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1 Introduction

With the rapid improvement in VLSI technology, circuit design is becoming extremely complex and is placing increas­

ing demands on CAD tools. Parallel processing is fast becoming an attractive solution to reduce the inordinate amount 

of time spent in VLSI circuit design [1], Many workstation vendors have announced products based on multiproces­

sors. Furthermore, most CAD environements have large networks of workstations that can be used as parallel machines. 

It is clear that many CAD sofware vendors will soon be announcing products that will exploit the parallelism in the 

hardware. This has been recognized by several researchers in VLSI CAD as is evident in the recent literature for cell 

placement [16], [19], [20], circuit extraction [18], test generation [21], [22] and logic synthesis [24], [30], [31].

In this paper, we present some novel algorithms for scheduling hierarchical signal flow graphs in the domain of 

high-level synthesis. High level synthesis translates behavioral description of a circuit, specified as a signal flow graph 

to register transfer level description. With the increasing complexity of systems being designed, automated high level 

synthesis is becoming increasingly important.

Scheduling is a major step in high level synthesis. It assigns each node in the graph to a specific time step. Numer­

ous algorithms have been proposed for scheduling [2], [4]r [5], [7], [8]. An excellent overview of existing scheduling 

algorithms appears in [6]. An integer linear programming approach to scheduling is described in [7] and [8]. Inte­

ger linear programming is suitable for small systems, but may result in very large run times for larger problems. List 

scheduling [4], [5] is a fast algorithm which tries to find a minimal schedule, given the resource constraints. Force di­

rected scheduling [2], introduced by Paulin and Knight tries to minimize the number of resources for a given latency by 

trying to smooth out the resource requirement for different time steps within a given latency. Force directed scheduling 

have been found to be extremely effective and has gained interest since its introduction among other research groups 

[9], [10], [11], [12], [13]. Force directed list scheduling (FDLS) [2],which is a variation of force directed scheduling 

in which the user specifies the resources available and the signal flow graph is scheduled with minimum latency given 

the resource constraints.

Scheduling algorithms for data flow graphs corresponding to small designs containing about 50-100 nodes can take 

several minutes to execute on conventional workstations. With complex chips that need to be designed in the future 

containing thousands of nodes, it is expected that the runtimes of these algorithms will reach hours. Designers of high
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level synthesis tools wish to explore a very large design space of solutions with various architectural alternatives (e.g. 

number of adders, multipliers, registers, buses, memory ports,etc.) for various values of expected latencies. The run­

times for exploring all the different choices can easily take several hours. This task is very interactive in nature, and 

a designer typically would want to have the solutions in less than a minute,and not hours. In addition, researchers are 

proposing more complex cost functions to produce designs with higher speeds, lower power and increased testability 

during the scheduling process. Hence, it is important to investigate efficient parallel algorithms for the problem which 

can reduce the runtimes from hours to minutes. The work described in this paper is part of an ongoing project called 

ProperCAD [15] which is aimed at developing an integrated suite of parallel applications for VLSI CAD that run on a 

variety of parallel platforms. In the past, various tools have been developed to solve the problems at lower levels in the 

VLSI CAD hierarchy, namely, placement [16], routing [17], circuit extraction [18], design rule checking [26], logic 

synthesis [27], [27], test generation [25], [29], fault simulation [28], and behavioral simulation [23]. In this paper, 

we address the problem of scheduling in high-level synthesis.

There are several key contributions of this paper. First, we develop a novel extension of the force-directed schedul­

ing problem which naturally handles loops and conditionals by coming up with a scheme of scheduling hierarchical 

signal flow graphs. Second, we develop three novel parallel algorithms for the scheduling problem, one based on node- 

based partitioning, another based on time-step partitioning, and a final one based on hierarchical partitioning. Third, 

our parallel algorithms are portable across a wide range of parallel platforms which includes shared memory multi­

processors distributed memory message-passing multicomputers and networks of workstations. We report results on 

an 8-processor SGI Challenge shared memory multiprocessor, a 16 processor Intel Paragon distributed memory mul­

ticomputer, and a network of 4 SUN SPARCstation5 workstations. Fourth, we report actual implementations of these 

algorithms on real parallel machines, and report results of qualities and runtimes for various benchmark circuits on a 

variety of parallel machines. We show in the paper that we have obtained speedups of about 8 to 10 on 16 processors of 

an Intel Paragon. Finally, while some parallel algorithms for VLSI CAD reported by earlier researchers have reported 

on loss of qualities of results, our parallel algorithms produce exactly the same results as the sequential algorithms on 

which they are based.

In some related work, some researchers [14] have proposed a parallel system for distributed high level synthesis
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which uses coarse-grained parallelism to explore and evaluate many alternative VLSI designs efficiently. They propose 

a distributed version of force directed list scheduling in which each processor executes the FDLS algorithm on a separate 

module set. Force directed scheduling algorithm for minimizing resource requirement for a given latency assumes that 

the user specifies the latency for each loop body. In comparison to that work, we propose an extension of force directed 

scheduling algorithm which naturally handles loops and conditionals, and which automatically selects the latencies of 

the loop bodies. We assume that the overall latency of the signal flow graph is given, and attempt to minimize the 

resource requirement.

In Section 2 the basic force directed scheduling algorithm is summarized. In Section 3 we propose two approaches 

to implementing parallel force directed scheduling algorithm for non-hierarchical graphs. In Section 4 we propose a 

sequential force directed scheduling algorithm for hierarchical graphs. A parallel implementation of the above appears 

in Section 5. In Section 6 we give some experimental results, and conclude in Section 7.

2 Basic force directed scheduling

The basic force directed scheduling algorithm is an iterative algorithm which schedules one operation each iteration. 

The operation to be scheduled is selected based on a quantity termed force  defined for each step. It is a measure of 

concurrency at that step. The force directed scheduling tends to balance the concurrency at each step without lengthen­

ing the execution time. First, it calculates the time frame of each operation, namely the time interval from the earliest 

start time to the latest start time for that operation. It is done by calculating the as soon as possible(ASAP) and as late 

as possible(ALAP) schedule of the graph. At each step, the algorithm determines the force of each node to each step 

in its time frame. It then selects the node with the least force and schedules it to the corresponding step. The force con­

sists of two components, s e lf  and predecessorsuccessor{ps) forces. Self force of a node n to a step s is a measure 

of the increase in concurrency due to scheduling that node to that step. Predecessor and successor forces are measures 

of increase in concurrency of the predecessors and successors, respectively as a result of scheduling n to s.

The concurrency of operations can be captured by a distribution graph (DG ) for each operation type. For each
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operation type k, the DG  in step i is given by

DG(i) = Prob(op, i )
k

the sum being taken over all operations of type fc.The mechanical analog for DG is the spring constant.

The self force associated with the assignment of an operation with time frame from t to b to time step j  (t < j  < b) 

is given by
b

s e l f  - fo r  ce(j) =  £ P G ( 0  * *«)]
i—t

where x{i) is the change in operation probability (the mechanical analog being the displacement of spring), given by

x{j) = (h -  1 ) /h

and

x(i) =  —1/h

where h = (b — t + 1).

The predecessor force for the assignment of a node to a step j  is the sum of the forces of the predecessors of the 

node arising out of change in time frames and the resulting change in concurrency. For a particular predecessor, it is 

quantified as:
nb b

Force(nt,nb ) =  £  [DG(i)/(nb - n t +  1)] -  £ [O G (« ) /(6  -  t  + 1)] (1)
i—nt i=t

where the interval from t to b is the old time frame and that from nt to nb is the new time frame. The successor force 

is defined analogously.
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The basic force directed scheduling algorithm is summarized below:

F o r c e - D i r e c t e d ()

1 repeat

2 Evaluate tim e fra m es  :

3 2.1.F ind  A S A P  schedule

4 2.2.F ind  A L A P  schedule

5 Update distribution graphs

6 calculate se lf, predecessor and successor forces,

1 Add them  to get the total force fo r  each feasible control step

8 Schedule operation w ith loruest fo rce ;

9 Set its  tim e fra m e  equal to the selected step.

10 until all operations scheduled

2.1 Scheduling of conditionals and loops in the basic force directed scheduling scheme

The alternates of a conditional are mutually exclusive. Thus, for a step in which mutually exclusive operations inter­

sect, the probability of only the operation with the highest probability is added to the corresponding DG. The force 

calculation and scheduling proceeds exactly the same way as described earlier for an acyclic graph without conditional 

structures.

When a loop is part of the behavioral description, the user have to specify a constraint on the loop iteration time or, 

alternately a constraint of the number of structural units available. For multiple embedded loops, the operations of the 

innermost loop are scheduled first, relative to the local timing constraint. After that, the entire loop is taken as a single 

operation with execution time equal to the loop’s local time constraint.

Further details of the basic force directed scheduling can be found in [2].
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3 Parallel force directed scheduling on non-hierarchical graphs

In this section, we will look at the force directed scheduling problem of simple acyclic graphs, corresponding to straight 

line code sequences in a behavioral description. We describe algorithms for graphs with conditionals and loops in sec­

tions 4 and 5. For parallel implementation of the basic force directed scheduling, we have taken two problem partition­

ing approaches, node-based and step-based. In the node based method, we partition the nodes among the processors, 

and in step-based method, we partition the time steps among the processors.

3.1 Node based problem partitioning

The nodes are partitioned among the processors.The partitioning is done by first calculating the total available work, 

which is approximated by
n u m n o d e s

W  =  {A LA P (i) -  A S A P {i) +  1)
i= 0

and work per processor, given by W /num procs. Each processor selects a set of nodes S  such that J2ses(A L A P (s)  — 

A S A P (s))  is approximately equal to the work per processor.

We can define a local JDG for each processor which is the DG  calculated using only the nodes owned by that 

processor.The global JDG is obtained by combining the local JDGs of all the processors.

At each step, each node calculates the forces of each owned node to each feasible time step, and sends the infor­

mation to a m aster  processor. The m aster  determines the node with the least force and schedules it to the step with 

the least force. It then broadcasts that information to all the processors. Each processor, upon receiving this informa­

tion, updates the time frames of other nodes, and recalculates the local-DG. The processors then perform a global 

reduction operation by which the locaLDGs are combined together to get the global-DG. Since the time frames of 

the nodes could change as a result of the schedule operation, the load function is re-computed, and nodes re-assigned 

to processors, to minimize load imbalance.

The node based parallel force directed scheduling algorithm is as follows: 

P a r a l l e l - F o r c e - D i r e c t e d - N o d e ()

1 repeat

2 Compute the work per processor
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3 D eterm ine the list o f  nodes on current processor

4 Evaluate tim e fra m es  :

5 4.1.F ind  A S A P  schedule

6 4.2.F ind  A L A P  schedule

7 Compute local distribution graph fo r  the assigned nodes

8 P er fo rm  global reduction to get the overall distribution graph

9 Calculate s e l f , predecessor and successor forces fo r  the assigned nodes,

10 Add them  to get the total force fo r  each feasible control step

11 Send the operation w ith loiuest force to the m aster

12 Receive the global best node and step ;

13 Set its tim e fra m e  equal to the selected step.

14 until all operations scheduled
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x <- a + b; 
y <- c * d; 

tl <- x + c; 
t2 <- x * y; 
t3 <- y + d; 
t4 < -tl * t2; 
t5 < -12 + t3; 
o 1 <- a + t4; 
t6 <- b * t5; 
o2 < -14 * t6;

inputs: a.b.c.d 
outputs : oI,o2

Multiply operation

Add operation

Figure 1: Node based'decomposition for a non-hierarchical graph for 4 processors

Figure 1 shows an example showing an non-hiearchical graph and a sample node-based decomposition among four 

processors. We report experimental results on this algorithm in Section 6.

3.2 Step based problem partitioning

In this approach, the time steps are partitioned among the processors rather than the nodes. The partitioning is done by 

first calculating the total available work, which, as in the node based scheme, is approximated by

numnodes

W =  (A L A P (i) -  A S A P {i) +  1)
i=0

and work per processor, given by W /num procs. Each processor selects a set of steps T  such that ^~2s(A L A P (s) — 

A S A P (s)  +  1), where the time frame of s intersects T, is approximately equal to the work per processor. Let S  be 

the set of nodes whose timeframes intersect the set T  of processor p.It calculates the forces of each node in S  to each 

time step in T  it intersects. It then sends the information to a m aster processor which selects the least force node.
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The master then schedules that node to the step with the minimum force. It then broadcasts the information. All other

processors, on receiving the information, updates the time frames of other nodes, and recalculates the DGs of the steps 

in T. In contrast to the node-based approach, the step based approach does not have to perform a global reduction 

of DGs since it calculats the overall DGs of the steps it owns. As in the case of node-based approach, the steps‘are 

reassigned to processors after each iteration so that they get approximately equal amount of work.

The step based parallel force directed scheduling algorithm is as follows:

Pa r a l l e l - F o r c e - D i r e c t e d - S t e p ()

1 repeat

2 Compute work — per — processor

3 D eterm ine the list o f  steps fo r  the current processor

4 E valuate tim e fra m es  :

5 4.1.F ind  A S A P  schedule

6 4.2.F ind  A L A P  schedule

7 Compute distribution graph fo r  the assigned steps

8 Calculate s e l f , predecessor and successor forces fo r  the

9 nodes which intersect the assigned steps,

10 Add them  to get the total force fo r  each feasible control step

11 Send the operation w ith loivest force to the m aster

12 Receive the global best node and step ; set its  tim e fra m e

13 equal to the selected step.

14 until all operations scheduled
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x <- a + h: 

y < -c  * d; 

tl <- x + c; 

t2 <- x * y;

13 <- y + d;
14 <- il * |2;

15 < - 12 + l.V,
(il <- a + t4;
Ifi <- b * t5; 
i)2 < - 14 * 16;

inputs: a,h,c,d

outputs : o l,o 2

Figure 2: Step-based decomposition for a non-hierarchical graph for 4 processors

Figure 2 shows an example showing an non-hiearchical graph and a sample step-based decomposition among four 

processors. We show experimental results of this parallel algorithm in Section 6.

4 Hierarchical force directed scheduling

Previous approaches for force directed scheduling work for hierarchical signal flow graphs assume that the user has to 

specify the latency of each loop. We extend the basic force directed scheduling scheme to naturally handle hierarchical 

signal flow graphs, so that the latencies of loops are selected automatically to minimize the total resource requirement.

Definition 1 A hierarchical graph is a signal flow graph in which each node can be

• a block, which is a set o f nodes enclosed by a source and a sink

• atomic operation (eg an addition or multiplication) or

• a loop which encloses a block

• a conditional structure which encloses one or more alternates each o f which are blocks.



il (x > y) then 

{

lor i := I lo ti do 

a |i | := e + d; 
h |i | :* a ♦ h: 

end lor:

l'or i := I lo n do 

x |i | := a |i | + le; 

y |i |:= M i | + l.
end lor:

I
else

I
il := t  *d ;
01 := il + a;

02 := Il + h;
)

Figure 3: A hierarchical signal flow graph

Figure 3 shows an example hierarchical signal flow graph. Node 0 is the source and node 4 is the sink. Node 1 

is a conditional. Nodes 5 and 7 are the source nodes of the alternates for the conditional. Node 9 and 11 are source 

nodes for loops. Nodes 9 and 10 are the source and the sink, respectively of the loop body of the loop whose source 

is 5. The nodes of a hierarchical graph can be broadly classified as control nodes and non-control nodes. Control 

nodes include source and sink  nodes which enclose hierarchical entities, loopsource  and loopsink  which enclose a 

loop, and i f  source  and i f  s i n k  which enclose a conditional. Control nodes do not require resource allocation. The 

loopsource  node contains information about the loop such as the number of iterations.The non — control nodes are the 

regular nodes (eg adder) which require resource allocation. We assign a level number to each node. The level number 

of a node corresponds to the depth of nesting of that node in the signal flow graph. The nodes enclosed by the outermost 

source — sink  pair are assigned a level number 0. The next inner level nodes (those enclosed by hierarchical nodes 

having level number 0) are assigned a level number 1 and so on.
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4.1 Distribution graph of a hierarchical entity

For each hierarchical entity h, we can associate a corresponding sub-DG, given by the tuple sub-DG£ =-< P, lb, ub, k y  

for each operation type k where lb and ub are the lower and upper limits for the earliest and latest start times respec­

tively for all nodes enclosed by h, P  is a vector such that P (i), lb < i < ub is the sum of the probabilities over all 

nodes n G h that n will be executed during time step i, and k is the type of the operation (eg adder, multiplier). The 

sub-DG  of a hierarchical entity depends on the type of the entity. The calculation of sub-DGs for the various types of 

hierarchical DGs are explained below. In the following, sub-DGkn{i) means the same as P (i), the i th element of the 

member P  of the tuple sub-DG^.

4.1.1 Calculation of sub-DG  for an atomic node

The sub-DG  for an atomic node a of type k is given by sub-DGkn A D G a,lbaiUba, k y ,  where lbn — A SA P (a), 

ubn =  A LA P (a) +  lk and

ADGnii) (A L A P (a) -  A S A P  (a) +  1)

where lk is the latency of operation of type k, and

a ( i , j )=  1 if j < i < j  + l

0 otherwise.

4.1.2 Calculation of sub-DG  for a block

For a straight line block of code B, we calculate the sub-DG  by recursively calculating the sub-DGs of each component 

node and adding them up for each step. Let -< P j jb j7ubjt k y  be the sub-DG  for node j ,  where j  G B. The overall 

sub-DG  of the block for each operation type k is given by sub.D GkB =-< B D G B J b B ,ubB ,k  y  where

lbB = min Ibjj £ B

ubB = ma xubj j € B

12



and

B D G b (ì ) =  Y , P j ( ')
jeB

4.1.3 Calculation of sub-DG  for a loop

For a loop structure, we determine the maximum and minimum latencies of the loop body, recursively calculate the

weighted sum, the weights being the probability that the loop body is assigned that latency and the loop source has that 

particular start time. We assume that all the possible start times of the source and all latencies for that particular start 

time are equally probable.

Let L be a loop structure which executes for n iterations.Let esrc and lsrc be the earliest and the latest start time of 

the source node of L and esnk and lsnk be the earliest and latest start times of the sink of L  respectively. For a particular 

start time s, s < (lsn k —n *  (esnk -  esrc)) for the loop source, the maximum latency of the loop body is given by

Let -< B D G lB ,lbB, ubB, k >- be the sub-DG  for the body of the loop for a given latency l and for operation type 

k. Then the sub-DG  for L, denoted by sub.DGs£l for start time s for the loop source and latency l and is given by

where L D G s£l {i) = B D G B (i mod l) , lba£l = s and ub*£l = s + n x  l. The overall sub-DG  for L, is given by the 

tuple sub-DGl =-< LD G L,lbL,ubL,k  >-, where lbL = esrc, =  lsnk and

sub-DG  of the loop body for each start time of the loop source and for each corresponding latency and compute their

m ax — {Gnk s)/fl

and the minimum latency by

I m in  —  {&snk ^ s r c ) / { B  1)

sub-DGs£l =-< LD G s£l ,lbs£l ,ubs£ l , k y

13



4.1.4 Calculation of sub-DG  for conditional structure

For a conditional structure C, we recursively calculate the sub-DGs of each alternate for the conditional. The overall 

sub-DG  is the DG  formed by taking the stepwise maximum of the above sub-DGs at each step. Let the conditional 

structure have m  alternates. Let -< P j,lb j,iib j,k  y  be the sub-DG  for the j th alternate. Then, the overall DG  of the 

conditional structure is given by sub-DGc =-< C D G c ,lb c ,u b c ,k  y  where

Ibc = min lb;
j=i

and

for each operation type k.

ubc — mâxubj 
j = i

C D G c(i) = max Pj(i)

4.2 The scheduling step

The hierarchical force directed algorithm proceeds level by level, scheduling the nodes at each higher level before 

proceeding to the next lower level. Consider a node n. Let Succ(n , k) be the set of successors of n of type k and 

let Prec(n, k ) be the set of predecessors of n  of type k which are in the same level as n  in the signal flow graph. 

Define Succ-DG(n, k , s ) to be the aggregate DG  of all nodes of type k in Succ(n, k ) when n  is scheduled to step 

c. Similarly, P red-D G (n, k , s) is the aggregate DG  of all nodes in Pred(n, k) when n is scheduled to step c. Let 

-< sub-DGj, lbj,ubj, kj y  be the sub-DG  of node j .  Then, Succ-DG(n, k, c) is given by

Succ-D G (n ,k ,c ) =-< S D G n,lbsn,ubsn,k  y

where lb*n = m inie5ucc(n)A:) lbt , ubsn = max t€Succ(n,k) ubt , and SD G n{j) =  T,teSucc(n,k) sub-DGt (j).

sub-DG t(j)  is assumed to be zero if j  > ubt or j  < lbt . 

Similarly,

P red-D G (n,k,c) =< P D G n,lbn;Ubpn,k n y

14



where lbsn = m int^ Pred{n,k) , ubsn =  max t€Pred(n,k) ubt , and P D G n {j) =  Y.tePred{n,k) sub.D G t {j).

The self force of a control node is defined to be zero. The self force for a non.control node is the same as that in 

the case of the basic force directed scheduling algorithm.

The predecessor force of n for time step c is given by

numtypes ub

E  B ' t  i\ + DG[k][i]/3) xDG[k]\i] (2)
A ~ 1  i=lb

and successor force by
numtypes ub

E  ElC-Pti] +  £>G[fc][t]/3) x £?G[*][i] (3)
A: — 1 i=lb

where the lb,ub and P  in the first and second formula equals the corresponding lb,ub and P  fields of P red.D G (n, k, c) 

and Succ.D G (n , k , c) respectively. The term DG[k][i\/3 is the look-ahead factor. The total force is given by the sum 

of self, predecessor and successor forces. The total force of all nodes to all feasible time steps are determined and the 

node with the least force is scheduled.

4.3 Speeding up the DG calculation by reuse of sub-DGs

For hierarchical entities, it can be observed that the subJDG depends only on the relative positions of the source and 

the sink, not the absolute values of their earliest or latest start times, as long as the scheduled status of the interior nodes 

doesnt change. Thus, the sub.DGs are invariant under translation. Since the calculation of subJDG of a hierarchical 

entity usually involves calculation of the sub-DGs of its components repeatedly with different values for the earliest 

start time of the source or sink, but with the same latency, the subJDG for those components can be calculated once, and 

then reused with suitable translation. This results in an order of magnitude improvement in run time. In practice, we 

maintain a table which stores the sub-DGs of hierarchical entities for each latency encountered so far. Each table entry 

has a valid  bit which indicates whether the corresponding subJDG is correct. Initially, all the entries in the table are 

invalid. When the algorithm needs the sub-DG  for a node for a given latency, it first checks the table. If it encounters 

a valid entry, it can directly use the stored result. If the table entry is invalid, it calculates the subJDG, stores it in the 

table and sets the valid bit. As long as none of the nodes with in the hierarchical node is scheduled, the table entry 

remains valid, and can be reused. After a schedule step, all entries in the table corresponding to the hierarchical entities
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enclosing the nodes scheduled are invalidated. 

The overall sequential algorithm is:

F o r c e - D i r e c t e d - H i e r a r c h y ()

1 for level <— 0 to number o f  levels

2 do repeat

3 Evaluate tim e fra m es  :

4 3.1.F ind  A S A P  schedule

5 3.2.F ind  A L A P  schedule

6 Calculate se lf, predecessor and successor forces fo r  the nodes

I  Add them  to get the total force fo r  each feasible control step

8 D eterm ine the best node and step ; set its tim e fra m e  equal

9 to the selected step.

10 Invalidate the stored sub_DGs on the path fro m  the scheduled node to the root

II Update the overall DG

12 until all operations scheduled
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Level

Figure 4: Syntax tree of example hierarchical graph with processor assignments 

Figure 4 shows the syntax tree of example hierarchical signal How graph of Figure 3, and the levels of various nodes.

5 Parallel hierarchical force directed scheduling

In this section, we describe a parallel algorithm for the hierarchical scheduling approach explained in the previous sec­

tion. As in the sequential case, the scheduling is done one level at a time starting from level 0, scheduling all nodes at 

a particular level before proceeding to the next. The processors are assigned to the hierarchical nodes based on a cost 

function (specified in the next section) based on the number of nodes enclosed by the node. Call the set of processors 

assigned to a node n the process group of n. For nodes enclosed by a hierarchical node n, processors in the process 

group of n are assigned based on the cost function. For nodes at the lowest level(the atomic nodes), the processors in 

the process group of the immediately enclosing hierarchical node are assigned cyclically. For the graph in Figure 4, the 

process group of node 9 is {0,1}. As in the case of the sequential algorithm, we store subJDGs in a table and reuse 

them as long as they are valid. However, since the sub-DGs calculated by a particular processor are stored in its local 

memory, it is not immediately accessible to other processors.

The processors in the process group of each hierarchical node collectively calculates the sub-DGs of that node. 

It is done in a bottom up manner, since calculation of sub-DG  for a hierarchical entity requires the subJDGs of the
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nodes it enclose. The processors calculating the sub-DGs of nodes at a particular level communicates them with the 

processors in the process group of the hierarchical node enclosing those nodes by a group-level gather operation. Once 

this process completes with the calculation of sub-DGs of the root node, all processors have, in their local memories 

all the sub-DGs needed to calculate forces for the nodes assigned to them. This is due to the fact that scheduling is 

done in a top down manner. At a particular level l, each processor needs only the sub-DGs of the nodes enclosed by 

the hierarchical node immediately enclosing it (which is at level l -  1). Since all nodes at level / -  1 has been already 

scheduled, changes in time frames of the children of a particular node h in level l -  1 does not affect the time-frames 

of the children of another node t i  at level l -  1, and hence does not have to be included in the list of predecessors or 

successors used in calculating the ps force (Equations 2, 3 ) for a child of h. Thus, a processor calculating the force 

for a child of h needs only the sub-DGs of other children of h, which have been calculated and distributed among the 

processors in the process group of h.

Consider for example node 15 in Figure 3. When its force is calculated, node 11 has already been scheduled, since it 

is at a lower level. Thus, scheduling node 15 does not affect the time-frames of nodes 13 or 14, and hence those nodes 

does not contribute to the predecessor force of 15. Only the sub-DGs of node 16 is required which was calculated 

earlier by processors 2 and 3. Only those processors assigned to a particular hierarchical node performs the calculation 

of forces and sub-DGs for the nodes enclosed by the hierarchical node. One advantage of this static division of work 

is that we can exploit locality in reusing the sub-DGs stored in each processor’s local memory.

For each hierarchical entity, there is possibly more than one assigned processor. One of them is assigned ownership 

for that node. The role of the owner of a node is to update the sub-DG  of the node during scheduling when one of 

the nodes enclosed by the node is scheduled. Since the sub-DGs of all nodes at a level are known, the calculation of 

forces at any given level closely resembles that in the case of the basic force directed scheduling algorithm. The parallel 

algorithm has three major steps:

• Node partitioning step

• The pre-processing step, and

• The force calculation and scheduling step
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5.1 Node partitioning step

In the node partitioning step, the nodes are distributed among the processors. Associated with each hierarchical entity 

is a height, which denotes the depth of the syntax tree corresponding to the nodes in that entity. Consider for example, 

the nodes in level 0. It contains hierarchical entities having possibly different heights. Consider the set of nodes with 

a given height (say h). The processors are partitioned across all the nodes in that set so that the number of processors 

assigned to node i is proportional to a cost funtion which is an approximation of the work involved for that node, given 

by:

C{i) = A L A P (i)  -  A S A P (i)  +  1 + 5 1  C O')
j£N(i)

if i is a hierarchical node and

C{i) = A L A P (i) -  A S A P (i) +  1

otherwise, where N (i)  is the set of nodes enclosed by i. A particular processor among the processors assigned to each 

hierarchical node is assigned ownership for that node. In level 1, the processors assigned to the parent hierarchical 

entity are distributed among the nodes contained in that entity and so on until we reach the leaves.

5.2 Pre-processing step

In the pre-processing step, the sub-DGs for each hierarchical entity for all feasible latencies for that entity that arise 

during the force calculation and scheduling step are calculated and stored. This is achieved by setting the latency of the 

immediately enclosing hierarchical entity to its maximum value within the limits of its A S A P  and A L A P  schedule, 

(since that results in the maximum possible flexibility for the nodes within). The subJDGs are calculated level by level, 

starting at the deepest. As the computation proceeds from one level to the next, the subJDGs of each node in the current 

level for the feasible latencies calculated in the current step are distributed to all processors in the process group of the 

node immediately enclosing the node in the hierarchy, by a gather operation. Once the pre-processing step is complete, 

all the processors have the subJDGs required for calculating the forces.
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5.3 Force Calculation and Scheduling

After the pre-processing step, the processors calculate the forces of the nodes to each feasible step and sends the best 

node to a master processor. The master selects the node with the least force and schedules it to the corresponding 

step. It then broadcasts the information to all processors. Due to this scheduling, the pre-calculated sub-DG  of the 

hierarchical nodes enclosing the scheduled node (and all hierarchical nodes in the path from the node to the root node 

in the hierarchy) are no longer valid. Thus, they are recalculated. The sub-DG  of a node is recalculated by the processor 

owning the node and sent to the processor owning the parent of the node, starting at the level in which the nodes are 

being scheduled currently. Since the scheduling proceeds from the lowest to the highest level, all the control nodes 

enclosing the scheduled node have been scheduled, and the new sub-DG  doesnt have to be distributed to all processors 

in the group, since the sub-DGs are needed only for force calculation. However, the sub-DG  of the root node (which 

is the overall DG  of the graph) is required for calculation of forces and hence is broadcast to all processors by the 

owner processor of the root node. Consider for example the situation when node 15 is scheduled. The sub-DGs of 

nodes 11,5,1 and 0 become invalid. Processor 2, the owner of node 11 recalculates the sub-DG  of 11 and sends it to 

processor 0. Processor 0 receives that and recalculates the sub-DGs of nodes 5,1 and 0 since it owns all those nodes. 

Once processor 0 calculates the sub-DG  of node 0 (which is the overall DG  of the graph), it broadcasts it to other 

processors.

5.4 An Example

We consider the hierarchical graph in Figure 3 in the previous section. At level 0, it has a conditional node (node 1) and 

an add operation(node 3). The conditional operation has two alternatives whose sources are nodes 5 and 7 respectively. 

Nodes 5 and 7 are at level 1. The second alternative has a multiply and two add operations, which are at level 2. As­

suming that we have 4 processors,they are assigned to the various nodes as shown in the figure. Assume that we have 

to schedule the graph for latency 10. Assume, for simplicity that each loop executes once. Thus, the conditional state­

ment can have latencies ranging from 3 to 9. The first alternative can have latencies ranging from 2 to 9, and the second, 

from 3 to 9. Consider the node 9.1n the preprocessing step, processors 0 and 1 recursively calculate the sub-DGs for 

node 9 for latencies 1 to 4, and processors 2 and 3 calculate the sub-DGs for node 11 for latencies 1 to 4. After that,
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processors 0,1,2,and 3 perform an allgcitlier operation (which is defined in MPI [32], after which processors 0,1,2 and 

3 have the sub.DGs for nodes 9 and 11 for feasible latencies. However, processors 0 and 1 does not have the sub.DGs 

of nodes 15 or 16. But, they are not required for the DG  calculation for node 0 or for the calculation of forces for nodes 

9 and 10. In the next step, processors 0,1,2 and 3 calculate and store the sub.DGs for nodes 5,6, 7 and 8 after which 

they perform an allgather operation which results in processors 0,1,2 and 3 having the sub.D Gs for feasible latencies 

for nodes 5,6,7 and 8.

Consider now the force calculation phase. Processors 0,1,2 and 3 calculate the forces for nodes 1,2 and 3 and sched­

ules them. The sub-DGs of node 0 is invalidated and should be recalculated. However, the sub.DG  of node 1 can still 

be reused, since the sub.DG  of a hierarchical node depends only on the latency of the node, provided that none of the 

interior nodes are scheduled. After 1 and 2 are scheduled, processors 0,1,2 and 3 calculate the forces for nodes 5,6,7 

and 8 and schedules them. After they are scheduled, processors 0 and 1 calculate the forces for nodes 9 and 10 and 

processors 2 and 3 calculate the forces of nodes 11 and 12.

• 5.5 Load Balancing

As explained above, each hierarchical entity has a list of processors assigned to it in the first step. Due to the way the 

sub-DGs were calculated in the pre-processing step, each of the processor associated with a hierarchical node has the 

sub-DGs for all feasible latencies of the component nodes of the hierarchial entity in their local memories, and hence 

can calculate the forces of any of those nodes. The force calculation of a particular node to a particular step represents 

a unit of work. The total work involved in calculating the forces of the component nodes of a hierarchical entity is 

distributed among the processors in the process group of that entity. This distribution is done cyclically among the 

processors with the grain size ranging from 1 to total .work/(nprocs). In the figure, during the force calculation for 

nodes 5,6,7 and 8, the < node, step > pairs are cyclically distributed among processors 0,1,2 and 3.
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6 Analysis

6.1 Pre-processing step

Assume that the given hierarchical graph has N  nodes and has depth d. Let L be the overall latency. In the worst case, 

each level has one hierarchical node except one of them, having N  — d +  1 nodes. Thus, all p processors could be 

performing the all-gather operation for d — 1 levels in the worst case. In the last stage, each node could be allocated k 

processors, where k ranges from 1 to p. All-gather operation is equivalent to all nodes sending some message to one 

processor (gather) followed by that node broadcasting all the received messages to all the processors. Thus is takes at 

most the amount of communication equivalent to a gather operation followed by a broadcast. The gather operation and 

broadcast can be implemented in 2 t s{s/ p -  1) + twm i ( p -  1) time for a 2 -  D mesh. Thus, the all-gather operation can 

be perfomed in less than 4fs(v/p -  1) + 2twm i(p  -  1) units of time, where t s is the start-up time, tw is the per-word 

transfer time.

The computation required for the pre-processing step for a particular level t for each hierarchical node at that level 

is at most ciL s where s is the number of nodes contained within the hierarchical node at level t +  1 and Ci is some 

constant. Thus, the overall computation required for the pre-processing stage is J2t=l ci L N  which is 0 { L N 2). Thus 

in the worst case, the time for the pre-processing step is 0 ( L N 2) +  4dts(y/p -  1) +  2twm i(p  -  1), where mi is the 

maximum length of a message whose upper bound is C2 N L 2 where 0 2 is some constant.

6.2 The force-calculation and scheduling phase

In this phase, after each scheduling step, each processor sends its best node, along with the force to a master processor, 

and the master processor selects the globally best node and broadcasts it to all processors. Each of the above can be 

performed in time 2(ts +  twm 3)logp + 2th(s/p  -  1) where m 3 is the length of the messages which is a constant (since 

the message contains only the node with the least force, the corresponding time step, and the force). There are at most 

N  schedule steps (since at a given step, more than one node could be scheduled). Each force calculation step takes 

0 ( L N 2 /p) time assuming good load balance. Thus, the force calculation for all steps takes 0 ( L N 3 /p) since there are 

at most N  steps. Thus the overall time for the force calculation and scheduling is 0 ( L N 3/p ) +  2(ts +  twm 3)logp +

2th( y /p -  1).
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7 Experimental Results

The parallel hierarchical force directed scheduling algorithm was implemented using the portable Message Passing 

Interface(MPJ) [32], which has been ported on a variety of parallel machines. We have tested the algorithm on a 

set of high level synthesis benchmarks.The resulting schedules were optimal for most cases and very close to optimal 

for others.The run times for some benchmarks for different latencies are as shown below. The results are shown for 

a 16-processor Intel Paragon distributed memory multicomputer, 8-processor S G I  Power Challenge shared memory 

multiprocessor and a network of SUN Sparc station 5 work-stations.

7.1 Experimental results for non-hierarchical graphs

Tables 1,2,3 shows the runtimes and speedups for node-based approach for non-hierarchical graphs and Tables 4,5 and 

6 show the runtimes and speedups for step-based approach for non-hierarchical graphs. From the results we can make 

the following observations. The qualities of the results (in terms of the hardware resources used) for each latency case 

are identical in the sequential and parallel executions. If the latency is close to the minimum, then the time frames of 

the nodes are small, in which case the total work involved in calculating the forces is relatively small. This results in 

low overall running time and poor speedup. For the node based partitioning scheme, we are getting speedups of 5 to 9 

on 16 processors on an Intel Paragon. The speedups on the Intel Paragon are comparable to that of the network of work 

stations, which has significant costs for communication. Clearly, the problem has been parallelized such that the grain 

size of computation between communications is quite large. Hence, we have effectively parallelized the problem.

Both partitioning schemes are comparable in their runtimes and speedups for a given parallel environment. Clearly 

we have been successful in balancing the load equally in both cases.

The results on the S G I  Challenge shared memory multiprocessor are worse than that of the Intel Paragon which is a 

distributed memory multicomputer. The result is counter-intuitive since most people think that it is possible to get better 

speedups on shared memory multiprocessors. We attribute the result due to cache coherence effects, contention and 

multitasking. In addition, for M P I ,  it is possible to get a large communication bandwidth on message passing machines 

during global operations such as allgatherQ  which creates more bus traffic in a shared memory multiprocessor.

23



Table 1: Run times(seconds) and speedups for node-based approach for non-hierarchical graphs on a network of work 
stations

time(speedup)
circuit latency 1 proc 2 proc 4 proc
Random(60) 60 336.1(1.0) 245.9(1.37) 177.3(1.89)
Random(60) 80 586.1(1.0) 336.4(1.74) 281.1(2.08)
elliptic 17 1.725(1.0) 0.998(1.73) 0.595(2.89)
elliptic 27 5.01(1.0) 2.78(1.80) 1.498(3.34)

Table 2: Run times(seconds) and speedups for node-based approach for non-hierarchical graphs on an SGI Power Chal­
lenge multiprocessor

time(speedup)
circuit latency 1 proc 2 proc 4 proc 8 proc
Random(60) 60 384(1.0) 305(1.26) 242.5(1.58) 148.1(2.59)
Random(60) 80 704(1.0) 713.8(0.98) 548.8(1.28) 358.0(1.96)
elliptic 17 1.37(1.0) 0.96(1.43) 0.71(1.93) 1.80(0.76)
elliptic 27 5.12(1.0) 2.69(1.9) 2.18(2.35) 3.75(1.36)

Table 3: Run times (seconds) and speedups for node-based approach for non-hierarchical graphs on Intel Paragon mul­
ticomputer

time(speedup)
circuit latency 1 proc 2 proc 4 proc 8 proc 16 proc
Random(60) 60 666.5(1.0) 472.1(1.4) 332.5(2.0) 203.8(3.27) 118.0(5.64)
Random(60) 80 1252(1.0) 706.1(1.77) 441.8(2.83) 286.2(4.37) 188.2(6.65)
elliptic 17 3.125(1.0) 1.843(1.69) 1.218(2.57) 0.8437(3.7) 0.703(4.44)
elliptic 27 11.20(1.0) 6.17(1.81) 3.39(3.3) 1.89(5.92) 1.25(8.96)

Table 4: Run times(seconds) and speedups for step-based approach for non-hierarchical graphs on a network of work 
stations

time(speedup)
circuit latency 1 proc 2 proc 4 proc
Random(60) 60 336.1(1.0) 334.9(1.0) 173.3(1.94)
Random(60) 80 586.1(1.0) 337.5(1.74) 228.1(2.57)
elliptic 17 1.86(1.0) 1.73(1.07) 0.996(1.87)
elliptic 27 4.81(1.0) 2.60(1.85) 1.392(3.45)
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Table 5: Run times(seconds) and speedups for step-based approach for non-hierarchical graphs on an SGI Power Chal­
lenge multiprocessor

time(speedup)
circuit latency 1 proc 2 proc 4 proc 8 proc
Random(60) 60 384(1.0) 319.2(1.20) 251.1(1.53) 139.8(2.75)
Random(60) 80 704(1.0) 308.7(2.28) 229.2(3.07) 128.9(5.46)
elliptic 17 1.43(1.0) 0.96(1.49) 0.83(1.72) 2.01(0.71)
elliptic 27 4.83(1.0) 2.63(1.84) 2.47(1.95) 2.71(1.78)

Table 6: Run times for step-based approach for non-hierarchical graphs on Intel Paragon multicomputer

time(speedup)
circuit latency 1 proc 2 proc 4 proc 8 proc 16 proc
Random(60) 60 666.5(1.0) 458.9(1.45) 316.9(2.1) 195.1(3.42) 110.0(6.06)
Random(60) 80 1252(1.0) 702.5(1.78) 444.3(2.82) 293.2(4.27) 193.5(6.47)
elliptic 17 3.125(1.0) 1.797(1.74) 1.172(2.67) 0.828(3.77) 0.672(4.65)
elliptic 27 11.20(1.0) 6.03(1.86) 3.29(3.4) 1.90(5.89) 1.27(8.82)

7.2 Experimental results for hierarchical graphs

Tables 7,8 and 9 show the runtimes and speedups for hierarchical graphs. For the parallel algorithms for hierarchical 

graphs, the speedup results are similar to that of non-hierarchical graphs. Again the qualities of the results (in terms of 

the hardware resources used) for each latency case are identical in the sequential and parallel executions. As in the case 

of non-hierarchical graphs, if the latency is close to the minimum, then the time frames of the nodes are small, resulting 

in low overall running time and poor speedup. For Kalman, there are only few nodes in each level which results in low 

parallelism. The higher latencies in the above table correspond to the latencies which results in close to the minimum 

resource requirement for the corresponding circuit.

Table 7: Runtime(seconds) and speedups for parallel algorithm on a network of workstations for hierarchical graphs

time(speedup)
circuit latency 1 proc 2 proc 4 proc
kalman 3700 205.56(1.0) 133.36(1.54) 92.80(2.2)
elliptic 17 6.85(1.0) 3.32(2.1) 2.61(2.62)
elliptic 27 20.21(1.0) 10.87(1.85) 6.65(3.03)
synth 100 98.61(1.0) 77.78(1.26) 44.60(2.21)
synth 200 533.9(1.0) 419.9(1.27) 175.3(3.04)
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Table 8: Runtime(seconds) and speedup of parallel algorithm on Intel Paragon message passing multicomputer for 
hierarchical graphs

Runtime(speedup)
circuit latency 1 proc 2 proc 4 proc 8 proc 16 proc
kalman 3700 107.89(1.0) 69.14(1.56) 38.51(2.8) 23.76(4.6) 17.22(6.3)
elliptic 17 3.23(1.0) 1.95(1.6) 1.45(2.3) 1.03(3.1) 0.804(4.01)
elliptic 27 11.35(1.0) 6.14(1.8) 3.45(3.3) 2.10(5.4) 1.45(7.8)
synth 100 49.67(1.0) 37.01(1.34) 21.01(2.4) 12.69(3.9) 8.57(5.8)
synth 200 253.47(1.0) 191.00(1.3) 82.06(3.1) 43.43(5.8) 24.68(10.3)

Table 9: Runtime(seconds) and speedups for parallel algorithm on SGI Power Challenge multiprocessor for hierarchical 
graphs

time(speedup)
circuit latency 1 proc 2 proc 4 proc
kalman 3700 76.09(1.0) 47.0(1.62) 28.97(2.63)
elliptic 17 1.634(1.0) 0.914(1.78) 0.629(2.59)
elliptic 27 5.064(1.0) 2.669(1.89) 1.459(3.47)
synth 100 27.94(1.0) 20.12(1.39) 13.62(2.05)
synth 200 158.2(1.0) 121.3(1.30) 55.25(2.86)

8 Conclusions

In this paper, we presented some novel algorithms for scheduling hierarchical signal flow graphs in the domain of high- 

level synthesis. There were several key contributions of this paper. First, we developed a novel extension of the force- 

directed scheduling problem which naturally handles loops and conditionals by coming up with a scheme of schedul­

ing hierarchical signal flow graphs. Second, we developed three novel parallel algorithms for the scheduling prob­

lem. Third, our parallel algorithms are portable across a wide range of parallel platforms. We reported results on an 8- 

processor SGI Challenge, a 16 processor Intel Paragon, and a network of 4 SUN SPARCstation5 workstations. Fourth, 

we reported actual implementations of these algorithms in real parallel machines, and report results of qualities and 

runtimes for various benchmark circuits on a variety of parallel machines. Finally, while some parallel algorithms for 

VLSI CAD reported by earlier researchers have reported on loss of qualities of results, our parallel algorithms produced 

exactly the same results as the sequential algorithms on which they are based.

In some related work, we are developing parallel algorithms for behavioral simulation [23]. In the future, we will 

pursue parallel algorithms for other tasks in high-level synthesis, such as allocation, and in hardware/software codesign
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and cosimulation. We will integrate all these tools with the parallel tools developed for solving the CAD problems at 

the lower level such as placement, routing, logic synthesis, and testing. All these tools will run in a portable manner in 

a large variety of parallel and distributed platforms.
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