'P' is small compared to the plasma frequency w the corresponding fre-
Jr

quency is given by:

“ = t“p - 2V

The mode is obviously damped in the absence of a beam.

(b°) \° = £  ~  = k2 with E perpendicular to k. There are_2C -i-
two independent modes, with— if we so choose--mutually orthogonal E.

These are ordinary transverse electromagnetic waves. The relationship
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between frequency and wavenumber (for w ) is given by:
I P

ÜJ = t f ; 2 + k2c2 1 i
2 r

OJ

u) 2 + k2c2
*)

We note that in the electrostatic mode the phase velocity can take 

on any value, while in the transverse modes the phase velocity is always 

greater than the speed of light. We shall see later that the instability 

which can arise in the electrostatic mode is due to the fact that when the 

phase velocity is close to (slightly less than) the beam velocity energy 

can be extracted from the beam to supply the collision losses and to in

crease the amplitude of oscillations. Since this possibility is not present 

in the transverse modes we shall not discuss them in detail.

Having identified the unperturbed (no beam) eigenstates we can now 

proceed to calculate to first order the effect of the beam. The usual

methods familiar from quantum mechanics give immediately the first order
w2correction to the eigenvalue due to the perturbation---— . The cor-

2 c
rection to X is just - —  1 K -  la, where 1 is a normalized (unit

c 2 C* OP P a
length) eigenvector to zero-th order. We thus find for the various modes:

kq Kqft kft _ r
k2 c2

*) The dispersion equation has a third root:

2 .2k c
k2c2 + w/ OJ

2
i
r
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or

£ ka Ka0 k0 = 0. Electrostatic mode to first order in K

\° + ^  = k2 - id 1 K 1  = £  —
a a& P c2

(b1)

or:

+ 1 K -  1Q = k2 . Transverse mode to first order in K 1 ^  a o0 0 ap a
is a unit vector (polarization vector) perpendicular to the wave vector 

k. We have the transparent result that the effect of the beam is account

ed for by adding the appropriate diagonal term of the beam susceptibility 

to the susceptibility of the plasma.

We shall not consider the transverse modes further and rewrite the!
dispersion equation for the electrostatic mode in the form:

£  + k 33 = o (6)

A ^  Awhere the axis 3 points along the wave vector k; we shall denote by z 

the axis which points along the unperturbed beam current, and by 0 the 

angle between the beam and the wave vector:

3
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We proceed now to calculate the tensor which relates the first 

order change in beam current to the electric field of the perturbation.

We shall give a derivation only for the K ^  component, which is very simple 

and is the only one needed for our purpose. In this case we only need to 

compute the (1st order) beam current density along k due to an electric 

field in the same direction, for in this particular case there is no mag

netic field (k x E = 0).

For simplicity, we carry out the derivation as though all beam par

ticles had the same unperturbed velocity, and average over the velocity 

spectrum after we are done.

To first order we have: J = p Sv + v Sp, where J is the firsto o
order change in beam current, pQ and v q are the unperturbed charge density

of the beam velocity, and &p, Sv are the corresponding first order changes.
k • JJ and 5p are related because of conservation of charge by 5p = — -—  and0)

6p can be eliminated:

J = P0 } Sv + k • bv > , w - k * V

For the component along k this is simply:

J, = p 77 5v,3 o -fl- 3

The next step is to write Newton's second law (relativistic version)

t _ dP 
F - at

d_
dt

U U dv + (F ° v)
c2 dt c2
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With the usual notation = M • y this gives:
c2

dv _ 1 ) p (F  ' v jv
dt M7 \ c2

To obtain an integral, we note that— to lowest orders— the time variation 

of F along the path of a beam particle is given by a factor:

exp i k • x - iwt } æ  exp { - i-O-t The integral is there-

fore :

6v = ytyx- F -(F * v) v
2c

In air special case F = e 3 | in general F = e | E + — x B j =

{
.A y  JW
E + —  x (k x E). Putting all of our results together we get 

“
the general result:

KoP -u'r
2 , ag , V g + V a  ] (kgc2 x) V g  X

It) u>2yi CO .2 XL

and the special result;

K35 (1 - - 2- ) = -
J V

“b_
JXZ

(T)

where :

2 W f e f  . 2 „ a (1 . J l ,
T! tty. ' ^  T v „2'
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with :
N = unperturbed particle density of the beam,

e = charge of one beam particle.

M = mass of one beam particle.
2 - l/2

7 - (1 - —  ) 
c2

v = speed of a beam particle.
> ■v, = component of v along k.3

J\ = w - k • v =* w - kv*.3
We must now modify (7 ) to allow for a spectrum of beam particle ve

locities. While no approximations are really necessary, we prefer to make 

the following work somewhat more transparent by noting that the principal 

effect of the velocity spread is taken into account if we allow for the 

variation of v only in the resonant denominator— provided of course the 

range of velocities (and of y in the relativistic case) is reasonably 

narrow. Since-O-depends only on v^.it is then sufficient to introduce

a distribution function for v,. We let the particle density for particles3
with v in dv, be N f (v,) dv, with f f (v ) 

3 3 3 3 ^ 3 dv-, = 1. With this notation3
equation (7 ) is changed to:

K33 ' " “b
f(v3 ) dv3 

(w - kv3 )2

f" (v3 ) dv3 

u> - kv. (8)

where cdg2 is a suitable average over the velocity spectrum, and the second 

form is obtained form the second upon integration by parts.
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Our final form for the dispersion relation (6), using (2) and (8 ) 
is finally:

B. Energy Balance in the Electrostatic Instability

It is useful to write (9) as two separate equations by multiplying 

first by -iw and then setting the real and imaginary parts separately 

equal to zero. The first of these two equations is then related directly 

to the energy balance in the process and has therefore a very direct phys

ical interpretation. As a matter of fact we shall see that the second 

equation is not very important in practice.

We note first that if we restore a factor E^ into (9) it reads:

E, + (£ - 1) E_ + K__ E_ = 0.

If we supply an additional factor and compare with (l) and (3 )

we obtain:

(9)

+ J.3
beam

If we finally multiply by the complex conjugate E _ and take the real3
part we have:

He + Re
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The first term is clearly the rate of change of the electrostatic field 

energy, the second term the rate at which energy is put into the plasma 

and the last term the rate at which energy is put into the beam» Obvious

ly the last term must be negative and the first two positive if the pertur

bation is to grow» The terms in the equation are obtained by multiplying 

equation (9 ) by -iw and taking the real part to correspond to the above 

rates of energy transfer aside from a factor IE3 I
57

It is convenient at this point to change notation:

{ Old notation New notation ?

u) ___________ ^ w + i a (1 0)

w, a, are now real. In this notation we get from (9) the two equations:

a + ------2------- — -  (a + l / 'T )
w2 + (a + l/'T  )2

a v^ f * (v^) dv3 

(w - kv^ )2 +
= 0 (11)

w 2 w / (w - kv ) V., f* (v,) dv
-<o + -E------------------------- %2 /  ---------- 2---- 3---------3------3 .  o (12)

u2 + (a + l / ' f '  )2 / (to - kv )2 + a2

We shall now explain the cryptic remark made previously that equa

tion (12) is unimportant. This is true because k is after all a free 

parameter; in the last term in (ll) w enters only in the combination w-kv^ 

so that if we treat w-kv^ (where v^ is, say, the mean value of v^) as a 

free parameter instead, we need not know u) at all. The other place where 

u) enters in (ll) is clearly not too critical, and from equation (1 2) we 

know that as long as our assumption (5 )ti A is true (our dispersion
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relations are only correct if it is true) we know that fa)2 + (a + l/^ )2 =

fa) 2 to a very good approximation. It is therefore justified to rewrite P
(1 1) as:

a + a + 1ft* - £*>b2
av, f* (vj dv,3______ 3 3
(a) - kvx )2 + a23

= 0 (11* )

We now repeat and amplify slightly the remarks made about the phys-
|e5|2ical interpretation of the various terms. Apart from a factor r a 

is the rate of increase of electrostatic energy; a + l/T*̂  is the rate at 

which energy goes into the plasma; the first term, a, representing the 

rate of increase of kinetic energy of the plasma and 1 fa' the rate of 

energy loss by collisions; the last term represents the rate at which 

energy is extracted from the beam.

We make the obvious remark now--anddiscuss it more fully later—  

that if we can prove that in a given situation the last term is always 

smaller than l/f' , the energy extracted from the beam is too small to 

compensate the losses and there is no instability.

We discuss first--briefly--the limiting case where the distribution 

function is infinitely sharp. We get the appropriate limit from (ll*) 

if we undo the integration by parts in the last term and then put f(v^) = 

S(v? - Vj):

2a + 1 /r' = uig2 Im T a) + ia 
Jl2

Jl = fa) + ia - kv̂  ; if f(v̂ ) = ô(v̂  - v̂ )
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The term on the R. H. S. is â 2 j a Re l/fl 2 + w Im l/JI 2 j

The first term is unin^ortant if a<<|a)|^w and the real and imagi-
Jet

nary parts of l/_fl2 are comparable (-which is the case). In this approxi

mation :

2ImJl + = wB2 wp (l/Jl2); for f(v^) = ô(v3 - v?) (H**)

To solve this equation we must in general solve a cubic. However the solu

tion is trivial in two extreme cases:

Case I: JmSh>> l / ^ . In this case if we write -ft- = (w^2 w^)1^  z;

(1 1**) is approximately:
2Jm z s Jm 1/z2 which has the solution z = (-cos The

largest growth rate occurs for 0 = 120° which gives:

_ 31 /2
amax ¡575 (<*>B2 wp )1//5> >  l/t'

Case II: I m j X ^O./^. In this case we write -/L = (^(wp^)1^  j

(1 1**) is approximately:
1 = Im l/z2, with solution z = (-sin2 0 )1^2 e1 .̂. The largest

growth rate again occurs for j = 120° and:

amax (3A)5A (“p^)l/2 ; (w.B U) )P
1/3 l/t'
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In general the greatest growing rate give by (ll* *) can be found by

finding the positive root of;

2 amax

In any practical case the growth rate calculated with neglect of 

velocity spread is so fast that it is of great importance to argue about 

the precise rate. We must therefore return to equation (ll1) to see 

whether taking into account the velocity spread could suppress the in

stability altogether. It is clear from the structure of the last term 

in (ll*) that the width of the velocity distribution has little effect 

unless ;

We proceed directly to the extreme case where the width is large:

In this case we obtain for thd rate at which energy is transferred 

from the beam;
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Since the wave velocity ^ is an adjustable parameter we have~in the 

worst case:

lim

a -> 0

a v, f*(v,) dvx5_____ j j

(a) - kv^ )2 + ü!2
( 12)

We note that if the collision rate is small compared to this, the growth 

rate is then given by:

a -z
U).B
co (v5 )

]
max >>

1
2

In most practical cases a growth rate comparable to the collision 

frequency is still so high that this case is also of no great interest. 

The only case of practical interest is then the one in which the rate of 

energy loss by the beam is insufficient to supply the collision loss in 

the plasma. From (ll*) and (12) we obtain the following condition for 

stability :

for stability.max

We remark that this result is exact if the assumptions (l-5) listed 

at the beginning of A are correct, except for the approximation involved 

in taking u) 2 outside the integral sign in the equation (8 ).

The result (13) can be evaluated for any distribution in v^. For the 

sake of having an explicit result we evaluate it for the special case of a 

gaussian distribution with R. M. S. derivation A

U).B f ( V



131-21

If we put:

~(v3 - V 2

f(v ) dv = —  e 2<A  V *  dr, 
5 5 f&A v, 5

we get:

i > / s :  “¡ L f !^  » 2e l a  ' = 0.76 0) AV. (13)

For stability of a Gaussian distribution in v, with < (v, - v , ) 2 =3 3 3
(^ v 3)2.

It may be worthwhile to make one remark about this result. The 

result could have been obtained by the following argument. A particle 

moving with velocity v^ sees a perturbation with frequency w - kv^, while 

a particle with velocity v^ + A v ^  sees a frequency w - k(v^ + Av^). If 

the first particle keeps in phase (i.e., if w - kv^ - 0 ) the second par

ticle in a time A t  will get out of phase by k A v ^  A t  radians. If we 

set A t  equal to the growth time of the perturbation (At^((*)g j )“^ 

if collisions are important) we might expect that the instability dis

appears for k Av^. A t ^ l .  This simple argument leads to the condition:

1 * ¿ 1  for stability; which coincides withk A v 3 , A t ~  ¿kv
3

(13). The argument is nevertheless spurious and leads to an incorrect 

conclusion in the case where collisions are unimportant (in the absence 

of velocity spread in the beam). The reason is simply that even if the 

velocity spread is such that it is impossible for all particles to re

spond coherently to the perturbation— so that some particles gain energy
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while others lose energy— it is always possible to choose a wave-number 

such that the beam does lose energy (on the average) and this is sufficient 

to guarantee instability, unless there is sufficient damping due to colli

sions in the plasma. In most applications— where the collision frequency 

is fairly high--a reduction in growth rate is of no practical importance.

C. Applications

To apply our results we must now specify the velocity distribution 

of particles, obtain from this the distribution function along the wave- 

vector k, and see how the results concerning the instability depend on the 

angle 0 between the wave-vector k and the direction of motion of the beam.j I ' 5
The first point we must follow up to is that in fact we have in mind the ap

plication to a beam of finite cross-section held together by its own magnet

ic field. We must recognize this explicitly since the transverse velocities 

of the beam particle are related directly to it. We shall consider the con

nection between transverse velocity and lateral structure in a very crude 

and even not self-consistent manner.

We consider first a beam of uniform density within a cylinder of 

radius a. We state without proof that inside a beam the particles os

cillate with a (radian) frequency which is connected to w^2 (defined 

after equation (?) by;
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In such a beam the transverse velocity of particles are distributed iso

tropically in direction but the magnitude varies with radius according 

to:

vT2 = Op2 (a2 - r2 )

If we disregard the radial dependence and average over the cross- 

section we find:

The distribution function in this case is a most peculiar one and 

we shall refuse to consider it sepiuosly, mainly on the grounds that no 

real beam will ever look like this. For lack of a definite model we 

choose the simplest smooth distribution, i.e., a Gaussian, i.e., we 

assume:

A precise definition of the beam radius is lacking.

The distribution in vz is more straightforward, but we must clearly 

distinguish two cases. If the beam is not extremely relativistic there is 

likely to be a small but significant spread in the particle speeds. In
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this case it is sufficient to identify with the speed v for each particle, 

i.e., to neglect in this connection the small angle between the velocity vec

tor of an individual particle and the beam axis. The distribution in vz is 

thus identified with the distribution in speed v. This clearly is adequate

provided the spread A v  in v is large compared to v(l - cos 0) which cor

responds to assuming:

v 2 + v 2 ^  v >> 1 x y
V ~  2 __2

2 2
1 WT a
8“

In this case the spread in the components is v^ if given by

(v - v )2 = (vz - v )2 cos2 0 + (v - ^ ) 2 sin2 0 =

( ^ ) 2 cos2 6 + g  ( ^ ) 2 sin2 e

Therefore we have:

x\v. )2 co_ a
= + 5 tan2 0 (15)

The result (15) applies to the extremely relativistic case as well only 

if we put ( ^ - ) 2 = 0 in this case and refrain from applying it too very small

angles 6. We assume now a Gaussian distribution of velocity and apply the re

sult (1 3) •
First, however, we tyust evaluate u^2 :
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v
^  = ^  (i - cos2 e)

o> 2 (l - —  + —  sin2 6 ).
T c2 c2

We shall— for definitiveness--consider only the case of at least

moderately relativistic particles and neglect 1 ---- compared to
c2

—  sin2 0 . 
c2

Therefore we put:

2 - ** 2 sin2 0“b = ^ (16)

We finally substitute (15) and (l6) in (13) - la the extremely rela

tivistic case we put ( ̂  —)2 = 0 in (1 3) and obtain:

1 ^  
w 2 2 a w

cos2 9 for stability.

Since this is harder to satisfy for cos 0 ̂  1 we end up with

w a ____
■£—  £  2.5 )[ w 'r'. Stability condition for (see however an ex

tremely relativistic beam (19) below).

If the contribution ( ̂  v )2 to (15) cannot be neglected we obtain

instead:

go /f/ ^  P
6 sin2 0

2 2 u) a tan2 6 + 8( v/v)‘
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The worst case obtains for tan 0 =

which gives:

8( ^ I )2

a \2

w a 2 .5JEL>
c 1 + ^ ^ Condition for stability, (18)

Which can be easier to satisfy than (l?)

^  v ^  /I
~ ~  (5-

1/2

We must now remark that there is one case in which the above treatment 

is clearly incorrect, physically«, This case occurs for modes in which there 

are no nodes in the perturbation (except near or at the boundary). For such 

a mode the transverse distribution of velocities can obviously have no ef

fect so that we must consider only the contribution of the longitudinal 

velocity distribution in evaluating (13)° We need only to consider the 

extremely relativistic case in this connection (for the other case the 

term already included explicitly is dominant in such a mode). For an ex

tremely relativistic beam the speed of all particles is essentially c and 

the only spread in v̂ , .arises from the angles between the particles5 veloc- 

ity and the z-axis.

v^ = c cos 0
V*
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or:

6(*p r  )

%  a 
(-?-)

iA
172 Condition for stability of an extremely 

relativistic beam.

This condition is usually much harder to fulfill than (17)* If (19)

is not fulfilled the growth rate of this mode will be:
1 b

a 1.3

%  a 2

a) a or :
P.
c

whichever is smaller. For typical choice of parameters this gives:

-2 c a ^ l O  - a

2i .e., exponential growth is about 10 beam radii.

D. Discussion

Our results have been obtained under a number of assumptions and ap

proximations which are not very well fulfilled in the practical case of a 

beam of finite size moving through a plasma produced by ionization of a 

gas by the beam particles themselves. In particular, the following points 

remain to be settled before one can claim that our analysis is applicable.
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1. Boundary effects have been ignored. It seems improbable to us 

that these have any great effect. In the practical case (uniform plasma, 

uniform beam within a cylinder, sharp velocity distribution) one finds 

essentially the same dispersion relation except that the transverse com

ponent of the wave vector k± (the perturbation in this case varies as
i (k

e y Jn (kl a ) inside the beam) is not necessarily real but is determined 

by the boundary conditions. Numerical analysis of the simplest modes in

dicates that this has very little effect.

2. The beam current density presumably will not be uniform over the 

beam but will decrease more or less smoothly. The energy arguments on 

which our analysis is based, should not be affected appreciably and it 

seems very unlikely that this is important, even though an analysis has 

not been carried out.

3. We have considered the effect of the particle motion due to the 

pinch magnetic field only in a very crude way, by supposing that the ef

fect is the same as with particles moving without such a field ^ut with 

a distribution of transverse velocities. It has certainly not been 

proved that the two situations are equivalent. It seems very probable 

that they are when both effects are small; but it is not clear whether 

the "Landau damping” due to the transverse velocities is really appre

ciable.

In the principal mode (no nodes) discussed briefly at the end of 

C it is clear physically that the transverse velocities play no im

portant role, so that this uncertainty does not apply.

4. Perhaps the most obscure effect is that due to variation in 

plasma densities, which results in the plasma frequency (of the stationary
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plasma) being different at different radii. If the instability mode persists 

in this case it cannot be described in terms of the Fourier decomposition 

that we have used here. Until such an analysis has been carried out, one 

must necessarily regard the results presented here with considerable caution.


