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SAMPLING DISTRIBUTION OF THE AUTOCORRELATION AND POWER SPECTRUM FUNCTIONS

Leroy Auge ns tine

It has been reported previously}»2 that while performing simple tasks 

of information processing a human does not operate in a smooth or con

tinuous fashion, but rather his actions are quantized* This was inferred 

from the fact that the distribution of response times was "lumpy w rather 

than smooth* Not only were the distributions multimodal but the modes, 

which were the most probable reporting times, occured at regular intervals, 

i*e*, the response times exhibited periodic behaviour* A number of analyt

ical methods have been used to search for these periodicities, of which the
3 A Smost promising are those described by Seiwell and Tukey* » J

The autocorrelation function (AC) in the form used by Seiwell is 

given by _ _ _  «=* —

(1) ak =
Xi*Xi+k - Xi*Xi4k 

<Ti* G± +k
k = 0, 1, 2, *** m 
i — 1, 2, 3 9 •** N-k

where

R̂ . is the kth value of the AC function*
xi is the value of the ith interval of the histogram; i*e*, x ± is the 

frequency with which response times of i intervals (of 10 msec*) longer 

than the shortest response are observed*
x^eX^^ is the average of the (N-k) products of the form x-j^Xj^ 

for 0 i i - N-k*
x^ is the mean of the x^*s for 0 i i - N-k*
x is the mean of the x.'s for k ^ i - N* 
i-*k 1

is the standard deviation of the x^'s for 0 - i - ^ k*
m  , is the standard deviation of the x.'s for k £ i - N*°i +k 1



The cosine series representation of the Fourier transform of the AG 

function in eq* 1 was used in the spectral density function; it is similar 

to the correlation expression suggested by Tukey* This form was chosen 

since it contains terms to help correct for the non-constant average ampli

tude existing in the histograms* The description of the operations involved

is ;
VY\

(2) U = £  b ^ c o s  kpn/m; p = 0, 1» 2, *** m s

(2a) bk=  0*52+0*4-6cos kir/m
where is the gth coefficient of the Fourier cosine series representation 

of the autoeorrellogram, and
6 7b^ is a smoothing function suggested by Tukey ? to make peaks in Up 

more pronounced*
Some of the characteristics of these two methods are described in the 

appendix*
The power spectrum (PS) method will be emphasized in this report; it 

seems to be the preferable method since it involves a further reduction of 

the data obtained from the AG* However, the PS analysis8 since it involves 

a Fourier transformations, is designed to give optimum results with periodic 

data which have a sinusoidal wave form* But, it would be a little surprising 

if humans exhibited sinusoidal periodicities* Further, it is necessary to 

deal with fairly small data samples to avoid fatigue effects, which means 

that the wave form may not be readily discernible from a given set of data*

Thus it was felt that a study should be made of the sampling distribu

tions of the AC and PS methods* A complete study would involve determining 

the effect of the wave form and the position and height of maxima in the 

time series on the distribution of the AG and PS* Work bearing on these
J
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2 8
problems has been reported by Tukey and Ross * However, it is not clear 

if these methods apply fully to data with the properties mentioned above*

As a result we have attempted a limited study of the sampling distributions 

of the AG and PS methods for one wave form (Gaussian) and situations com

parable to those encountered in our experiments* Rather than making a 

thorough investigation of the behavior of these functions we have concen

trated on synthesizing data according to mathematical models which it was 

hoped simulated the behavior of our subjects* These synthesized data were 

analyzed according to the AG and PS methods* From comparisons between 

the results of these analyses and those obtained from human data it was 

possible to modify the mathematical models and determine the range of 

parameters from which comparable values resulted* By such an iterative 

procedure reasonable agreement was eventually obtained between the re

sults from synthesized and human data* The data which have been analyzed 

have not only helped to improve the model but have yielded results which 

indicate the efficiency and limitations of such methods for analyzing 

this type of data* Consequently, these results and procedures are worthy 

of presentation*
It was found that the composition of the PS depended not only on 

the periodicities present but also the general shape of the time series*

In fact in some situations the peak in the PS corresponding to the main 

periodicity was overshadowed by other peaks resulting from the general 

shape of the time series* A more diffuse wave form can be detected in 

the PS than in the AG*
From the results, it seems reasonably certain that a fairly strong 

quantization of 100 msec* is associated with simple information
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processing in man* Also, there is a suggestion that the fundamental quantum 

may be 33»3 msec* in duration, with three of them grouped together to give 

the strong 100 msec* periodicity*

The data have all been synthesized by the use of Monte Carlo techniques* 

In our basic mathematical model of the human we ascribed a reaction time, T, 

as being the sum of the following components (see eq* 2 of R-75):

where t is the time necessary for accommodation, to decide upon the oper

ating procedure which is best for the given situation and to generate a

which information is processed; the y js represent the distributions associ- 

ated with the various t*s (i*e*, the disperseness of the distributions of 

the y bs represents the sloppiness of humans in performing the data proc

essing); and p and a are integers which are respectively the number of input 

and processing cycles required to complete the task* The a> (3 and y 's are 

thus seen to be random variables selected from their respective distribu

tions; these were the random variables which were generated by Monte Carlo 

methods*
A given set of data was synthesized by specifying the durations of 

the t ‘s and the distributions and ranges associated with the various ran-

* Synthesis and analysis of the data were performed on ILLIAC, the elec
tronic digital computer at the University of Illinois*

METHODS

(3) t = (t0+r0 )+p('fci +ri )+a(tp+rp)

response; t^ is the duration of the quantization associated with data input;

t is the duration of the quantization associated with the unit acts by P

A particular response time, T, (in units of 10 msec* ) was
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formed by generating an a, (3, y^, y0 and Yp* The number of T ’s generated 

for a given set of synthetic data was specified in the problem and corres

ponded to a sample size, s, obtained from our subjects* The s response 

times were then tabulated into a histogram of response time frequencies 

and analyzed exactly the same as the human data?- i*e*, the number of times 

420 msec., 430 msec*, 440 msec*, ****$70 msec* ****etc* occurred was tallied* 

Examination of some of the preliminary human data indicated that the 

a's and p ‘s had a somewhat rectangular distribution, the y ’s probably a 

Gaussian distribution and there was very often one outstanding period*

Ihus much of the synthetic data involves a single 100 msec* quantum and 

distributions for a9 p and y mentioned above* However, it was necessary 

to modify some of the parameters before a reasonable agreement between 

synthetic and human results was obtained* These modifications included 

the substitution of a distribution very similar to a Poisson in place of 

the rectangular ones and the assumption that although 100 msec* is the 

most pronounced periodicity it is actually composed of a group of three 

quanta of 33 msec*

* It should be pointed out that such a histogram is not a time series 
obtained in the usual manner* However, its relation to the usual time- 
probability curve can be seen from the following hypothetical situation* 
Suppose a very large number of equivalent subjects began the same task 
simultaneously, and the number responding in each time interval was ob
served* A frequency-time interval plot of the data would give the usual 
time series, and with a complete representation of the wave form of any 
periodicities present* What we have done is to collect only a small 
sample of data from one subject (or generate only a limited sample size)* 
This corresponds to collecting data from a few identical subjects who 
began their tasks sequentially rather than simultaneously* Such a pro
cedure, of course, will only generate incomplete portions of the wave 
form*
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RESULTS*

Mio in the first model (Ml) a single periodicity was used (p was set 

equal to 0). a was assigned a rectangular distribution with values from 

1-30 and Yp and Y0 were assigned Gaussian distributions with standard devi

ations, <T„ and cr *** The data in fig* 1 indicate the effect of varying cr P o
when cr = o, t = 100 msec** a had a range of 1-30 and 150 response times 

P P
were generated* The range of 3 sec* (30 periods of 100 msec*) corresponds

to the usual range of the human reaction times* Of particular interest is

the increase in what are spurious peaks (i*e*, peaks not corresponding to

the periodicity of 100 msec*) as <tq increases in size* These occur because
the plots are not of U but of U / U ^ ,  and the more diffuse the wave form

of the periodicity the lesser the maximum spectral density value; thus,

small background clutter will increase with respect to until it finally

assumes an apparent importance* In this manner it will appear that new

pseudo-periodicities are occurring* Thus, the normalization which is quite

convenient for computer operation can cause some trouble in the analysis,

particularly if cr approaches l/3 to l/2 of the predominant periodicity*

However, for cr — 1/4- t little trouble is encountered*O P

* It is necessary to bear in mind that the PS abscissa (p) is a frequency 
scale and not a linear time scale* The cos kpn/m term becomes maximum 
p/2 times in the interval 0 £ k £ m* Thus, the maxima of cos kpir/m 
occur at integral multiples of 2m/p* If m=100, a periodicity of 100 msec* 
would be represented by a peak at p=20 (2000/20=100) and a peak at p-60 
would indicate a period of 33*3 msec* (2000/60=33*3)* *

**t was usually set equal to 4-00 msec*; however, this is unimportant since 
it merely shifts the origin of the time series but does not affect the AC
or PS*
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FIG. IA THE EFFECT ON THE AUTOCORRELOGRAMS OF VARYING <T0 WHEN Op = 0  ; 
tp * IO O  MSEC., l < C t O O ,  j8 *0  AND S *I5 0 . DATA WERE GENERATED ACCORDING TO 
MODEL MI APPLIED TO EQUATION (I)*.

T « (V A 0) ♦ )9(ti*A ,)+a(tp+Ap)
WHERE THE cr's  ARE THE STANDARD DEVIATIONS OF THE GAUSSIAN DISTRIBUTIONS 
(A 's )  ASSOCIATED WITH THE VARIOUS t 's  . (THE SUBSCRIPT I REFERS TO THE 
INPUT OF DATA, p TO DATA PROCESSING AND 0 TO THE DETERMINATION OF AN 
OPERATING PROCEDURE AND A RESPONSE.) HENCEFORTH, t 0 WAS SET EQUAL TO 
4 0 0  MSEC. BUT CAN BE DISREGARDED SINCE IT  PRODUCES NO EFFECT ON EITHER 
THE AC OR PS. (SEE TEXT)
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FIG. IB THE EFFECT ON THE POWER SPECTRA OF VARYING (T0 WHEN crp ■ 0 .  
OTHER FACTORS ARE THE SAME AS IN FIG. IA .
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Although the detection of the 100 msec» period depends critically 

upon o^, it can be seen in fig* 2 that the detection is relatively in

sensitive to sample size - at least for an average data density of greater 

than 2 observations per period*

The data shown in fig* 3 indicate the effect of Yp alone* i'rom 

these results it was possible to set limits on the values of the parameters 

which when inserted into eq* 3, would give results compatible with the 

human data (R-75). cr should be less than 6 msec* and cr should lie
sr ^

between 10 and 35 msec* The results of various combinations of the two 

parameters are shown in figs* U and 5*

It can be seen in figs* 1-5 that as cr increases the 100 msec* 

periodicity becomes obscured quicker in the AG than in the PS* However, 

the PS has the unfortunate property, mentioned previously, that its back

ground increases as o" increases* It can also be seen that the effect of 

<5̂  is roughly comparable to a 5-7 times larger increase in 6 "̂  for the 

factors we have investigated* Actually <tq and cr̂  are not equivalent

since cr causes the modes associated with large a ’s to be more disperse,]P
than those associated with small a *s but not to shift the locus of the 

mode along the time .scale; whereas, the effect of cr is independent of 

a. An investigation of the human data indicated that there was not a 

marked difference in the disperseness of early modes as contrasted to 

late modes so that it appears justified to assume that the variability 
is largely due to r0* Henceforth, <rp and or were set to zero and r0 

made large enough to take care of all of the variance*

Some of our early human data was collected under conditions in 

which the accuracy of the response times was + 10 msec*, which was
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FIG. 3B THE EFFECT ON THE PS OF VARYING Op WHEN Oo-O. OTHER FACTORS 
ARE THE SAME AS IN FIG. 3A.
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k (In un it»  of IO m *»c.)—

FIG. 4A THE EFFECT ON THE AC OF VARYING BOTH <T0 AND CTp WHEN tp * IOO MSEC. , 
l « a * 2 5 ,  fimOt S *3 0 0  AND USING MI. THESE FACTORS GAVE EQUATION (1) THE FORM:

T(MSEC)« 400+  A 0 ♦ a ( 100+ A p)
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P —

FIG. 4B THE EFFECT ON THE PS OF VARYING BOTH <r0 AND a*. OTHER 

FACTORS ARE THE SAME AS IN FIG. 4A.
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FIG. 5 THE EFFECT ON THE PS OF "SMOOTHING” (EQ.2) THE HISTOGRAM. 
THE PS ON THE RIGHT ARE FROM "SMOOTHED" HISTOGRAMS, THOSE ON 
THE LE FT  FROM THE CORRESPONDING DATA ASSEMBLED IN UNSMOOTHED 
HISTOGRAMS. DATA WERE GENERATED ACCORDING TO MODEL Ml WITH 
l£ a £ 2 5 ,  j8 = 0 , s s3 0 0  (a - f) tp  »100msec., o b *4 0 m se c ., av,* 4msec. AND 
(g) tp  * 33  msec., <r0 *IOmsec. AND O p *0  SO THAT EQ.I HAD THE FORM:

T = t0 + A0 ^  a ( tp + A p)
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equal to the data interval size* In an attempt to avoid complications due 

to this uncertainty a sliding average process was applied to the initial 

histograms so as to produce a new “smoothed“ histogram?" The averaging proc

ess applied wass

(X) X.= 3i. (i = l, 2, 3 N)
i  i r l  i  i + l

where x^ is the value of the ith interval of the regular histo

gram and is the value of the ith interval of the “smoothed“ 

histogram*
It can be seen in fig* 5 that this smoothing procedure quite effectively 

eliminates high frequency components from the PS* If the periodicity being 

investigated does not fall in the high frequency area, then this smoothing 

can be of some benefit (however, note plot $ g)*

It was also determined that a PS analysis using bj, as formulated in

relation' k  was always more effective in detecting periodicities than
„/f

an analysis in which b = was omitted, i*e*, set equal to 1*d
A comparison of a composite power spectrum, fig* 6 (obtained by summing 

21 power spectra from six subjects under six experimental conditions) with 

the results in figs* 1-5 indicated that MI was a poor model* At this stage 

in the investigation it was suspected that although the largest spectral 

density value corresponded to 100 msec*, that this quantum might be composed 

of three smaller quanta of about 33 msec* It was further noted that a did 

not really have a rectangular distribution; rather, the first two or three 

modes were usually fairly small, then there would be a central portion of 

the histogram in which the peaks were of roughly equal magnitude followed 

by a gradual decline in the size of the modes for larger response times*

The distributions of the heights of the modes and thus of a look roughly
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FIG. 6 A COMPOSITE PS CONSTRUCTED BY NORMALIZING THE SUM OF 21 PS OBTAINED FROM 6 
SUBJECTS AND UNDER 6 EXPERIMENTAL CONDITIONS.
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like Poisson distributions with means ranging from 10-40% of the maximum

Of do

Mil and MIIIo Two attempts were made to change the distribution of 

a to something approximately like the one described above# In both Mil 

and Mill t» was set equal to t and a and p were given rectangular dis- 

tributions# In Mil the restriction was imposed that p must be less than 

a for any given T and in Mill that p must be less than one-half a* Results 

typical of these two models are shown in fig# 7# Neither model yielded 

results comparable to the composite human PS in fig# 6#

MiyQ In the final model t ± and t were not only set equal but were 

combined and designated tD# This corresponds to the assumption that input
Jr

and processing occur sequentially rather than simultaneously and the active 

processes involve the same amount of time# Correspondingly a and p were 

combined into a single variables, a s which was assigned a discrete prob

ability distribution similar to a Poisson*, for each run#

These modifications changed equation 3 to
(5) T-t - y  +at (where t a constant*, has no effect on the PS).

* O ~ O J3 O
Thus, assuming that r0 has a Gaussian distribution, the only variables

are or, t , and the general form associated with the distribution of gu o p >i
The Poisson-like distribution of a was obtained by constructing smoothed

’Envelopes" through the maxima, i#e#9 modes, of the histograms of the 

human response times# When these were normalized, they were found to be 

quite similar, so that a general envelope could be drawn# The effect on 

the PS of variations in the distribution of a and the factors crQ and tp 

was tested#
It was found that the best fits to the composite PS in fig# 6 were



FIG. 7 THE NORMALIZED SUM OF FOUR PS GENERATED ACCORDING TO 
Mil IN WHICH tj ■ tp *100 msec., «5 » 20 msec., 8 « 150, l^ a ^ 2 5 , WITH THE 
CONSTRAINT THAT /9*a THESE FACTORS GAVE EQUATION (I) THE FORM:

T (msec.)» 400 ♦ A 0 + 100 (a + 0 )
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obtained if 33 msec* rather than 100 was taken as the duration of t^* 

However» portions of the composite PS appeared in the 100 msec* results 

if a suitable distribution of a was chosen (for example, note the 60, $1 

and AU peaks in fig* 8)* Thus, it can be see# in fig* 8 and figs* 9-12 

that the PS depends upon the distribution of a as well as the width of 

the wave, i*e*, upon o^* For instance in fig* 9 the weight in the peak 

corresponding to UU msec*» which is the result of the a-distribution 

shown, is greater than that in the peak at 33 msec* > which was the value

of t * The sharper the a-distribution the lower, in general, the level
P

of the background in the PS (for example, compare these factors in figs.

9, 10, 11)*
The most obvious deficiency in the PS in fig* 8 is the absence of 

a prominent 100 msec* peak* To compensate for this a "fine structure" 

was superimposed on the Poisson-like distribution of a* This fine structure 

usually consisted of grouping 3 successive values of a so that their values 

were set at 1*20» 0*90, 0*80» 1*20» 0*90, 0*80, 1*20, etc* times the cor

responding values of the underlying Poisson-like distribution* Such a 

grouping was intended to produce a large 100 msec* effect (actually 99 

msec* since it was not possible to specify tp in units less than 1 msec. )* 

The values of 1*20» 0*90» 0*80 were obtained from an examination of the 

height of the modes in the human data and gave better results than a large 

number of other triple values tested*
Two moderately successful attempts to duplicate the plot in fig* 6 

are shown in figs* 10A and 11A* Plot 10A was obtained by normalizing the 

sum of the PS obtained from three separate runs (plots 10C-E)* A number 

of obvious discrepancies still remain - such as high background, too large
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FIG. 8  PLOT A IS THE NORMALIZED SUM OF THREE PS GENERATED ACCORDING 
TO MIV USING THE FREQUENCY DISTRIBUTION OF a  SHOWN IN PLOT B, t p»IOOm««c., 
cr0» 30 msec., l £ a * 3 3  AND S « 4 0 0 , EQUATION (I) HAD THE FORM:

T(m««c.) -  4 0 0 +  A 0 + 100 a
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FIG 9 PLOT A IS A PS GENERATED ACCORDING TO MIV USING T«E FREQUENCY
D IS TR IB U T IO N  O F a  SHOWN I N ® t h ' e  F O R N •’
S* 200. WITH THESE FACTORS EQUATION (I) HAD THE FORM.

T (msec.)» 400+  A0+33CI
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FIG. 10 PLOT A IS THE NORMALIZED SUM OF THE THREE PS SHOWN 
IN PLOTS C-E . THEY WERE GENERATED ACCORDING TO MiV USING 
THE FREQUENCY DISTRIBUTION OF a SHOWN IN PLOT B, tp« 33 MSEC., 
l i a i  100 AND S«400. WITH THESE FACTORS EQUATION (I) HAD THE 
FORM:

T(m»tc.)« 400+ A0+33a

THE POSITIONS OF THE PEAKS OBSERVED IN FIG. 6 ARE LABELED-  
THOSE IN PARENTHESES INDICATE PEAKS NOT OCCURING IN THIS 
PLOT.
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FIG. IO (CONT'D)
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FIG. II RESULTS SIMILAR TO THOSE IN FIG. 10 EXCEPT THAT THE a -  
DISTRIBUTION IS SLIGHTLY MORE "PEAKED" THAN IN THE PREVIOUS 
RESULTS.
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a 33 msec* peak, 50 and 44 msec* peaks too small, etc* However, the 21 PS 

from which the plot in fig* 6 was composed would not all be expected to have 

the same a-distributions* Thus, it would actually be a little surprising 

if it were possible to duplicate such a composite PS, as fig* 6, using a 

single a-di stribution* The three PS in fig* 10C-E vary considerably among 

themselves and individually do not simulate the composite PS very closely, 

although their average, fig* 10A, does reasonably well* The fact that 

pooling the PS derived from different population samples gives a more stable 

result than pooling the population samples first is unexpected*

The sensitivity of the normalized PS to slight changes in the <j—distribu

tion can be seen in the last two figs* The a“distribution used in fig* 10 

was "peaked" slightly to produce the results in fig* 11 and the fine struc

ture was modified from the usual sequence given above to 1*20, 0*90, 0*80, 

1*20, 0*90, 0*80, 1*20, 0*90, 0*80, 0*7$, etc* to yield the results in fig.

12* It can be seen that both of these small modifications have significant 

effects* Any larger changes in the distribution of a invariably produced 

larger deviations in the power spectrum from the one given in fig* 6*

Of the values of crQ tested (6, 8, 10, 13, 15* and 18 msec* ) 13 msec* 

gave the best agreement with fig* 6* It was hoped that the height, the 

shape or the position of some of the peaks in PS might be indicative of <tq .

However, no reliable index was found*
Values of 25, 27, 33, 36, 44, 50, 75, and 100 msec* were assigned to

t * Of these 100 and 33 msec* were the only ones which gave reasonable
P.

values, and as stated before 33 msec* seemed preferable to 100* The absence 

of a good criterion for determining the best values of <TQ made the task of 

determining appropriate values of the four parameters more difficult*
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a

FIG. 12 PLOT A IS THE NORMALIZED SUM OF FIVE PS GENERATED 
ACCORDING TO MIV USING THE a-DISTRIBUTION SHOWN IN PLOT B, 
tp = 33 MSEC., <Tp =13 MSEC., l^ a ^ lO O  AND S=400. THE "F IN E  
STRUCTURE" OF THE a-DISTRIBUTION GROUPED 3,3 AND 4 SUCCESS
IVE VALUES TOGETHER RATHER THAN EVERY 3 AS IN THE PREVIOUS 
RESULTS (SEE TEXT FOR FURTHER EXPLANATION). NOTE THE RE
SULTING III MSEC. PEAK WHICH REPLACES THE USUAL IOO MSEC. 
ONE, AND ITS 56 MSEC. HARMONIC.
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However, the general shape and the fine structure of a and the values of 

t have been determined fairly accurately* When it was determined that
IT

t was probably 33 msec* and cr was quite likely of the order of 13 msec*, 

further investigation of this model, which would have included the investi

gation of different wave forms, was abandoned since all our human data 

weire collected for intervals of 10 msec*; whereas, for an accurate invest!- 

gation of a 33 msec* period with a 13 msec* standard deviation, data would 

have to be collected within much smaller intervals* Such a program is not 

envisioned so that these results have been presented at this time*

In summary it can be said that reasonable agreement can be obtained 

between human data and data synthesized according to equation 3» or its 

modification, equation 5« It appears that there is a period of 100 msec* 

associated with human information processing; that this period may be the 

result of a grouping of three fundamental quanta of 33 msec* duration; and 

that within a 33 msec* fundamental quantum either data processing or data 

input may occur* For the simple tasks which we investigated, t^ was of 

the order of 400 msec* Further there seems to be a general uncertainty, 

designated y 0s associated with either the beginning or the cessation of a 

task but very little variability associated with the fundamental quanta 

by which the task is performed*
Of the two types of analyses the PS seems to be more sensitive than 

the autocorrelation for detecting the types of periodicity studied* The 

main drawback to the PS for detecting periodicities with a fairly disperse 

wave form is that the background is relatively high* The PS was found to 

be dependent upon the wave form, the duration of the periodicity, and the 

general shape of the time series^(what we have referred to as the distribution

of a in this paper)*
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Our mathematical model with the parameters used is compatible with 

the experimental findings from humans; however, this agreement does not 

exclude the possibility of other interpretations.
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APPENDIX

The following is a brief explanation of the significance of individual 

values of the autocorrelation function, R̂ ., and the spectral density function,

U o For illustrative purposes, a hypothetical histogram is used with N =31P
points specified* All of the functions used in the Appendix are defined 

only at a number of discrete points* These points are connected with smooth 

curves only to aid in visualizing the general shapes of the functions, and 

not to represent intermediate values of the functions*

Rk (Equation l) The kth autocorrelation term is the result of the following 

operations:
(i) displacement of the original histogram, x^ (Fig* 13A) k intervals

to the left along the %bsc±8&a so as to form a second histogram, xi+k, (Fig, 13B);

(ii) comparison of the two histograms point-by-point by forming the

products **or 1» 2 **** N-k (Fig* 13C)j

and
(iii) forming the algebraic average, x ^ x . ^ >  of the N-k products*

The x.oX (which is the usual convariance for two functions) is a measure i+k
of how nearly identical the two histograms are* For example, if the histo

grams are practically identical for a lag of k, then most of the xi°xi+k 

terms would be positive and x^®x^+̂ . would be a large, positive value, 

whereas if the histograms are dissimilar the algebraic average would be 

close to zero* For zero lag (i*e*, k = 0) x ^ x ^ ^ - x ^  which, of course, 

is the maximum value this factor can assume* In the case of an absolutely

periodic function, such as a sin or cos curve, the maximum value for x ^ x ^ ^  

would occur each time the lag was equal to an integral multiple of the 

period of the function, and the negative maximum would occur each time the 

lag was 1/2, 3/2, 5/2, etc* of the period*
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Since the average amplitude is not constant in the experimental
' f"A' ' ..“

histograms, the mean and variance for the set of x . ’s and the set of
t ■ j  - ‘ »K - xQ - ' ¿ti > '.  *  ■*/; *■

x , ' s  will not necessarily be the same* In order to compensate for 

these two factors, the term has been modified as shown in

Eq* 1* The modification chosen, in addition to helping correct for the
• ♦ ' +\ . j

variable mean and variance, is particularly convenient to use with 

automatic computation methods* Since RQ = 1, all R̂ . values are auto

matically normalized and in the proper form for plotting on the cathode 

ray tube.
< vr£K'0\. / - r  .■

To summarize: R^.is a measure of how near the histogram, x^, is

to being absolutely periodic for a lag of k (where a value of R ^ = l  

would indicate complete periodicity with a period of k intervals)*

UD (Equation 2). Using Fourier series, a function, f (x), can be rep- 

resented in the interval 0 £ x £ L as the sum of a number of cosine 

components (9,10) of the form

(6) f (x) Aq +AqCos cos 2 ÏÏÏ+ ****

+Aj 003 j  T

where the A. terms are weighting factors which describe the relativeJ
importance of the corresponding cosipe term of frequency j in repre

senting f(x)* The weighting terms, A., are of the form
l  J

(7) A,* = const 2  f(x)cos j _ *J X = 0

The analogies between equations (2), (6) and (7) are obvious

(U = A., R, = f (x ), ~  = — , and p = j ). If the histogram, x ±9 is P J k m L
periodic, R^ will have periodically large values corresponding to the 

periods in x^, and thus its structure can readily be accounted for as 

the sum of a number of component frequencies* The pth spectral density term

is the result of:



(i) comparing the autocorrelation values, R^, (Fig* 13D) and the value 

of cos k p n/m (Fig* 13E) point-by-point by forming the products { \ )  (cos 

k p ir/m) for k = 0, 1, 2, 3 **♦* m (Fig* 13F)j

and
(ii) forming the sum of the m+1 products, (Rk ) (cos k p n/m)*

The sum, cos k p n/m, which is the pth coefficient of the Fourier

cosine series, is a measure of the importance of a cosine of frequency p 

in representing R^* Thus the Up values indicate the relative importance 

(or weight, or amplitude) associated with the component frequencies* As 

p is varied the relative importance of the component frequencies within 

the desired range can be determined*
As an aid in visualizing these analytical steps, the analysis is 

shown step-by-step for the 31-point histogram in Fig* 13* The detailed 

analysis is shown for k = 13 and p — 4* The complete set of values for the 

spectral density (Fig* 13G) function are also shown*
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